Takaomi C Saido

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8124463/publications.pdf

Version: 2024-02-01

382 papers 32,668 citations

89 h-index 161 g-index

427 all docs

427 docs citations

times ranked

427

28595 citing authors

#	Article	IF	CITATIONS
1	Presubiculum principal cells are preserved from degeneration in knock-in APP/TAU mouse models of Alzheimer's disease. Seminars in Cell and Developmental Biology, 2023, 139, 55-72.	2.3	8
2	$<$ sup>11C-PiB and $<$ sup>124I-Antibody PET Provide Differing Estimates of Brain Amyloid- \hat{l}^2 After Therapeutic Intervention. Journal of Nuclear Medicine, 2022, 63, 302-309.	2.8	19
3	Somatostatin-evoked A \hat{l}^2 catabolism in the brain: Mechanistic involvement of $\hat{l}\pm$ -endosulfine-KATP channel pathway. Molecular Psychiatry, 2022, 27, 1816-1828.	4.1	11
4	Deficiency of MTH1 and/or OGG1 increases the accumulation of 8-oxoguanine in the brain of the AppNL-G-F/NL-G-F knock-in mouse model of Alzheimer's disease, accompanied by accelerated microgliosis and reduced anxiety-like behavior. Neuroscience Research, 2022, 177, 118-134.	1.0	3
5	Therapeutic effects of anti-amyloid β antibody after intravenous injection and efficient nose-to-brain delivery in Alzheimer's disease mouse model. Drug Delivery and Translational Research, 2022, , 1.	3.0	2
6	Disrupted neural correlates of anesthesia and sleep reveal early circuit dysfunctions in Alzheimer models. Cell Reports, 2022, 38, 110268.	2.9	13
7	Assessing Sex-Specific Circadian, Metabolic, and Cognitive Phenotypes in the AβPP/PS1 and APPNL-F/NL-F Models of Alzheimer's Disease. Journal of Alzheimer's Disease, 2022, 85, 1077-1093.	1.2	5
8	Periodontal Infection Aggravates C1q-Mediated Microglial Activation and Synapse Pruning in Alzheimer's Mice. Frontiers in Immunology, 2022, 13, 816640.	2.2	15
9	Astrocytes deficient in circadian clock gene Bmal1 show enhanced activation responses to amyloid-beta pathology without changing plaque burden. Scientific Reports, 2022, 12, 1796.	1.6	22
10	Lipid flippase dysfunction as a therapeutic target for endosomal anomalies in Alzheimer's disease. IScience, 2022, 25, 103869.	1.9	7
11	Recent Advances in the Modeling of Alzheimer's Disease. Frontiers in Neuroscience, 2022, 16, 807473.	1.4	55
12	AAVâ€mediated delivery of an antiâ€BACE1 VHH alleviates pathology in an Alzheimer's disease model. EMBO Molecular Medicine, 2022, 14, e09824.	3.3	13
13	Epigenetic repression of Wnt receptors in AD: a role for Sirtuin2-induced H4K16ac deacetylation of Frizzled1 and Frizzled7 promoters. Molecular Psychiatry, 2022, 27, 3024-3033.	4.1	16
14	Endothelial expression of human amyloid precursor protein leads to amyloid \hat{l}^2 in the blood and induces cerebral amyloid angiopathy in knock-in mice. Journal of Biological Chemistry, 2022, 298, 101880.	1.6	8
15	Assessments of prolonged effects of desflurane and sevoflurane on motor learning deficits in aged AppNL-G-F/NL-G-F mice. Molecular Brain, 2022, 15, 32.	1.3	2
16	Amelioration of Alzheimer's Disease by Gut-Pancreas-Liver-Brain Interaction in an App Knock-In Mouse Model. Life, 2022, 12, 34.	1.1	3
17	Impairment of ciliary dynamics in an APP knock-in mouse model of Alzheimer's disease. Biochemical and Biophysical Research Communications, 2022, 610, 85-91.	1.0	4
18	Expression of Olfactory-Related Genes in the Olfactory Epithelium of an Alzheimer's Disease Mouse Model. Journal of Alzheimer's Disease, 2022, , 1-7.	1.2	1

#	Article	IF	Citations
19	Effects of highâ€fat diet on nutrient metabolism and cognitive functions in young <scp> APPKI ^{NLâ€Gâ€F/NLâ€Gâ€F} </scp> mice. Neuropsychopharmacology Reports, 2022, , .	1.1	1
20	Propolis Promotes Memantine-Dependent Rescue of Cognitive Deficits in APP-KI Mice. Molecular Neurobiology, 2022, 59, 4630-4646.	1.9	4
21	Mouse models of Alzheimer's disease for preclinical research. Neurochemistry International, 2022, 158, 105361.	1.9	9
22	Early memory deficits and extensive brain network disorganization in the App/MAPT double knock-in mouse model of familial Alzheimer's disease. Aging Brain, 2022, 2, 100042.	0.7	5
23	An isogenic panel of $\langle i \rangle$ App $\langle i \rangle$ knock-in mouse models: Profiling \hat{I}^2 -secretase inhibition and endosomal abnormalities. Science Advances, 2022, 8, .	4.7	6
24	Terminal complement pathway activation drives synaptic loss in Alzheimer's disease models. Acta Neuropathologica Communications, 2022, 10, .	2.4	19
25	Hippocampal neural circuit connectivity alterations in an Alzheimer's disease mouse model revealed by monosynaptic rabies virus tracing. Neurobiology of Disease, 2022, 172, 105820.	2.1	8
26	Increased CSF-decorin predicts brain pathological changes driven by Alzheimerâ \in [™] s Aβ amyloidosis. Acta Neuropathologica Communications, 2022, 10, .	2.4	8
27	Genetic Mapping of APP and Amyloid- \hat{l}^2 Biology Modulation by Trisomy 21. Journal of Neuroscience, 2022, 42, 6453-6468.	1.7	6
28	Early-life stress induces the development of Alzheimer's disease pathology via angiopathy. Experimental Neurology, 2021, 337, 113552.	2.0	17
29	Pulse-Chase Proteomics of the App Knockin Mouse Models of Alzheimer's Disease Reveals that Synaptic Dysfunction Originates in Presynaptic Terminals. Cell Systems, 2021, 12, 141-158.e9.	2.9	32
30	A potential defense mechanism against amyloid deposition in cerebellum. Biochemical and Biophysical Research Communications, 2021, 535, 25-32.	1.0	7
31	Microglial gene signature reveals loss of homeostatic microglia associated with neurodegeneration of Alzheimer's disease. Acta Neuropathologica Communications, 2021, 9, 1.	2.4	172
32	Integrated analysis of behavioral, epigenetic, and gut microbiome analyses in AppNL-G-F, AppNL-F, and wild type mice. Scientific Reports, 2021, 11, 4678.	1.6	38
33	Extracellular Release of ILEI/FAM3C and Amyloid- \hat{l}^2 Is Associated with the Activation of Distinct Synapse Subpopulations. Journal of Alzheimer's Disease, 2021, 80, 159-174.	1.2	5
34	PET imaging of colony-stimulating factor 1 receptor: A head-to-head comparison of a novel radioligand, $<$ sup>11C-GW2580, and $<$ sup>11C-CPPC, in mouse models of acute and chronic neuroinflammation and a rhesus monkey. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 2410-2422.	2.4	36
35	Enhancing calmodulin binding to ryanodine receptor is crucial to limit neuronal cell loss in Alzheimer disease. Scientific Reports, 2021, 11, 7289.	1.6	14
36	Early identification of Alzheimer's disease in mouse models: Application of deep neural network algorithm to cognitive behavioral parameters. IScience, 2021, 24, 102198.	1.9	14

3

#	Article	IF	CITATIONS
37	Plaque associated microglia hyper-secrete extracellular vesicles and accelerate tau propagation in a humanized APP mouse model. Molecular Neurodegeneration, 2021, 16, 18.	4.4	97
38	Tooth Loss Induces Memory Impairment and Gliosis in App Knock-In Mouse Models of Alzheimer's Disease. Journal of Alzheimer's Disease, 2021, 80, 1687-1704.	1.2	11
39	Modality-Specific Impairment of Hippocampal CA1 Neurons of Alzheimer's Disease Model Mice. Journal of Neuroscience, 2021, 41, 5315-5329.	1.7	11
40	Multi-scale network imaging in a mouse model of amyloidosis. Cell Calcium, 2021, 95, 102365.	1,1	9
41	Knock-in models related to Alzheimer's disease: synaptic transmission, plaques and the role of microglia. Molecular Neurodegeneration, 2021, 16, 47.	4.4	27
42	Accumulation of saposin in dystrophic neurites is linked to impaired lysosomal functions in Alzheimer's disease brains. Molecular Neurodegeneration, 2021, 16, 45.	4.4	26
43	A highâ€fat diet exacerbates the Alzheimer's disease pathology in the hippocampus of the <i>AppAppSup>NLâ^'F/NLâ^'F</i>	3.0	19
44	Suppression of amyloidâ€Î² secretion from neurons by <i>cis</i> â€9, <i>trans</i> â€11â€octadecadienoic acid, ar isomer of conjugated linoleic acid. Journal of Neurochemistry, 2021, 159, 603-617.	¹ 2.1	3
45	Casein Kinase 2 dependent phosphorylation of eIF4B regulates BACE1 expression in Alzheimer's disease. Cell Death and Disease, 2021, 12, 769.	2.7	8
46	Neuronal Cell Cycle Re-Entry Enhances Neuropathological Features in AppNLF Knock-In Mice. Journal of Alzheimer's Disease, 2021, 82, 1683-1702.	1,2	7
47	Widespread Reduced Density of Noradrenergic Locus Coeruleus Axons in the App Knock-In Mouse Model of Amyloid-Î ² Amyloidosis. Journal of Alzheimer's Disease, 2021, 82, 1513-1530.	1,2	7
48	A third-generation mouse model of Alzheimer's disease shows early and increased cored plaque pathology composed of wild-type human amyloid \hat{l}^2 peptide. Journal of Biological Chemistry, 2021, 297, 101004.	1.6	16
49	The AppNL-G-F mouse retina is a site for preclinical Alzheimer's disease diagnosis and research. Acta Neuropathologica Communications, 2021, 9, 6.	2.4	22
50	Distinct microglial response against Alzheimer's amyloid and tau pathologies characterized by P2Y12 receptor. Brain Communications, 2021, 3, fcab011.	1.5	41
51	HMGB1 signaling phosphorylates Ku70 and impairs DNA damage repair in Alzheimer's disease pathology. Communications Biology, 2021, 4, 1175.	2.0	14
52	Microglia and CD206+ border-associated mouse macrophages maintain their embryonic origin during Alzheimerâ \in TM s disease. ELife, 2021, 10, .	2.8	16
53	Identification and drug-induced reversion of molecular signatures of Alzheimer's disease onset and progression in AppNL-G-F, AppNL-F, and 3xTg-AD mouse models. Genome Medicine, 2021, 13, 168.	3.6	7
54	NHE6 depletion corrects ApoE4-mediated synaptic impairments and reduces amyloid plaque load. ELife, 2021, 10, .	2.8	12

#	Article	IF	Citations
55	Microglia-Based Sex-Biased Neuropathology in Early-Stage Alzheimer's Disease Model Mice and the Potential Pharmacologic Efficacy of Dioscin. Cells, 2021, 10, 3261.	1.8	5
56	MUTYH Actively Contributes to Microglial Activation and Impaired Neurogenesis in the Pathogenesis of Alzheimer's Disease. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-30.	1.9	17
57	Contribution of GABAergic interneurons to amyloid- \hat{l}^2 plaque pathology in an APP knock-in mouse model. Molecular Neurodegeneration, 2020, 15, 3.	4.4	26
58	Increased levels of $\hat{Al^2}42$ decrease the lifespan of ob/ob mice with dysregulation of microglia and astrocytes. FASEB Journal, 2020, 34, 2425-2435.	0.2	15
59	Gene-environment interaction promotes Alzheimer's risk as revealed by synergy of repeated mild traumatic brain injury and mouse App knock-in. Neurobiology of Disease, 2020, 145, 105059.	2.1	2
60	Disrupted Place Cell Remapping and Impaired Grid Cells in a Knockin Model of Alzheimer's Disease. Neuron, 2020, 107, 1095-1112.e6.	3.8	82
61	Spatial Transcriptomics and In Situ Sequencing to Study Alzheimer's Disease. Cell, 2020, 182, 976-991.e19.	13.5	491
62	Touchscreen-based location discrimination and paired associate learning tasks detect cognitive impairment at an early stage in an App knock-in mouse model of Alzheimer's disease. Molecular Brain, 2020, 13, 147.	1.3	13
63	Prodromal Alzheimer's Disease: Constitutive Upregulation of Neuroglobin Prevents the Initiation of Alzheimer's Pathology. Frontiers in Neuroscience, 2020, 14, 562581.	1.4	8
64	Impact of Hyperhomocysteinemia and Different Dietary Interventions on Cognitive Performance in a Knock-in Mouse Model for Alzheimer's Disease. Nutrients, 2020, 12, 3248.	1.7	8
65	The two faces of synaptic failure in AppNL-G-F knock-in mice. Alzheimer's Research and Therapy, 2020, 12, 100.	3.0	25
66	Amyloid- $\hat{l}^21\hat{a}$ \in "43 cerebrospinal fluid levels and the interpretation of APP, PSEN1 and PSEN2 mutations. Alzheimer's Research and Therapy, 2020, 12, 108.	3.0	17
67	Astaxanthin Ameliorated Parvalbumin-Positive Neuron Deficits and Alzheimer's Disease-Related Pathological Progression in the Hippocampus of AppNL-G-F/NL-G-F Mice. Frontiers in Pharmacology, 2020, 11, 307.	1.6	27
68	Amyloid \hat{l}^2 induces interneuron-specific changes in the hippocampus of APPNL-F mice. PLoS ONE, 2020, 15, e0233700.	1.1	17
69	Oral glutathione administration inhibits the oxidative stress and the inflammatory responses in AppNLâ^'G-F/NLâ^'G-F knock-in mice. Neuropharmacology, 2020, 168, 108026.	2.0	26
70	Analysis of Taste Sensitivities in App Knock-In Mouse Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2020, 76, 997-1004.	1.2	5
71	\hat{l}^2 -amyloid redirects norepinephrine signaling to activate the pathogenic GSK3 \hat{l}^2 /tau cascade. Science Translational Medicine, 2020, 12, .	5.8	86
72	Nrf2 Suppresses Oxidative Stress and Inflammation in <i>App</i> Knock-In Alzheimer's Disease Model Mice. Molecular and Cellular Biology, 2020, 40, .	1.1	98

#	Article	IF	Citations
73	YAP-dependent necrosis occurs in early stages of Alzheimer $\hat{a} \in \mathbb{N}$ s disease and regulates mouse model pathology. Nature Communications, 2020, $11,507$.	5.8	62
74	Versatile whole-organ/body staining and imaging based on electrolyte-gel properties of biological tissues. Nature Communications, 2020, 11, 1982.	5.8	134
75	Proteomics Time-Course Study of App Knock-In Mice Reveals Novel Presymptomatic Aβ42-Induced Pathways to Alzheimer's Disease Pathology. Journal of Alzheimer's Disease, 2020, 75, 321-335.	1.2	9
76	Retinal Thickness Changes Over Time in a Murine AD Model APPNL-F/NL-F. Frontiers in Aging Neuroscience, 2020, 12, 625642.	1.7	10
77	Progressive Changes in Sleep and Its Relations to Amyloid-β Distribution and Learning in Single <i>App</i> Knock-In Mice. ENeuro, 2020, 7, ENEURO.0093-20.2020.	0.9	9
78	Fibrillar \hat{A}^2 triggers microglial proteome alterations and dysfunction in Alzheimer mouse models. ELife, 2020, 9, .	2.8	80
79	Looking beyond the standard version of the Morris water task in the assessment of mouse models of cognitive deficits. Hippocampus, 2019, 29, 3-14.	0.9	12
80	Longitudinal PET Monitoring of Amyloidosis and Microglial Activation in a Second-Generation Amyloid-Î ² Mouse Model. Journal of Nuclear Medicine, 2019, 60, 1787-1793.	2.8	41
81	Humanization of the entire murine Mapt gene provides a murine model of pathological human tau propagation. Journal of Biological Chemistry, 2019, 294, 12754-12765.	1.6	114
82	Serine Phosphorylation of IRS1 Correlates with $\hat{Al^2}$ -Unrelated Memory Deficits and Elevation in $\hat{Al^2}$ Level Prior to the Onset of Memory Decline in AD. Nutrients, 2019, 11, 1942.	1.7	13
83	ABCA7 haplodeficiency disturbs microglial immune responses in the mouse brain. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23790-23796.	3.3	43
84	Inhibition of p38 MAPK in the brain through nasal administration of p38 inhibitor loaded in chitosan nanocapsules. Nanomedicine, 2019, 14, 2409-2422.	1.7	11
85	Network-guided analysis of hippocampal proteome identifies novel proteins that colocalize with Aβ in a mice model of early-stage Alzheimer's disease. Neurobiology of Disease, 2019, 132, 104603.	2.1	13
86	An impaired intrinsic microglial clock system induces neuroinflammatory alterations in the early stage of amyloid precursor protein knock-in mouse brain. Journal of Neuroinflammation, 2019, 16, 173.	3.1	33
87	Amyloid β oligomers constrict human capillaries in Alzheimer's disease via signaling to pericytes. Science, 2019, 365, .	6.0	436
88	App mice overall do not show impaired motivation, but cored amyloid plaques in the striatum are inversely correlated with motivation. Neurochemistry International, 2019, 129, 104470.	1.9	5
89	An App knock-in mouse inducing the formation of a toxic conformer of $A\hat{l}^2$ as a model for evaluating only oligomer-induced cognitive decline in Alzheimer's disease. Biochemical and Biophysical Research Communications, 2019, 515, 462-467.	1.0	14
90	Tau binding protein CAPON induces tau aggregation and neurodegeneration. Nature Communications, 2019, 10, 2394.	5.8	59

#	Article	IF	Citations
91	Temporal progression of Alzheimer's disease in brains and intestines of transgenic mice. Neurobiology of Aging, 2019, 81, 166-176.	1.5	31
92	Aminophospholipids are signal-transducing TREM2 ligands on apoptotic cells. Scientific Reports, 2019, 9, 7508.	1.6	61
93	The Major Risk Factors for Alzheimer's Disease: Age, Sex, and Genes Modulate the Microglia Response to Aβ Plaques. Cell Reports, 2019, 27, 1293-1306.e6.	2.9	527
94	SIRT3 mediates hippocampal synaptic adaptations to intermittent fasting and ameliorates deficits in APP mutant mice. Nature Communications, 2019, 10, 1886.	5.8	114
95	Amyloid-β plaque formation and reactive gliosis are required for induction of cognitive deficits in App knock-in mouse models of Alzheimer's disease. BMC Neuroscience, 2019, 20, 13.	0.8	37
96	Reducing ADAMTS-3 Inhibits Amyloid \hat{l}^2 Deposition in <i>App</i> Knock-in Mouse. Biological and Pharmaceutical Bulletin, 2019, 42, 354-356.	0.6	8
97	GABARAPs dysfunction by autophagy deficiency in adolescent brain impairs GABA _A receptor trafficking and social behavior. Science Advances, 2019, 5, eaau8237.	4.7	41
98	Aberrant Excitatory–Inhibitory Synaptic Mechanisms in Entorhinal Cortex Microcircuits During the Pathogenesis of Alzheimer's Disease. Cerebral Cortex, 2019, 29, 1834-1850.	1.6	90
99	Insoluble $\hat{Al^2}$ overexpression in an <i>App</i> knock-in mouse model alters microstructure and gamma oscillations in the prefrontal cortex, and impacts on anxiety-related behaviours. DMM Disease Models and Mechanisms, 2019, 12, .	1.2	25
100	Biology of splicing in Alzheimer's disease research. Progress in Molecular Biology and Translational Science, 2019, 168, 79-84.	0.9	0
101	New Insights of a Neuronal Peptidase DINE/ECEL1: Nerve Development, Nerve Regeneration and Neurogenic Pathogenesis. Neurochemical Research, 2019, 44, 1279-1288.	1.6	14
102	Subtle behavioral changes and increased prefrontal-hippocampal network synchronicity in APPNLâ^'Gâ^'F mice before prominent plaque deposition. Behavioural Brain Research, 2019, 364, 431-441.	1.2	63
103	The Disease-modifying Drug Candidate, SAK3 Improves Cognitive Impairment and Inhibits Amyloid beta Deposition in App Knock-in Mice. Neuroscience, 2018, 377, 87-97.	1.1	22
104	Spatial reversal learning defect coincides with hypersynchronous telencephalic BOLD functional connectivity in APPNL-F/NL-F knock-in mice. Scientific Reports, 2018, 8, 6264.	1.6	41
105	Critical review: involvement of endoplasmic reticulum stress in the aetiology of Alzheimer's disease. Open Biology, 2018, 8, 180024.	1.5	106
106	High fat diet treatment impairs hippocampal long-term potentiation without alterations of the core neuropathological features of Alzheimer disease. Neurobiology of Disease, 2018, 113, 82-96.	2.1	34
107	DNA methylation level of the neprilysin promoter in Alzheimer's disease brains. Neuroscience Letters, 2018, 670, 8-13.	1.0	10
108	Dietary lipophilic iron alters amyloidogenesis and microglial morphology in Alzheimer's disease knock-in APP mice. Metallomics, 2018, 10, 426-443.	1.0	33

#	Article	IF	CITATIONS
109	Reduced expression of Na+/Ca2+ exchangers is associated with cognitive deficits seen in Alzheimer's disease model mice. Neuropharmacology, 2018, 131, 291-303.	2.0	23
110	Loss of kallikreinâ€related peptidase 7 exacerbates amyloid pathology in Alzheimer's disease model mice. EMBO Molecular Medicine, 2018, 10, .	3.3	39
111	Endoplasmic reticulum stress responses in mouse models of Alzheimer's disease: Overexpression paradigm versus knockin paradigm. Journal of Biological Chemistry, 2018, 293, 3118-3125.	1.6	53
112	Generation of App knock-in mice reveals deletion mutations protective against Alzheimer's disease-like pathology. Nature Communications, 2018, 9, 1800.	5.8	33
113	Near-Infrared Photoactivatable Oxygenation Catalysts of Amyloid Peptide. CheM, 2018, 4, 807-820.	5.8	59
114	Reduction in open field activity in the absence of memory deficits in the AppNLâ^'Gâ^'F knock-in mouse model of Alzheimer's disease. Behavioural Brain Research, 2018, 336, 177-181.	1.2	50
115	Istradefylline reduces memory deficits in aging mice with amyloid pathology. Neurobiology of Disease, 2018, 110, 29-36.	2.1	75
116	T-type calcium channel enhancer SAK3 promotes dopamine and serotonin releases in the hippocampus in naive and amyloid precursor protein knock-in mice. PLoS ONE, 2018, 13, e0206986.	1.1	20
117	Transmission of amyloid- \hat{l}^2 protein pathology from cadaveric pituitary growth hormone. Nature, 2018, 564, 415-419.	13.7	122
118	Neuroinflammation in mouse models of Alzheimer's disease. Clinical and Experimental Neuroimmunology, 2018, 9, 211-218.	0.5	77
119	The intellectual disability gene PQBP1 rescues Alzheimer's disease pathology. Molecular Psychiatry, 2018, 23, 2090-2110.	4.1	41
120	Increased Insoluble Amyloid- \hat{l}^2 Induces Negligible Cognitive Deficits in Old AppNL/NL Knock-In Mice. Journal of Alzheimer's Disease, 2018, 66, 801-809.	1.2	8
121	Novel Quantitative Analyses of Spontaneous Synaptic Events in Cortical Pyramidal Cells Reveal Subtle Parvalbumin-Expressing Interneuron Dysfunction in a Knock-In Mouse Model of Alzheimer's Disease. ENeuro, 2018, 5, ENEURO.0059-18.2018.	0.9	18
122	Cognitive and emotional alterations in App knock-in mouse models of ${\rm A}\hat{\rm I}^2$ amyloidosis. BMC Neuroscience, 2018, 19, 46.	0.8	51
123	Introduction of pathogenic mutations into the mouse Psen1 gene by Base Editor and Target-AID. Nature Communications, 2018, 9, 2892.	5.8	52
124	Concurrent cell type–specific isolation and profiling of mouse brains in inflammation and Alzheimer's disease. JCI Insight, 2018, 3, .	2.3	39
125	Circadian and Brain State Modulation of Network Hyperexcitability in Alzheimer's Disease. ENeuro, 2018, 5, ENEURO.0426-17.2018.	0.9	33
126	Systemic insulin resistance induces cognitive and psychiatric symptoms in Alzheimer's disease model mice. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO1-1-38.	0.0	0

#	Article	IF	CITATIONS
127	T-type calcium channel enhancer SAK3 improves cognition and inhibits amyloid beta accumulation in AppNL-F knock-in mice. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO1-1-61.	0.0	0
128	PLD3 gene and processing of APP. Nature, 2017, 541, E1-E2.	13.7	42
129	Tetraspanin 6: a pivotal protein of the multiple vesicular body determining exosome release and lysosomal degradation of amyloid precursor protein fragments. Molecular Neurodegeneration, 2017, 12, 25.	4.4	70
130	An immunoaffinity-based method for isolating ultrapure adult astrocytes based on ATP1B2 targeting by the ACSA-2 antibody. Journal of Biological Chemistry, 2017, 292, 8874-8891.	1.6	73
131	Neuron-specific methylome analysis reveals epigenetic regulation and tau-related dysfunction of BRCA1 in Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9645-E9654.	3.3	72
132	Alzheimer's-Causing Mutations Shift Al̂² Length by Destabilizing l̂³-Secretase-Al̂²n Interactions. Cell, 2017, 170, 443-456.e14.	13.5	199
133	<scp>APP</scp> mouse models for Alzheimer's disease preclinical studies. EMBO Journal, 2017, 36, 2473-2487.	3.5	530
134	Expression of Concern for Takano et al., "Vital Role of the Calpain-Calpastatin System for Placental-Integrity-Dependent Embryonic Survival― Molecular and Cellular Biology, 2017, 37, .	1.1	0
135	Comparative profiling of cortical gene expression in Alzheimer's disease patients and mouse models demonstrates a link between amyloidosis and neuroinflammation. Scientific Reports, 2017, 7, 17762.	1.6	138
136	Impaired In Vivo Gamma Oscillations in the Medial Entorhinal Cortex of Knock-in Alzheimer Model. Frontiers in Systems Neuroscience, 2017, 11, 48.	1.2	52
137	Distinct functional consequences of ECEL1/DINE missense mutations in the pathogenesis of congenital contracture disorders. Acta Neuropathologica Communications, 2017, 5, 83.	2.4	7
138	Time-course global proteome analyses reveal an inverse correlation between ${\rm A}{\rm \hat{I}}^2$ burden and immunoglobulin M levels in the APPNL-F mouse model of Alzheimer disease. PLoS ONE, 2017, 12, e0182844.	1.1	6
139	11B NMR/MRI Sensing of Copper(II) Ions In Vitro by the Decomposition of a Hybrid Compound of anido-o-Carborane and a Metal Chelator. European Journal of Inorganic Chemistry, 2016, 2016, 3330-3337.	1.0	8
140	Familial Alzheimer's Disease Mutations in Presenilin Generate Amyloidogenic Aβ Peptide Seeds. Neuron, 2016, 90, 410-416.	3.8	86
141	Cognitive deficits in single App knock-in mouse models. Neurobiology of Learning and Memory, 2016, 135, 73-82.	1.0	158
142	Calpain Activation in Alzheimer's Model Mice Is an Artifact of APP and Presenilin Overexpression. Journal of Neuroscience, 2016, 36, 9933-9936.	1.7	98
143	Calpain research for drug discovery: challenges and potential. Nature Reviews Drug Discovery, 2016, 15, 854-876.	21.5	216
144	HMGB1, a pathogenic molecule that induces neurite degeneration via TLR4-MARCKS, is a potential therapeutic target for Alzheimer's disease. Scientific Reports, 2016, 6, 31895.	1.6	111

#	Article	IF	CITATIONS
145	¹¹ B NMR Probes of Copper(II): Finding and Implications of the Cu ²⁺ â€Promoted Decomposition of <i>ortho</i> ô€Carborane Derivatives. European Journal of Inorganic Chemistry, 2016, 2016, 1819-1834.	1.0	10
146	Bisecting GlcNAc modification stabilizes BACE1 protein under oxidative stress conditions. Biochemical Journal, 2016, 473, 21-30.	1.7	65
147	ECEL1 mutation implicates impaired axonal arborization of motor nerves in the pathogenesis of distal arthrogryposis. Acta Neuropathologica, 2016, 132, 111-126.	3.9	20
148	Leukocyte Calpain Deficiency Reduces Angiotensin Il–Induced Inflammation and Atherosclerosis But Not Abdominal Aortic Aneurysms in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 835-845.	1.1	30
149	Activation of Calpain-2 by Mediators in Pulmonary Vascular Remodeling of Pulmonary Arterial Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 384-393.	1.4	27
150	Loss of neprilysin alters protein expression in the brain of Alzheimer's disease model mice. Proteomics, 2015, 15, 3349-3355.	1.3	13
151	Involvement of calpains in adult neurogenesis: implications for stroke. Frontiers in Cellular Neuroscience, 2015, 9, 22.	1.8	25
152	Catabolism and Anabolism of Amyloid- \hat{l}^2 . , 2015, , 319-339.		0
153	Autophagy-Related Protein 7 Deficiency in Amyloid \hat{l}^2 (A \hat{l}^2) Precursor Protein Transgenic Mice Decreases A \hat{l}^2 in the Multivesicular Bodies and Induces A \hat{l}^2 Accumulation in the Golgi. American Journal of Pathology, 2015, 185, 305-313.	1.9	70
154	An aberrant sugar modification of <scp>BACE</scp> 1 blocks its lysosomal targeting in <scp>A</scp> lzheimer's disease. EMBO Molecular Medicine, 2015, 7, 175-189.	3.3	147
155	Loss of GPR3 reduces the amyloid plaque burden and improves memory in Alzheimer's disease mouse models. Science Translational Medicine, 2015, 7, 309ra164.	5.8	61
156	Neuronal Store-Operated Calcium Entry and Mushroom Spine Loss in Amyloid Precursor Protein Knock-In Mouse Model of Alzheimer's Disease. Journal of Neuroscience, 2015, 35, 13275-13286.	1.7	158
157	ScaleS: an optical clearing palette for biological imaging. Nature Neuroscience, 2015, 18, 1518-1529.	7.1	511
158	Neuropathology and biochemistry of $\hat{Al^2}$ and its aggregates in Alzheimerâ \in [™] s disease. Acta Neuropathologica, 2015, 129, 167-182.	3.9	224
159	Abstract 587: Leukocyte Calpain Deficiency Reduces Angiotensin II-induced Inflammation and Atherosclerosis in Hypercholesterolemic Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	1.1	0
160	Abstract 465: Inducible Depletion of Calpain-2 Attenuates Angiotensin II-induced Abdominal Aortic Aneurysms in Male LDL Receptor Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	1.1	0
161	Dual roles for autophagy: Degradation and secretion of Alzheimer's disease $\hat{Al^2}$ peptide. BioEssays, 2014, 36, 570-578.	1.2	156
162	Altered CpG methylation in sporadic Alzheimer's disease is associated with APP and MAPT dysregulation. Human Molecular Genetics, 2014, 23, 648-656.	1.4	126

#	Article	IF	CITATIONS
163	Overexpression of the calpain-specific inhibitor calpastatin reduces human alpha-Synuclein processing, aggregation and synaptic impairment in [A30P]αSyn transgenic mice. Human Molecular Genetics, 2014, 23, 3975-3989.	1.4	97
164	New Mouse Model of Alzheimer's. ACS Chemical Neuroscience, 2014, 5, 499-502.	1.7	70
165	Calpain-dependent Cleavage of N-cadherin Is Involved in the Progression of Post-myocardial Infarction Remodeling. Journal of Biological Chemistry, 2014, 289, 19408-19419.	1.6	40
166	Single App knock-in mouse models of Alzheimer's disease. Nature Neuroscience, 2014, 17, 661-663.	7.1	846
167	Loss of DARPP-32 and calbindin in multiple system atrophy. Journal of Neural Transmission, 2013, 120, 1689-1698.	1.4	10
168	AÎ ² Secretion and Plaque Formation Depend on Autophagy. Cell Reports, 2013, 5, 61-69.	2.9	386
169	Imaging of Tau Pathology in a Tauopathy Mouse Model and in Alzheimer Patients Compared to Normal Controls. Neuron, 2013, 79, 1094-1108.	3.8	673
170	Pyroglutamate-3 Amyloid-β Deposition in the Brains of Humans, Non-Human Primates, Canines, and Alzheimer Disease–Like Transgenic Mouse Models. American Journal of Pathology, 2013, 183, 369-381.	1.9	102
171	Calpain-mediated ataxin-3 cleavage in the molecular pathogenesis of spinocerebellar ataxia type 3 (SCA3). Human Molecular Genetics, 2013, 22, 508-518.	1.4	70
172	Calpastatin Prevents NF-κB–Mediated Hyperactivation of Macrophages and Attenuates Colitis. Journal of Immunology, 2013, 191, 3778-3788.	0.4	28
173	Human Prefoldin Inhibits Amyloid- \hat{l}^2 (A \hat{l}^2) Fibrillation and Contributes to Formation of Nontoxic A \hat{l}^2 Aggregates. Biochemistry, 2013, 52, 3532-3542.	1.2	43
174	Substrate ectodomain is critical for substrate preference and inhibition of \hat{l}^3 -secretase. Nature Communications, 2013, 4, 2529.	5.8	47
175	Global brain delivery of neprilysin gene by intravascular administration of AAV vector in mice. Scientific Reports, 2013, 3, 1472.	1.6	83
176	Metabolism of amyloid β peptide and pathogenesis of Alzheimer's disease. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2013, 89, 321-339.	1.6	39
177	Transgenic Expression of Intraneuronal Aβ ₄₂ But Not Aβ ₄₀ Leads to Cellular Aβ Lesions, Degeneration, and Functional Impairment without Typical Alzheimer's Disease Pathology. Journal of Neuroscience, 2012, 32, 1273-1283.	1.7	44
178	Soluble Amyloid Precursor Protein 770 Is Released from Inflamed Endothelial Cells and Activated Platelets. Journal of Biological Chemistry, 2012, 287, 40817-40825.	1.6	46
179	Cell Surface Expression of the Major Amyloid-Î ² Peptide (AÎ ²)-degrading Enzyme, Neprilysin, Depends on Phosphorylation by Mitogen-activated Protein Kinase/Extracellular Signal-regulated Kinase Kinase (MEK) and Dephosphorylation by Protein Phosphatase 1a. Journal of Biological Chemistry, 2012, 287, 29362-29372.	1.6	35
180	Proteolytic Degradation of Amyloid \hat{A} -Protein. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a006379-a006379.	2.9	293

#	Article	IF	CITATIONS
181	Metabolic stress response implicated in diabetic retinopathy: The role of calpain, and the therapeutic impact of calpain inhibitor. Neurobiology of Disease, 2012, 48, 556-567.	2.1	57
182	Mechanistic involvement of the calpainâ€calpastatin system in Alzheimer neuropathology. FASEB Journal, 2012, 26, 1204-1217.	0.2	82
183	Nâ€Terminal pyroglutamate formation of Aβ38 and Aβ40 enforces oligomer formation and potency to disrupt hippocampal longâ€term potentiation. Journal of Neurochemistry, 2012, 121, 774-784.	2.1	76
184	A role for calpain-dependent cleavage of TDP-43 in amyotrophic lateral sclerosis pathology. Nature Communications, 2012, 3, 1307.	5.8	139
185	Calpastatin overexpression limits calpain-mediated proteolysis and behavioral deficits following traumatic brain injury. Experimental Neurology, 2012, 236, 371-382.	2.0	39
186	Critical role of calpain in axonal damageâ€induced retinal ganglion cell death. Journal of Neuroscience Research, 2012, 90, 802-815.	1.3	59
187	<i>In Vivo</i> Positron Emission Tomographic Imaging of Glial Responses to Amyloid- \hat{l}^2 and Tau Pathologies in Mouse Models of Alzheimer's Disease and Related Disorders. Journal of Neuroscience, 2011, 31, 4720-4730.	1.7	123
188	Anti-A \hat{l}^2 Drug Screening Platform Using Human iPS Cell-Derived Neurons for the Treatment of Alzheimer's Disease. PLoS ONE, 2011, 6, e25788.	1.1	156
189	Calpastatin, an endogenous calpain-inhibitor protein, regulates the cleavage of the Cdk5 activator p35 to p25. Journal of Neurochemistry, 2011, 117, 504-515.	2.1	30
190	Nicotinic acetylcholine receptor $\hat{l}\pm 1$ promotes calpain-1 activation and macrophage inflammation in hypercholesterolemic nephropathy. Laboratory Investigation, 2011, 91, 106-123.	1.7	16
191	Potent amyloidogenicity and pathogenicity of A \hat{l}^2 43. Nature Neuroscience, 2011, 14, 1023-1032.	7.1	245
192	An alternative metabolic pathway of amyloid precursor protein Câ€terminal fragments ⟨i⟩via⟨ i⟩ cathepsin B in a human neuroglioma model. FASEB Journal, 2011, 25, 3720-3730.	0.2	31
193	Cleavage of the Vesicular GABA Transporter under Excitotoxic Conditions Is Followed by Accumulation of the Truncated Transporter in Nonsynaptic Sites. Journal of Neuroscience, 2011, 31, 4622-4635.	1.7	42
194	Vital Role of the Calpain-Calpastatin System for Placental-Integrity-Dependent Embryonic Survival. Molecular and Cellular Biology, 2011, 31, 4097-4106.	1.1	48
195	Capillary cerebral amyloid angiopathy identifies a distinct APOE ε4-associated subtype of sporadic Alzheimer's disease. Acta Neuropathologica, 2010, 120, 169-183.	3.9	81
196	Gene therapy in Alzheimer's disease – potential for disease modification. Journal of Cellular and Molecular Medicine, 2010, 14, 741-757.	1.6	63
197	Efficient fourâ€drug cocktail therapy targeting amyloidâ€Î² peptide for Alzheimer's disease. Journal of Neuroscience Research, 2010, 88, 3588-3597.	1.3	13
198	Brain Endothelial Cells Produce Amyloid \hat{l}^2 from Amyloid Precursor Protein 770 and Preferentially Secrete the O-Glycosylated Form. Journal of Biological Chemistry, 2010, 285, 40097-40103.	1.6	93

#	Article	IF	CITATIONS
199	Soft-diet feeding reduces prepulse inhibition in young mice after weaning. Neuroscience Research, 2010, 68, e314.	1.0	O
200	Capillary CAA and perivascular $\hat{Al^2}$ -deposition: Two distinct features of Alzheimer's disease pathology. Journal of the Neurological Sciences, 2010, 299, 155-162.	0.3	52
201	Depletion of Vitamin E Increases Amyloid \hat{l}^2 Accumulation by Decreasing Its Clearances from Brain and Blood in a Mouse Model of Alzheimer Disease. Journal of Biological Chemistry, 2009, 284, 33400-33408.	1.6	91
202	Efhc1 deficiency causes spontaneous myoclonus and increased seizure susceptibility. Human Molecular Genetics, 2009, 18, 1099-1109.	1.4	68
203	CREB is a key regulator of striatal vulnerability in chemical and genetic models of Huntington's disease. Neurobiology of Disease, 2009, 36, 259-268.	2.1	46
204	Activation of calpain-1 in human carotid artery atherosclerotic lesions. BMC Cardiovascular Disorders, 2009, 9, 26.	0.7	15
205	Calpainâ€mediated degradation of Gâ€substrate plays a critical role in retinal excitotoxicity for amacrine cells. Journal of Neuroscience Research, 2009, 87, 1412-1423.	1.3	17
206	Visual screening and analysis for kinaseâ€regulated membrane trafficking pathways that are involved in extensive βâ€amyloid secretion. Genes To Cells, 2009, 14, 355-369.	0.5	15
207	A traditional medicinal herb <i>Paeonia suffruticosa</i> and its active constituent 1,2,3,4,6â€pentaâ€ <i>O</i> â€galloylâ€Î²â€ <scp>d</scp> â€glucopyranose have potent antiâ€aggregation effect Alzheimer's amyloid β proteins <i>in vitro</i> and <i>in vivo</i> Journal of Neurochemistry, 2009, 109, 1648-1657.	s on 2.1	97
208	Interleukinâ€1β upâ€regulates TACE to enhance αâ€cleavage of APP in neurons: resulting decrease in Aβ production. Journal of Neurochemistry, 2008, 104, 1387-1393.	2.1	89
209	Females exhibit more extensive amyloid, but not tau, pathology in an Alzheimer transgenic model. Brain Research, 2008, 1216, 92-103.	1.1	239
210	Comprehensive behavioral phenotyping of calpastatin-knockout mice. Molecular Brain, 2008, 1, 7.	1.3	44
211	Amyloidogenic Processing of Amyloid Precursor Protein: Evidence of a Pivotal Role of Glutaminyl Cyclase in Generation of Pyroglutamate-Modified Amyloid-Î ² . Biochemistry, 2008, 47, 7405-7413.	1.2	100
212	Altered Function of Factor I Caused by Amyloid \hat{I}^2 : Implication for Pathogenesis of Age-Related Macular Degeneration from Drusen. Journal of Immunology, 2008, 181, 712-720.	0.4	79
213	Evidence That CD147 Modulation of \hat{l}^2 -Amyloid (A \hat{l}^2) Levels Is Mediated by Extracellular Degradation of Secreted A \hat{l}^2 . Journal of Biological Chemistry, 2008, 283, 19489-19498.	1.6	46
214	Suppression of Calpain-dependent Cleavage of the CDK5 Activator p35 to p25 by Site-specific Phosphorylation. Journal of Biological Chemistry, 2007, 282, 1687-1694.	1.6	65
215	The Tottori (D7N) and English (H6R) Familial Alzheimer Disease Mutations Accelerate AÎ ² Fibril Formation without Increasing Protofibril Formation. Journal of Biological Chemistry, 2007, 282, 4916-4923.	1.6	96
216	Longitudinal, Quantitative Assessment of Amyloid, Neuroinflammation, and Anti-Amyloid Treatment in a Living Mouse Model of Alzheimer's Disease Enabled by Positron Emission Tomography. Journal of Neuroscience, 2007, 27, 10957-10968.	1.7	275

#	Article	IF	CITATIONS
217	Age-dependent axonal degeneration in an Alzheimer mouse model. Neurobiology of Aging, 2007, 28, 1689-1699.	1.5	107
218	Synapse Loss and Microglial Activation Precede Tangles in a P301S Tauopathy Mouse Model. Neuron, 2007, 53, 337-351.	3.8	1,696
219	Synapse Loss and Microglial Activation Precede Tangles in a P301S Tauopathy Mouse Model. Neuron, 2007, 54, 343-344.	3.8	8
220	A novel dual inhibitor of calpains and lipid peroxidation (BN82270) rescues the cochlea from sound trauma. Neuropharmacology, 2007, 52, 1426-1437.	2.0	34
221	Berberine alters the processing of Alzheimer's amyloid precursor protein to decrease Aβ secretion. Biochemical and Biophysical Research Communications, 2007, 352, 498-502.	1.0	172
222	$\hat{Al^2}$ Degradation., 2007,, 157-178.		1
223	Signal Peptide Peptidase: Biochemical Properties and Modulation by Nonsteroidal Antiinflammatory Drugsâ€. Biochemistry, 2006, 45, 8649-8656.	1.2	82
224	Inhibition of neprilysin by thiorphan (i.c.v.) causes an accumulation of amyloid \hat{l}^2 and impairment of learning and memory. Behavioural Brain Research, 2006, 168, 83-91.	1.2	44
225	Metabolism of amyloid \hat{l}^2 peptide and pathogenesis of Alzheimer's disease. Neuroscience Research, 2006, 54, 235-253.	1.0	93
226	Type-specific evolution of amyloid plaque and angiopathy in APPsw mice. Neuroscience Letters, 2006, 395, 37-41.	1.0	12
227	Animal models of tauopathies. Neuropathology, 2006, 26, 491-497.	0.7	4
228	The novel \hat{l}^2 -secretase inhibitor KMI-429 reduces amyloid \hat{l}^2 peptide production in amyloid precursor protein transgenic and wild-type mice. Journal of Neurochemistry, 2006, 96, 533-540.	2.1	140
229	Sialylation enhances the secretion of neurotoxic amyloid-beta peptides. Journal of Neurochemistry, 2006, 96, 924-933.	2.1	69
230	Inhibition of glutaminyl cyclase alters pyroglutamate formation in mammalian cells. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006, 1764, 1618-1625.	1.1	73
231	Enhanced accumulation of tau in doubly transgenic mice expressing mutant \hat{l}^2 APP and presentiin-1. Brain Research, 2006, 1094, 192-199.	1.1	33
232	Loss of M5 muscarinic acetylcholine receptors leads to cerebrovascular and neuronal abnormalities and cognitive deficits in mice. Neurobiology of Disease, 2006, 24, 334-344.	2.1	75
233	Uncaria rhynchophylla, a Chinese medicinal herb, has potent antiaggregation effects on Alzheimer's β-amyloid proteins. Journal of Neuroscience Research, 2006, 84, 427-433.	1.3	114
234	BACE1 interacts with lipid raft proteins. Journal of Neuroscience Research, 2006, 84, 912-917.	1.3	86

#	Article	IF	Citations
235	Inhibition of Neprilysin by Infusion of Thiorphan into the Hippocampus Causes an Accumulation of Amyloid \hat{l}^2 and Impairment of Learning and Memory. Journal of Pharmacology and Experimental Therapeutics, 2006, 317, 334-340.	1.3	42
236	Neprilysin-sensitive Synapse-associated Amyloid-β Peptide Oligomers Impair Neuronal Plasticity and Cognitive Function*. Journal of Biological Chemistry, 2006, 281, 17941-17951.	1.6	153
237	Pathophysiology of sialyltransferases cleavage by Alzheimer's $\hat{A}\cdot$ -secretase. Japanese Journal of Thrombosis and Hemostasis, 2006, 17, 78-82.	0.1	0
238	Understanding molecular mechanisms of proteolysis in Alzheimer's disease: Progress toward therapeutic interventions. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2005, 1751, 60-67.	1.1	66
239	Altered expression of neprilysin family members in the pituitary gland of sleep-disturbed rats, an animal model of severe fatigue. Journal of Neurochemistry, 2005, 95, 1156-1166.	2.1	32
240	Somatostatin regulates brain amyloid \hat{l}^2 peptide A \hat{l}^2 42 through modulation of proteolytic degradation. Nature Medicine, 2005, 11, 434-439.	15.2	335
241	19F and 1H MRI detection of amyloid \hat{l}^2 plaques in vivo. Nature Neuroscience, 2005, 8, 527-533.	7.1	341
242	Spatial resolution of calpain-catalyzed proteolysis in focal cerebral ischemia. Brain Research, 2005, 1040, 36-43.	1.1	16
243	Oligomeric proteins ultrastructurally localize to cell processes, especially to axon terminals with higher density, but not to lipid rafts in Tg2576 mouse brain. Brain Research, 2005, 1045, 224-228.	1.1	18
244	Metabolism of amyloid- \hat{l}^2 peptide and Alzheimer's disease. , 2005, 108, 129-148.		189
245	Cerebrospinal fluid neprilysin is reduced in prodromal Alzheimer's disease. Annals of Neurology, 2005, 57, 832-842.	2.8	86
246	Apolipoprotein E co-localizes with newly formed amyloid \hat{l}^2 -protein (A \hat{l}^2) deposits lacking immunoreactivity against N-terminal epitopes of A \hat{l}^2 in a genotype-dependent manner. Acta Neuropathologica, 2005, 110, 459-471.	3.9	50
247	Longer Forms of Amyloid Protein: Implications for the Mechanism of Intramembrane Cleavage by Â-Secretase. Journal of Neuroscience, 2005, 25, 436-445.	1.7	365
248	Calpain Mediates Excitotoxic DNA Fragmentation via Mitochondrial Pathways in Adult Brains. Journal of Biological Chemistry, 2005, 280, 16175-16184.	1.6	168
249	SH3 domain of spectrin participates in the activation of Rac in specialized calpain-induced integrin signaling complexes. Journal of Cell Science, 2005, 118, 381-395.	1.2	35
250	\hat{I}^2 -Amyloid Is Different in Normal Aging and in Alzheimer Disease. Journal of Biological Chemistry, 2005, 280, 34186-34192.	1.6	175
251	Distinct Mechanistic Roles of Calpain and Caspase Activation in Neurodegeneration as Revealed in Mice Overexpressing Their Specific Inhibitors. Journal of Biological Chemistry, 2005, 280, 15229-15237.	1.6	152
252	Involvement of Calpain in Osteoclastic Bone Resorption. Journal of Biochemistry, 2005, 137, 331-338.	0.9	8

#	Article	IF	Citations
253	Novel $\hat{l}\pm$ -secretase cleavage of Alzheimer's amyloid \hat{l}^2 precursor protein in the endoplasmic reticulum of COS7 cells. Neuroscience Letters, 2005, 376, 14-19.	1.0	21
254	Blocking the cleavage at midportion between \hat{l}^3 - and $\hat{l}\mu$ -sites remarkably suppresses the generation of amyloid \hat{l}^2 -protein. FEBS Letters, 2005, 579, 2907-2912.	1.3	25
255	Part of membrane-bound ${\rm A\hat{l}^2}$ exists in rafts within senile plaques in Tg2576 mouse brain. Neurobiology of Aging, 2005, 26, 409-418.	1.5	46
256	The potential role of amyloid \hat{A} in the pathogenesis of age-related macular degeneration. Journal of Clinical Investigation, 2005, 115, 2793-2800.	3.9	186
257	Screening study of prion binding agents and their inhibitory effect on the conversion of prion protein., 2005,, 261-261.		0
258	Presynaptic Localization of Neprilysin Contributes to Efficient Clearance of Amyloid-Â Peptide in Mouse Brain. Journal of Neuroscience, 2004, 24, 991-998.	1.7	222
259	Effects of Neprilysin Chimeric Proteins Targeted to Subcellular Compartments on Amyloid \hat{l}^2 Peptide Clearance in Primary Neurons. Journal of Biological Chemistry, 2004, 279, 30259-30264.	1.6	47
260	Analysis and utilization of beta-amyloid degradation system. Psychogeriatrics, 2004, 4, S2-S12.	0.6	0
261	Discussions on role of neprilysin and degradating system. Psychogeriatrics, 2004, 4, S13-S18.	0.6	0
262	Discussions on laminin as possible biomarkers for neurodegenerative dementia. Psychogeriatrics, 2004, 4, S39-S44.	0.6	0
263	Discussions on phosphorylated tau and other biochemical markers. Psychogeriatrics, 2004, 4, S45-S50.	0.6	O
264	Involvement of proteases in glycosyltransferase secretion: Alzheimer's \hat{l}^2 -secretase-dependent cleavage and a following processing by an aminopeptidase. Glycoconjugate Journal, 2004, 21, 25-29.	1.4	16
265	Calpain activity in the amikacin-damaged rat cochlea. Journal of Comparative Neurology, 2004, 477, 149-160.	0.9	29
266	Fluoro-substituted and 13C-labeled styrylbenzene derivatives for detecting brain amyloid plaques. European Journal of Medicinal Chemistry, 2004, 39, 573-578.	2.6	75
267	KMI-358 and KMI-370, highly potent and small-sized BACE1 inhibitors containing phenylnorstatine. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 1527-1531.	1.0	70
268	Truncated Carboxyl-Terminal Fragments of β-Amyloid Precursor Protein Are Processed to Amyloid β-Proteins 40 and 42â€. Biochemistry, 2004, 43, 13532-13540.	1.2	127
269	P4-174 Neuropeptides regulate brain amyloid beta levels through a modulation of neprilysin activity. Neurobiology of Aging, 2004, 25, S525.	1.5	0
270	S3-01-05 Selective modulation of amyloid \hat{l}^2 peptide levels in brain through manipulation of presynaptic metabolism. Neurobiology of Aging, 2004, 25, S46.	1.5	0

#	Article	IF	Citations
271	P1-167 Soluble abeta shows a different composition in normal aging and Alzheimer's disease. Neurobiology of Aging, 2004, 25, S143.	1.5	0
272	Alzheimer's \hat{l}^2 -secretase cleaves a glycosyltransferase as a physiological substrate. Glycoconjugate Journal, 2003, 20, 59-62.	1.4	14
273	The crucial role of caspase-9 in the disease progression of a transgenic ALS mouse model. EMBO Journal, 2003, 22, 6665-6674.	3.5	96
274	Calpain induces proteolysis of neuronal cytoskeleton in ischemic gerbil forebrain. Brain Research, 2003, 984, 122-132.	1.1	28
275	Activation of \hat{l} 4-calpain in developing cortical neurons following methylmercury treatment. Developmental Brain Research, 2003, 142, 105-110.	2.1	25
276	Sustained calpain activation associated with lysosomal rupture executes necrosis of the postischemic CA1 neurons in primates. Hippocampus, 2003, 13, 791-800.	0.9	119
277	Oxidized neprilysin in aging and Alzheimer's disease brains. Biochemical and Biophysical Research Communications, 2003, 310, 236-241.	1.0	132
278	Dutch, Flemish, Italian, and Arctic mutations of APP and resistance of $A\hat{l}^2$ to physiologically relevant proteolytic degradation. Lancet, The, 2003, 361, 1957-1958.	6.3	140
279	Characterization of $\hat{l}\pm 2$,6-Sialyltransferase Cleavage by Alzheimer's \hat{l}^2 -Secretase (BACE1). Journal of Biological Chemistry, 2003, 278, 14865-14871.	1.6	99
280	Oxidized low-density lipoprotein induces calpain-dependent cell death and ubiquitination of caspase 3 in HMEC-1 endothelial cells. Biochemical Journal, 2003, 374, 403-411.	1.7	43
281	Alzheimer's Disease, Neuropeptides, Neuropeptidase, and Amyloid-Â Peptide Metabolism. Science of Aging Knowledge Environment: SAGE KE, 2003, 2003, 1pe-1.	0.9	41
282	Intraneuronal A \hat{I}^2 42 accumulation in Down syndrome brain. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2002, 9, 88-102.	1.4	237
283	IN VIVO GLIOMA GROWTH REQUIRES HOST-DERIVED MATRIX METALLOPROTEINASE 2 FOR MAINTENANCE OF ANGIOARCHITECTURE. Pharmacological Research, 2002, 46, 155-163.	3.1	41
284	BACE1 interacts with nicastrin. Biochemical and Biophysical Research Communications, 2002, 293, 1228-1232.	1.0	33
285	$\hat{Al^2}$ -degrading endopeptidase, neprilysin, in mouse brain: synaptic and axonal localization inversely correlating with $\hat{Al^2}$ pathology. Neuroscience Research, 2002, 43, 39-56.	1.0	141
286	In vivo role of caspases in excitotoxic neuronal death: generation and analysis of transgenic mice expressing baculoviral caspase inhibitor, p35, in postnatal neurons. Molecular Brain Research, 2002, 108, 18-32.	2.5	24
287	Activation of calpain in cultured neurons overexpressing Alzheimer amyloid precursor protein. Molecular Brain Research, 2002, 107, 166-175.	2.5	40
288	Generation of amyloid \hat{l}^2 peptide with pyroglutamate at position 3 in primary cortical neurons. Neuroscience Letters, 2002, 327, 25-28.	1.0	26

#	Article	IF	CITATIONS
289	Styrene 7,8-oxide induces caspase activation and regular DNA fragmentation in neuronal cells. Brain Research, 2002, 933, 12-22.	1.1	21
290	Region-specific reduction of A?-degrading endopeptidase, neprilysin, in mouse hippocampus upon aging. Journal of Neuroscience Research, 2002, 70, 493-500.	1.3	183
291	Therapeutic strategies of Alzheimer's disease through manipulation of A? metabolism: a focus on A?-degrading peptidase, neprilysin. Drug Development Research, 2002, 56, 171-183.	1.4	6
292	Neprilysin Degrades Both Amyloid β Peptides 1–40 and 1–42 Most Rapidly and Efficiently among Thiorphan- and Phosphoramidon-sensitive Endopeptidases. Journal of Biological Chemistry, 2001, 276, 21895-21901.	1.6	282
293	Age-Dependent Changes in Brain, CSF, and Plasma Amyloid \hat{l}^2 Protein in the Tg2576 Transgenic Mouse Model of Alzheimer's Disease. Journal of Neuroscience, 2001, 21, 372-381.	1.7	961
294	Cleavage of Bax is mediated by caspase-dependent or -independent calpain activation in dopaminergic neuronal cells: protective role of Bcl-2. Journal of Neurochemistry, 2001, 77, 1531-1541.	2.1	126
295	Matrix metalloproteinase (MMP) system in brain: identification and characterization of brain-specific MMP highly expressed in cerebellum. European Journal of Neuroscience, 2001, 13, 935-948.	1.2	84
296	Temporospatial sequence of cellular events associated with etoposide-induced neuronal cell death: Role of antiapoptotic protein Bcl-XL. Journal of Neuroscience Research, 2001, 66, 1074-1082.	1.3	3
297	Calpain-dependent proteolysis of merlin occurs by oxidative stress in meningiomas. Cancer, 2001, 92, 2662-2672.	2.0	13
298	Matabalia Danulatian of Busin Abata bu Nanthuin Caianaa 2001 202 1550 1552		
	Metabolic Regulation of Brain Abeta by Neprilysin. Science, 2001, 292, 1550-1552.	6.0	906
299	Biochemical Identification of the Neutral Endopeptidase Family Member Responsible for the Catabolism of Amyloid Peptide in the Brain. Journal of Biochemistry, 2000, 128, 897-902.	0.9	85
	Biochemical Identification of the Neutral Endopeptidase Family Member Responsible for the Catabolism		
299	Biochemical Identification of the Neutral Endopeptidase Family Member Responsible for the Catabolism of Amyloid Peptide in the Brain. Journal of Biochemistry, 2000, 128, 897-902. Age-related amyloid? protein accumulation induces cellular death and macrophage activation in		85
299 300	Biochemical Identification of the Neutral Endopeptidase Family Member Responsible for the Catabolism of Amyloid Peptide in the Brain. Journal of Biochemistry, 2000, 128, 897-902. Age-related amyloid? protein accumulation induces cellular death and macrophage activation in transgenic mice., 2000, 191, 93-101. Identification of the major AÎ21–42-degrading catabolic pathway in brain parenchyma: Suppression leads	0.9	13
299 300 301	Biochemical Identification of the Neutral Endopeptidase Family Member Responsible for the Catabolism of Amyloid Peptide in the Brain. Journal of Biochemistry, 2000, 128, 897-902. Age-related amyloid? protein accumulation induces cellular death and macrophage activation in transgenic mice. , 2000, 191, 93-101. Identification of the major Aβ1–42-degrading catabolic pathway in brain parenchyma: Suppression leads to biochemical and pathological deposition. Nature Medicine, 2000, 6, 143-150. Reply to: 'Clearance of amyloid β-peptide from brain: transport or metabolism?'. Nature Medicine, 2000,	0.9	85 13 817
299 300 301 302	Biochemical Identification of the Neutral Endopeptidase Family Member Responsible for the Catabolism of Amyloid Peptide in the Brain. Journal of Biochemistry, 2000, 128, 897-902. Age-related amyloid? protein accumulation induces cellular death and macrophage activation in transgenic mice., 2000, 191, 93-101. Identification of the major Aβ1–42-degrading catabolic pathway in brain parenchyma: Suppression leads to biochemical and pathological deposition. Nature Medicine, 2000, 6, 143-150. Reply to: 'Clearance of amyloid β-peptide from brain: transport or metabolism?'. Nature Medicine, 2000, 6, 718-719. Molecular cloning and expression of aminopeptidase A isoforms from rat hippocampus. Biochimica Et	0.9 15.2 15.2	85 13 817 379
300 301 302 303	Biochemical Identification of the Neutral Endopeptidase Family Member Responsible for the Catabolism of Amyloid Peptide in the Brain. Journal of Biochemistry, 2000, 128, 897-902. Age-related amyloid? protein accumulation induces cellular death and macrophage activation in transgenic mice., 2000, 191, 93-101. Identification of the major Aî²1–42-degrading catabolic pathway in brain parenchyma: Suppression leads to biochemical and pathological deposition. Nature Medicine, 2000, 6, 143-150. Reply to: 'Clearance of amyloid β-peptide from brain: transport or metabolism?'. Nature Medicine, 2000, 6, 718-719. Molecular cloning and expression of aminopeptidase A isoforms from rat hippocampus. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2000, 1493, 273-278. Metabolism of amyloid precursor protein in COS cells transfected with a beta-secretase candidate.	0.9 15.2 15.2 2.4	85 13 817 379 20

#	Article	IF	CITATIONS
307	Evidence That \hat{l}^2 3 Integrin-Induced Rac Activation Involves the Calpain-Dependent Formation of Integrin Clusters That Are Distinct from the Focal Complexes and Focal Adhesions That Form as Rac and Rhoa Become Active. Journal of Cell Biology, 2000, 151, 685-696.	2.3	100
308	Amyloid \hat{l}^2 Protein Starting Pyroglutamate at Position 3 Is a Major Component of the Amyloid Deposits in the Alzheimer's Disease Brain. Biochemical and Biophysical Research Communications, 2000, 276, 422-427.	1.0	183
309	Brain Trauma in Aged Transgenic Mice Induces Regression of Established A \hat{l}^2 Deposits. Experimental Neurology, 2000, 163, 244-252.	2.0	81
310	Age-Related Amyloid \hat{l}^2 Deposition in Transgenic Mice Overexpressing Both Alzheimer Mutant Presenilin 1 and Amyloid \hat{l}^2 Precursor Protein Swedish Mutant Is Not Associated with Global Neuronal Loss. American Journal of Pathology, 2000, 157, 331-339.	1.9	222
311	PS-Liposome and Ox-LDL Bind to Different Sites of the Immunodominant Domain (#155-183) of CD36. Thrombosis Research, 2000, 97, 317-326.	0.8	22
312	C Terminus of Presenilin Is Required for Overproduction of Amyloidogenic A $\hat{1}^2$ 42 through Stabilization and Endoproteolysis of Presenilin. Journal of Neuroscience, 1999, 19, 10627-10634.	1.7	104
313	Calpain Mediates Integrin-induced Signaling at a Point Upstream of Rho Family Members. Journal of Biological Chemistry, 1999, 274, 21265-21275.	1.6	107
314	Calpastatin Is Up-regulated in Response to Hypoxia and Is a Suicide Substrate to Calpain after Neonatal Cerebral Hypoxia-Ischemia. Journal of Biological Chemistry, 1999, 274, 14046-14052.	1.6	103
315	Inhibitory Effect of a Self-derived Peptide on Glucosyltransferase of Streptococcus mutans. Journal of Biological Chemistry, 1999, 274, 15797-15802.	1.6	13
316	Dual Roles of Proteasome in the Metabolism of Presenilin 1. Journal of Neurochemistry, 1999, 72, 255-261.	2.1	46
317	Calpain activity and translational expression increased in spinal cord injury. Brain Research, 1999, 816, 375-380.	1.1	55
318	Calpain inhibitor entrapped in liposome rescues ischemic neuronal damage. Brain Research, 1999, 819, 8-14.	1.1	62
319	Proteolytic Activation of Protein Kinase C \hat{l} and $\hat{l}\mu$ by Caspase-3 in U937 Cells During Chemotherapeutic Agent-Induced Apoptosis. Cellular Signalling, 1999, 11, 831-838.	1.7	65
320	Occurrence of the diffuse amyloid ?-protein (A?) deposits with numerous A?-containing glial cells in the cerebral cortex of patients with Alzheimer's disease. , 1999, 25, 324-331.		96
321	Species differences in fodrin proteolysis in the ischemic brain. , 1999, 55, 643-649.		19
322	The Behavior of Calpain-Generated N- and C-Terminal Fragments of Talin in Integrin-Mediated Signaling Pathways. Archives of Biochemistry and Biophysics, 1999, 371, 133-141.	1.4	61
323	Membrane-anchored metalloprotease MDC9 has an \hat{l}_{\pm} -secretase activity responsible for processing the amyloid precursor protein. Biochemical Journal, 1999, 343, 371.	1.7	107
324	Spatial Relationship of AMY Protein Deposits and Different Species of $A\hat{I}^2$ Peptides in Amyloid Plaques of the Alzheimer Disease Brain. Journal of Neuropathology and Experimental Neurology, 1999, 58, 1227-1233.	0.9	9

#	Article	IF	Citations
325	Primary cultures of neuronal and non-neuronal rat brain cells secrete similar proportions of amyloid \hat{l}^2 peptides ending at A \hat{l}^2 40 and A \hat{l}^2 42. NeuroReport, 1999, 10, 2965-2969.	0.6	55
326	Occurrence of the diffuse amyloid \hat{l}^2 -protein (A \hat{l}^2) deposits with numerous A \hat{l}^2 -containing glial cells in the cerebral cortex of patients with Alzheimer's disease., 1999, 25, 324.		1
327	The involvement of calpain-independent proteolysis of the tumor suppressor NF2 (merlin) in schwannomas and meningiomas. Nature Medicine, 1998, 4, 915-922.	15.2	116
328	Diffuse plaques associated with astroglial amyloid \hat{l}^2 protein, possibly showing a disappearing stage of senile plaques. Acta Neuropathologica, 1998, 95, 217-222.	3.9	109
329	Down-regulation of protein kinase \hat{Cl}_{\pm} and \hat{l}_{3} and enhanced TPA-induced neurite formation inDAN-transfected neuroblastoma cells. FEBS Letters, 1998, 440, 25-28.	1.3	2
330	The Presenilin 1 Mutation (M146V) Linked to Familial Alzheimer's Disease Attenuates the Neuronal Differentiation of NTera 2 Cells. Biochemical and Biophysical Research Communications, 1998, 244, 751-755.	1.0	27
331	Multiple Processing of Procathepsin L to Cathepsin Lin Vivo. Biochemical and Biophysical Research Communications, 1998, 252, 202-207.	1.0	40
332	Molecular Dissection of Domains in Mutant Presenilin 2 That Mediate Overproduction of Amyloidogenic Forms of Amyloid \hat{l}^2 Peptides. Journal of Biological Chemistry, 1998, 273, 21153-21160.	1.6	74
333	Cleavage of the Cytoplasmic Domain of the Integrin \hat{I}^2 3 Subunit during Endothelial Cell Apoptosis. Journal of Biological Chemistry, 1998, 273, 19525-19531.	1.6	51
334	Functional Defects of a Muscle-specific Calpain, p94, Caused by Mutations Associated with Limb-Girdle Muscular Dystrophy Type 2A. Journal of Biological Chemistry, 1998, 273, 17073-17078.	1.6	142
335	N-terminal Heterogeneity of Parenchymal and Cerebrovascular $\hat{Al^2}$ Deposits. Journal of Neuropathology and Experimental Neurology, 1998, 57, 76-94.	0.9	92
336	Quantification of Modified Amyloid \hat{l}^2 Peptides in Alzheimer Disease and Down Syndrome Brains. Journal of Neuropathology and Experimental Neurology, 1998, 57, 1089-1095.	0.9	71
337	<i>Presenilin 1</i> Mutations Linked to Familial Alzheimer's Disease Increase the Intracellular Levels of Amyloid βâ€Protein 1–42 and Its Nâ€Terminally Truncated Variant(s) Which Are Generated at Distinct Sites. Journal of Neurochemistry, 1998, 71, 1535-1543.	2.1	59
338	Distinct Substrate Specificities and Functional Roles for the 78- and 76-kDa Forms of \hat{l}_4 -Calpain in Human Platelets. Journal of Biological Chemistry, 1997, 272, 24876-24884.	1.6	57
339	Specific Increase in Amyloid \hat{I}^2 -Protein 42 Secretion Ratio by Calpain Inhibition. Biochemistry, 1997, 36, 8377-8383.	1.2	65
340	Reduction of Plasma Glutamyl Aminopeptidase Activity in Sporadic Alzheimer's Disease. Biochemical and Biophysical Research Communications, 1997, 231, 526-530.	1.0	24
341	Cytoplasmic Processing of Human Profilaggrin by Active \hat{l} 4-Calpain. Biochemical and Biophysical Research Communications, 1997, 235, 652-656.	1.0	52
342	Evidence for the involvement of calpain in cataractogenesis in Shumiya cataract rat (SCR). Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1997, 1362, 11-23.	1.8	27

#	Article	IF	CITATIONS
343	Heterogeneity of water-soluble amyloid \hat{l}^2 -peptide in Alzheimer's disease and Down's syndrome brains. FEBS Letters, 1997, 409, 411-416.	1.3	110
344	Up- and down-regulation of calpain inhibitor polypeptide, calpastatin, in postischemic hippocampus. Neuroscience Letters, 1997, 227, 75-78.	1.0	35
345	Characteristics of cerebral ? amyloid deposition in four non-demented patients in their forties with a high apolipoprotein E ?4 allele frequency. Neuropathology, 1997, 17, 326-333.	0.7	1
346	The Calpain Proteolytic System in Neonatal Hypoxic-Ischemia. Annals of the New York Academy of Sciences, 1997, 825, 104-119.	1.8	21
347	On the Mechanism of Calpain Activation Under Ischemia. , 1997, , 407-414.		1
348	Amino- and carboxyl-terminal heterogeneity of \hat{l}^2 -amyloid peptides deposited in human brain. Neuroscience Letters, 1996, 215, 173-176.	1.0	260
349	Involvement of Calpain in Integrin-Mediated Signal Transduction. Archives of Biochemistry and Biophysics, 1996, 328, 129-134.	1.4	80
350	Molecular Cloning of a Novel Basic Helix-Loop-Helix Protein from the Rat Brain. Biochemical and Biophysical Research Communications, 1996, 219, 526-530.	1.0	42
351	Familial Alzheimer's Disease-Linked Mutations at Val717of Amyloid Precursor Protein Are Specific for the Increased Secretion of $Al^242(43)$. Biochemical and Biophysical Research Communications, 1996, 227, 730-735.	1.0	64
352	The E280A presenilin 1 Alzheimer mutation produces increased \hat{Al}^2 42 deposition and severe cerebellar pathology. Nature Medicine, 1996, 2, 1146-1150.	15.2	489
353	Cytotoxic Fragment of Amyloid Precursor Protein Accumulates in Hippocampus after Global Forebrain Ischemia. Journal of Cerebral Blood Flow and Metabolism, 1996, 16, 1219-1223.	2.4	83
354	Transient Brain Ischaemia Provokes Ca2+, PIP2and Calpain Responses Prior to Delayed Neuronal Death in Monkeys. European Journal of Neuroscience, 1996, 8, 1932-1944.	1.2	165
355	Molecular Cloning and Characterization of a Novel Form of Neuropeptide Gene as a Developmentally Regulated Molecule. Journal of Biological Chemistry, 1996, 271, 15615-15622.	1.6	55
356	Proteolysis of Fodrin (Non-erythroid Spectrin) during Apoptosis. Journal of Biological Chemistry, 1995, 270, 6425-6428.	1.6	491
357	Degradation of fodrin and MAP 2 after neonatal cerebral hypoxic-ischemia. Brain Research, 1995, 684, 136-142.	1.1	51
358	Fodrin degradation and subcellular distribution of calpains after neonatal rat cerebral hypoxic-ischemia. Brain Research, 1995, 684, 143-149.	1.1	50
359	Translational suppression of calpain I reduces NMDA-induced spectrin proteolysis and pathophysiology in cultured hippocampal slices. Brain Research, 1995, 694, 147-157.	1.1	59
360	The Role of the Calpain-Calpastatin System in Thyrotropin-releasing Hormone-induced Selective Down-regulation of a Protein Kinase C Isozyme, nPKClμ, in Rat Pituitary GH4C1 Cells. Journal of Biological Chemistry, 1995, 270, 25115-25120.	1.6	79

#	Article	IF	Citations
361	Calpain Cleavage of the Cytoplasmic Domain of the Integrin \hat{l}^2 2 Subunit. Journal of Biological Chemistry, 1995, 270, 26146-26151.	1.6	150
362	A Novel Phosphatidylserine-binding Peptide Motif Defined by an Anti-idiotypic Monoclonal Antibody. Journal of Biological Chemistry, 1995, 270, 29075-29078.	1.6	69
363	Dominant and differential deposition of distinct \hat{I}^2 -amyloid peptide species, $A\hat{I}^2N3(pE)$, in senile plaques. Neuron, 1995, 14, 457-466.	3.8	554
364	Protein kinase C isoforms in muscle cells and their regulation by phorbol ester and calpain. Biochimica Et Biophysica Acta - Molecular Cell Research, 1995, 1267, 45-54.	1.9	57
365	Proteolysis of spectrin by calpain accompanies theta-burst stimulation in cultured hippocampal slices. Molecular Brain Research, 1995, 32, 25-35.	2.5	105
366	UCN-01, an anti-tumor drug, is a selective inhibitor of the conventional PKC subfamily. FEBS Letters, 1995, 359, 259-261.	1.3	69
367	Reperfusion of Rat Heart After Brief Ischemia Induces Proteolysis of Calspectin (Nonerythroid) Tj ETQq1 1 0.7843	14 rgBT /0 2.0	Overlock 10 159
368	Three Distinct Phases of Fodrin Proteolysis Induced in Postischemic Hippocampus. Stroke, 1995, 26, 1901-1907.	1.0	64
369	Calpain-Calpastatin Interactions in Epidermoid Carcinoma KB Cells1. Journal of Biochemistry, 1994, 115, 1178-1184.	0.9	40
370	The calpain-calpastatin system is regulated differently during human neuroblastoma cell differentiation to Schwannian and neuronal cells. FEBS Letters, 1994, 353, 327-331.	1.3	21
371	New era of calpain research. FEBS Letters, 1994, 343, 1-5.	1.3	175
372	Stimulation of protein-tyrosine phosphorylation in gerbil hippocampus after global forebrain ischemia. Neuroscience Letters, 1994, 168, 69-72.	1.0	11
373	Staurosporine-related compounds, K252a and UCN-01, inhibit both cPKC and nPKC. FEBS Letters, 1993, 330, 114-116.	1.3	44
374	Calpain-calpastatin system of canine basilar artery in vasospasm. Journal of Neurosurgery, 1993, 79, 537-543.	0.9	27
375	Autolytic Transition of $\hat{l}^{1}\!\!/\!\!4$ Calpain upon Activation as Resolved by Antibodies Distinguishing between the Pre- and Post-Autolysis Forms1. Journal of Biochemistry, 1992, 111, 81-86.	0.9	139
376	Modulation of Cellular Signals by Calpain. Annals of the New York Academy of Sciences, 1992, 674, 218-227.	1.8	110
377	Purification and characterization of protein kinase C .epsilon. from rabbit brain. Biochemistry, 1992, 31, 482-490.	1.2	84
378	Structural and functional diversities of a family of signal transducing protein kinases, protein kinase C family; two distinct classes of PKC, conventional cPKC and novel nPKC. Advances in Enzyme Regulation, 1991, 31, 287-303.	2.9	128

#	ARTICLE	IF	CITATIONS
379	Site-specific phosphorylation by protein kinase C inhibits assembly-promoting activity of microtubule-associated protein 4. Biochemistry, 1991, 30, 9341-9346.	1.2	42
380	Structure and properties of a ubiquitously expressed protein kinase C, nPKCdelta. FEBS Journal, 1991, 202, 931-940.	0.2	103
381	Morphological changes of human myeloid leukemia K562 cells by a protein phosphatase inhibitor, tautomycin Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 1990, 66, 209-212.	1.6	20
382	Induction of increased calcium uptake in liposomes having membrane proteins of chicken erythrocytes by S-adenosylmethionine. Biochemical and Biophysical Research Communications, 1983, 114, 1126-1131.	1.0	7