Rong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8124652/publications.pdf Version: 2024-02-01

RONG WANG

#	Article	IF	CITATIONS
1	Sleeping Heart Monitoring Using Hydrogel-Textile Capacitive ECG Electrodes. IEEE Sensors Journal, 2022, 22, 9255-9267.	2.4	12
2	Tannic acid-reinforced zwitterionic hydrogels with multi-functionalities for diabetic wound treatment. Journal of Materials Chemistry B, 2022, 10, 4142-4152.	2.9	21
3	One-step coordination of metal–phenolic networks as antibacterial coatings with sustainable and controllable copper release for urinary catheter applications. RSC Advances, 2022, 12, 15685-15693.	1.7	7
4	Three-Dimensional-Printable Thermo/Photo-Cross-Linked Methacrylated Chitosan–Gelatin Hydrogel Composites for Tissue Engineering. ACS Applied Materials & Interfaces, 2021, 13, 22902-22913.	4.0	72
5	Mechano-Responsive, Tough, and Antibacterial Zwitterionic Hydrogels with Controllable Drug Release for Wound Healing Applications. ACS Applied Materials & Interfaces, 2020, 12, 52307-52318.	4.0	95
6	Reinforced macromolecular micelle-crosslinked hyaluronate gels induced by water/DMSO binary solvent. Soft Matter, 2020, 16, 8647-8654.	1.2	5
7	3D Bioprinting Microgels: Direct 3D Printed Biomimetic Scaffolds Based on Hydrogel Microparticles for Cell Spheroid Growth (Adv. Funct. Mater. 13/2020). Advanced Functional Materials, 2020, 30, 2070085.	7.8	1
8	Facile synthesis of "digestibleâ€, rigid-and-flexible, bio-based building block for high-performance degradable thermosetting plastics. Green Chemistry, 2020, 22, 1275-1290.	4.6	64
9	Direct 3D Printed Biomimetic Scaffolds Based on Hydrogel Microparticles for Cell Spheroid Growth. Advanced Functional Materials, 2020, 30, 1910573.	7.8	99
10	Understanding of Growth Mechanism and Structure of Multilayer Thin Films via Layer-by-Layer Hydrogen Bonded Assembly from Polymer Brushes-Grafted Surface. Nanoscience and Nanotechnology Letters, 2020, 12, 890-900.	0.4	0
11	Effect of solvent–matrix interactions on structures and mechanical properties of micelleâ€crosslinked gels. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 473-483.	2.4	8
12	Tough, Adhesive, Self-Healable, and Transparent Ionically Conductive Zwitterionic Nanocomposite Hydrogels as Skin Strain Sensors. ACS Applied Materials & Interfaces, 2019, 11, 3506-3515.	4.0	309
13	Synergistic pH and Temperature-Driven Actuation of Poly(NIPAM- <i>co</i> -DMAPMA)/Clay Nanocomposite Hydrogel Bilayers. ACS Omega, 2018, 3, 17914-17921.	1.6	21
14	Restriction of in vivo infection by antifouling coating on urinary catheter with controllable and sustained silver release: a proof of concept study. BMC Infectious Diseases, 2018, 18, 370.	1.3	28
15	Bifunctional Coating with Sustained Release of 4-Amide-piperidine-C12 for Long-Term Prevention of Bacterial Colonization on Silicone. ACS Biomaterials Science and Engineering, 2015, 1, 405-415.	2.6	18
16	Antifouling coating with controllable and sustained silver release for longâ€ŧerm inhibition of infection and encrustation in urinary catheters. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 519-528.	1.6	90
17	Integration of antifouling and bactericidal moieties for optimizing the efficacy of antibacterial coatings. Journal of Colloid and Interface Science, 2015, 438, 138-148.	5.0	47
18	A poly(vinylidene fluoride)-graft-poly(dopamine acrylamide) copolymer for surface functionalizable membranes. RSC Advances, 2013, 3, 25204.	1.7	30

Rong Wang

#	Article	lF	CITATIONS
19	Fabrication of polyvinylidene fluoride (PVDF) nanofiber membranes by electro-spinning for direct contact membrane distillation. Journal of Membrane Science, 2013, 425-426, 30-39.	4.1	364
20	Surface Modification of Silicone for Biomedical Applications Requiring Long-Term Antibacterial, Antifouling, and Hemocompatible Properties. Langmuir, 2012, 28, 16408-16422.	1.6	139
21	Inhibition of escherichia coli and proteus mirabilis adhesion and biofilm formation on medical grade silicone surface. Biotechnology and Bioengineering, 2012, 109, 336-345.	1.7	131