Craig C Garner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8124389/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Organization of Presynaptic Autophagy-Related Processes. Frontiers in Synaptic Neuroscience, 2022, 14, 829354.	2.5	10
2	Patient-Derived Anti-NMDAR Antibody Disinhibits Cortical Neuronal Networks through Dysfunction of Inhibitory Neuron Output. Journal of Neuroscience, 2022, 42, 3253-3270.	3.6	12
3	In vitro zinc supplementation alters synaptic deficits caused by autism spectrum disorder-associated Shank2 point mutations in hippocampal neurons. Molecular Brain, 2021, 14, 95.	2.6	6
4	Encephalitis patient-derived monoclonal GABAA receptor antibodies cause epileptic seizures. Journal of Experimental Medicine, 2021, 218, .	8.5	19
5	Translating academic careers into industry healthcare professions. Nature Biotechnology, 2020, 38, 758-763.	17.5	5
6	BSN (bassoon) and PRKN/parkin in concert control presynaptic vesicle autophagy. Autophagy, 2020, 16, 1732-1733.	9.1	11
7	Loss of Piccolo Function in Rats Induces Cerebellar Network Dysfunction and Pontocerebellar Hypoplasia Type 3-like Phenotypes. Journal of Neuroscience, 2020, 40, 2943-2959.	3.6	12
8	Parkin contributes to synaptic vesicle autophagy in Bassoon-deficient mice. ELife, 2020, 9, .	6.0	42
9	Serine–Arginine Protein Kinase SRPK2 Modulates the Assembly of the Active Zone Scaffolding Protein CAST1/ERC2. Cells, 2019, 8, 1333.	4.1	6
10	Cognitive impairment and autistic-like behaviour in SAPAP4-deficient mice. Translational Psychiatry, 2019, 9, 7.	4.8	13
11	A Multiple Piccolino-RIBEYE Interaction Supports Plate-Shaped Synaptic Ribbons in Retinal Neurons. Journal of Neuroscience, 2019, 39, 2606-2619.	3.6	27
12	Nâ€methylâ€Dâ€aspartate receptor dysfunction by unmutated human antibodies against the NR1 subunit. Annals of Neurology, 2019, 85, 771-776.	5.3	44
13	Autismâ€associated <i>Shank3</i> mutations alter mGluR expression and mGluRâ€dependent but not NMDA receptorâ€dependent longâ€term depression. Synapse, 2019, 73, e22097.	1.2	22
14	Light-Activated ROS Production Induces Synaptic Autophagy. Journal of Neuroscience, 2019, 39, 2163-2183.	3.6	53
15	The Exocyst Component Exo70 Modulates Dendrite Arbor Formation, Synapse Density, and Spine Maturation in Primary Hippocampal Neurons. Molecular Neurobiology, 2019, 56, 4620-4638.	4.0	19
16	Critical role for Piccolo in synaptic vesicle retrieval. ELife, 2019, 8, .	6.0	27
17	Dietary Zinc Supplementation Prevents Autism Related Behaviors and Striatal Synaptic Dysfunction in Shank3 Exon 13–16 Mutant Mice. Frontiers in Cellular Neuroscience, 2018, 12, 374.	3.7	59
18	Shank and Zinc Mediate an AMPA Receptor Subunit Switch in Developing Neurons. Frontiers in Molecular Neuroscience, 2018, 11, 405.	2.9	53

#	Article	IF	CITATIONS
19	Lu <scp>TH</scp> y: a doubleâ€readout bioluminescenceâ€based twoâ€hybrid technology for quantitative mapping of protein–protein interactions in mammalian cells. Molecular Systems Biology, 2018, 14, e8071.	7.2	31
20	Bassoon Controls Presynaptic Autophagy through Atg5. Neuron, 2017, 93, 897-913.e7.	8.1	151
21	Short-term treatment with flumazenil restores long-term object memory in a mouse model of Down syndrome. Neurobiology of Learning and Memory, 2017, 140, 11-16.	1.9	14
22	Nâ€ŧerminal SAP97 isoforms differentially regulate synaptic structure and postsynaptic surface pools of AMPA receptors. Hippocampus, 2017, 27, 668-682.	1.9	16
23	Reply: <i>In vitro</i> effects of a human monoclonal antibody against the <i>N</i> -methyl-d-aspartate receptor. Brain, 2017, 140, e10-e10.	7.6	Ο
24	Rescuing the Lost in Translation. Cell, 2016, 165, 765-770.	28.9	23
25	Shank3 Is Part of a Zinc-Sensitive Signaling System That Regulates Excitatory Synaptic Strength. Journal of Neuroscience, 2016, 36, 9124-9134.	3.6	50
26	Human cerebrospinal fluid monoclonal <i>N</i> -methyl-D-aspartate receptor autoantibodies are sufficient for encephalitis pathogenesis. Brain, 2016, 139, 2641-2652.	7.6	223
27	Trio, a Rho Family GEF, Interacts with the Presynaptic Active Zone Proteins Piccolo and Bassoon. PLoS ONE, 2016, 11, e0167535.	2.5	17
28	Presynaptic active zones in invertebrates and vertebrates. EMBO Reports, 2015, 16, 923-938.	4.5	113
29	Piccolo Directs Activity Dependent F-Actin Assembly from Presynaptic Active Zones via Daam1. PLoS ONE, 2015, 10, e0120093.	2.5	32
30	Role of Bassoon and Piccolo in Assembly and Molecular Organization of the Active Zone. Frontiers in Synaptic Neuroscience, 2015, 7, 19.	2.5	147
31	In vivo knockdown of Piccolino disrupts presynaptic ribbon morphology in mouse photoreceptor synapses. Frontiers in Cellular Neuroscience, 2014, 8, 259.	3.7	44
32	Plasma Membrane and Actin Cytoskeleton as Synergistic Barriers to Nanowire Cell Penetration. Langmuir, 2014, 30, 12362-12367.	3.5	40
33	Nest building is impaired in the Ts65Dn mouse model of Down syndrome and rescued by blocking 5HT2a receptors. Neurobiology of Learning and Memory, 2014, 116, 162-171.	1.9	32
34	Quantification of nanowire penetration into living cells. Nature Communications, 2014, 5, 3613.	12.8	129
35	Usp16 contributes to somatic stem-cell defects in Down's syndrome. Nature, 2013, 501, 380-384.	27.8	112
36	Bassoon and Piccolo maintain synapse integrity by regulating protein ubiquitination and degradation. EMBO Journal, 2013, 32, 954-969.	7.8	136

#	Article	IF	CITATIONS
37	Nanostraw–Electroporation System for Highly Efficient Intracellular Delivery and Transfection. ACS Nano, 2013, 7, 4351-4358.	14.6	257
38	Autism-Associated Mutations in ProSAP2/Shank3 Impair Synaptic Transmission and Neurexin–Neuroligin-Mediated Transsynaptic Signaling. Journal of Neuroscience, 2012, 32, 14966-14978.	3.6	154
39	RAE-1, a Novel PHR Binding Protein, Is Required for Axon Termination and Synapse Formation in <i>Caenorhabditis elegans</i> . Journal of Neuroscience, 2012, 32, 2628-2636.	3.6	39
40	Formation of Golgi-Derived Active Zone Precursor Vesicles. Journal of Neuroscience, 2012, 32, 11095-11108.	3.6	82
41	Synaptic Pathology of Down Syndrome. Advances in Experimental Medicine and Biology, 2012, 970, 451-468.	1.6	28
42	Presynaptic function in health and disease. Trends in Neurosciences, 2011, 34, 326-337.	8.6	106
43	v-SNARE Composition Distinguishes Synaptic Vesicle Pools. Neuron, 2011, 71, 474-487.	8.1	142
44	Brain-Delivery of Zinc-Ions as Potential Treatment for Neurological Diseases: Mini Review. Drug Delivery Letters, 2011, 1, 13-23.	0.5	23
45	Development of Novel Zn2+ Loaded Nanoparticles Designed for Cell-Type Targeted Drug Release in CNS Neurons: In Vitro Evidences. PLoS ONE, 2011, 6, e17851.	2.5	46
46	SAP97 directs NMDA receptor spine targeting and synaptic plasticity. Journal of Physiology, 2011, 589, 4491-4510.	2.9	41
47	Concerted action of zinc and ProSAP/Shank in synaptogenesis and synapse maturation. EMBO Journal, 2011, 30, 569-581.	7.8	204
48	Amyloid beta protein-induced zinc sequestration leads to synaptic loss via dysregulation of the ProSAP2/Shank3 scaffold. Molecular Neurodegeneration, 2011, 6, 65.	10.8	66
49	Piccolo Regulates the Dynamic Assembly of Presynaptic F-Actin. Journal of Neuroscience, 2011, 31, 14250-14263.	3.6	69
50	Use Dependence of Presynaptic Tenacity. Journal of Neuroscience, 2011, 31, 16770-16780.	3.6	29
51	The Down Syndrome Critical Region Regulates Retinogeniculate Refinement. Journal of Neuroscience, 2011, 31, 5764-5776.	3.6	46
52	Brain-Delivery of Zinc-Ions as Potential Treatment for Neurological Diseases: Mini Review. Drug Delivery Letters, 2011, 1, 13-23.	0.5	60
53	Emerging Pharmacotherapies for Neurodevelopmental Disorders. Journal of Developmental and Behavioral Pediatrics, 2010, 31, 564-581.	1.1	44
54	A bicistronic lentiviral vector based on the 1D/2A sequence of foot-and-mouth disease virus expresses proteins stoichiometrically. Journal of Biotechnology, 2010, 146, 138-142.	3.8	24

#	Article	IF	CITATIONS
55	Disruption of the interaction between myosin VI and SAP97 is associated with a reduction in the number of AMPARs at hippocampal synapses. Journal of Neurochemistry, 2010, 112, 677-690.	3.9	43
56	Circadian Locomotor Rhythms Are Normal in Ts65Dn "Down Syndrome―Mice and Unaffected by Pentylenetetrazole. Journal of Biological Rhythms, 2010, 25, 63-66.	2.6	24
57	Synaptic SAP97 Isoforms Regulate AMPA Receptor Dynamics and Access to Presynaptic Glutamate. Journal of Neuroscience, 2009, 29, 4332-4345.	3.6	94
58	Exchange and Redistribution Dynamics of the Cytoskeleton of the Active Zone Molecule Bassoon. Journal of Neuroscience, 2009, 29, 351-358.	3.6	54
59	Dynein light chain regulates axonal trafficking and synaptic levels of Bassoon. Journal of Cell Biology, 2009, 185, 341-355.	5.2	85
60	SAP97 and CASK mediate sorting of NMDA receptors through a previously unknown secretory pathway. Nature Neuroscience, 2009, 12, 1011-1019.	14.8	184
61	Normal protein composition of synapses in Ts65Dn mice: a mouse model of Down syndrome. Journal of Neurochemistry, 2009, 110, 157-169.	3.9	33
62	Cell autonomous defects in cortical development revealed by two-color chimera analysis. Molecular and Cellular Neurosciences, 2009, 41, 44-50.	2.2	6
63	Rapid Assembly of Functional Presynaptic Boutons Triggered by Adhesive Contacts. Journal of Neuroscience, 2009, 29, 12449-12466.	3.6	80
64	Long Term Repair of Learning Disability through Short-Term Reduction of CNS Inhibition. Lecture Notes in Computer Science, 2009, , 818-825.	1.3	1
65	Caldendrin–Jacob: A Protein Liaison That Couples NMDA Receptor Signalling to the Nucleus. PLoS Biology, 2008, 6, e34.	5.6	177
66	Molecular Mechanisms of Presynaptic Differentiation. Annual Review of Cell and Developmental Biology, 2008, 24, 237-262.	9.4	159
67	Episodic-like memory in Ts65Dn, a mouse model of Down syndrome. Behavioural Brain Research, 2008, 188, 233-237.	2.2	47
68	Structure and Function of Vertebrate and Invertebrate Active Zones. , 2008, , 63-89.		1
69	Piccolo modulation of Synapsin1a dynamics regulates synaptic vesicle exocytosis. Journal of Cell Biology, 2008, 181, 831-846.	5.2	142
70	Synaptic Protein Dynamics in Hibernation. Journal of Neuroscience, 2007, 27, 84-92.	3.6	106
71	Over-inhibition: a model for developmental intellectual disability. Trends in Neurosciences, 2007, 30, 497-503.	8.6	77
72	Object recognition memory is conserved in Ts1Cje, a mouse model of Down syndrome. Neuroscience Letters, 2007, 421, 137-141.	2.1	28

#	Article	IF	CITATIONS
73	A year of unprecedented progress in Down syndrome basic research. Mental Retardation and Developmental Disabilities Research Reviews, 2007, 13, 215-220.	3.6	22
74	The functional nature of synaptic circuitry is altered in area CA3 of the hippocampus in a mouse model of Down's syndrome. Journal of Physiology, 2007, 579, 53-67.	2.9	86
75	Pharmacotherapy for cognitive impairment in a mouse model of Down syndrome. Nature Neuroscience, 2007, 10, 411-413.	14.8	466
76	Antagonistic effects of TrkB and p75NTRon NMDA receptor currents in post-synaptic densities transplanted into Xenopus oocytes. Journal of Neurochemistry, 2007, 101, 1672-1684.	3.9	16
77	Ubiquitous and Temperature-Dependent Neural Plasticity in Hibernators. Journal of Neuroscience, 2006, 26, 10590-10598.	3.6	139
78	Oncogenic function for the Dlg1 mammalian homolog of the Drosophila discs-large tumor suppressor. EMBO Journal, 2006, 25, 1406-1417.	7.8	73
79	Synapse development: still looking for the forest, still lost in the trees. Cell and Tissue Research, 2006, 326, 249-262.	2.9	61
80	Assembly of Active Zone Precursor Vesicles. Journal of Biological Chemistry, 2006, 281, 6038-6047.	3.4	88
81	Local Sharing as a Predominant Determinant of Synaptic Matrix Molecular Dynamics. PLoS Biology, 2006, 4, e271.	5.6	151
82	Transsynaptic Signaling by Postsynaptic Synapse-Associated Protein 97. Journal of Neuroscience, 2006, 26, 2343-2357.	3.6	62
83	Neurabin/Protein Phosphatase-1 Complex Regulates Dendritic Spine Morphogenesis and Maturation. Molecular Biology of the Cell, 2005, 16, 2349-2362.	2.1	83
84	Semaphorin 4B interacts with the post-synaptic density protein PSD-95/SAP90 and is recruited to synapses through a C-terminal PDZ-binding motif. FEBS Letters, 2005, 579, 3821-3828.	2.8	52
85	MECHANISMS OF VERTEBRATE SYNAPTOGENESIS. Annual Review of Neuroscience, 2005, 28, 251-274.	10.7	418
86	Postsynaptic Density Assembly Is Fundamentally Different from Presynaptic Active Zone Assembly. Journal of Neuroscience, 2004, 24, 1507-1520.	3.6	151
87	Activity-dependent regulation of dendritic synthesis and trafficking of AMPA receptors. Nature Neuroscience, 2004, 7, 244-253.	14.8	477
88	Cellular and molecular mechanisms of presynaptic assembly. Nature Reviews Neuroscience, 2004, 5, 385-399.	10.2	269
89	Stress- and mitogen-induced phosphorylation of the synapse-associated protein SAP90/PSD-95 by activation of SAPK3/p38gamma and ERK1/ERK2. Biochemical Journal, 2004, 380, 19-30.	3.7	92
90	Interactions between Piccolo and the Actin/Dynamin-binding Protein Abp1 Link Vesicle Endocytosis to Presynaptic Active Zones. Journal of Biological Chemistry, 2003, 278, 20268-20277.	3.4	84

#	Article	IF	CITATIONS
91	Functional regions of the presynaptic cytomatrix protein bassoon: significance for synaptic targeting and cytomatrix anchoring. Molecular and Cellular Neurosciences, 2003, 23, 279-291.	2.2	103
92	The Presynaptic Active Zone Protein Bassoon Is Essential for Photoreceptor Ribbon Synapse Formation in the Retina. Neuron, 2003, 37, 775-786.	8.1	395
93	Functional Inactivation of a Fraction of Excitatory Synapses in Mice Deficient for the Active Zone Protein Bassoon. Neuron, 2003, 37, 787-800.	8.1	226
94	Unitary Assembly of Presynaptic Active Zones from Piccolo-Bassoon Transport Vesicles. Neuron, 2003, 38, 237-252.	8.1	285
95	Chlorotoxin Inhibits Glioma Cell Invasion via Matrix Metalloproteinase-2. Journal of Biological Chemistry, 2003, 278, 4135-4144.	3.4	362
96	The GIT Family of Proteins Forms Multimers and Associates with the Presynaptic Cytomatrix Protein Piccolo. Journal of Biological Chemistry, 2003, 278, 6291-6300.	3.4	122
97	Synapse-Associated Protein-97 Isoform-Specific Regulation of Surface AMPA Receptors and Synaptic Function in Cultured Neurons. Journal of Neuroscience, 2003, 23, 4567-4576.	3.6	162
98	Interaction of SAP97 with Minus-end-directed Actin Motor Myosin VI. Journal of Biological Chemistry, 2002, 277, 30928-30934.	3.4	130
99	Gene structure and genetic localization of thePCLOgene encoding the presynaptic active zone protein Piccolo. International Journal of Developmental Neuroscience, 2002, 20, 161-171.	1.6	35
100	Molecular mechanisms of CNS synaptogenesis. Trends in Neurosciences, 2002, 25, 243-250.	8.6	172
101	Microposter. Trends in Neurosciences, 2002, 25, 251.	8.6	3
102	MAP2a, an Alternatively Spliced Variant of Microtubule-Associated Protein 2. Journal of Neurochemistry, 2002, 66, 1273-1281.	3.9	44
103	Priming plasticity. Nature, 2002, 415, 277-278.	27.8	7
104	The Dynamics of SAP90/PSD-95 Recruitment to New Synaptic Junctions. Molecular and Cellular Neurosciences, 2001, 18, 149-167.	2.2	103
105	Assembling the Presynaptic Active Zone. Neuron, 2001, 29, 131-143.	8.1	372
106	Unwebbing the Presynaptic Web. Neuron, 2001, 32, 3-6.	8.1	7
107	Identification of acis-acting dendritic targeting element in the mRNA encoding the alpha subunit of Ca2+/calmodulin-dependent protein kinase II. European Journal of Neuroscience, 2001, 13, 1881-1888.	2.6	92
108	Localization of the presynaptic cytomatrix protein Piccolo at ribbon and conventional synapses in the rat retina: Comparison with Bassoon. Journal of Comparative Neurology, 2001, 439, 224-234.	1.6	131

#	Article	IF	CITATIONS
109	Proline-rich synapse-associated protein-1/cortactin binding protein 1 (ProSAP1/CortBP1) is a PDZ-domain protein highly enriched in the postsynaptic density. Annals of Anatomy, 2001, 183, 101.	1.9	7
110	Principles of glutamatergic synapse formation: seeing the forest for the trees. Current Opinion in Neurobiology, 2001, 11, 536-543.	4.2	66
111	Molecular Mechanisms Regulating the Differential Association of Kainate Receptor Subunits with SAP90/PSD-95 and SAP97. Journal of Biological Chemistry, 2001, 276, 16092-16099.	3.4	70
112	Modulation of tau phosphorylation and intracellular localization by cellular stress. Biochemical Journal, 2000, 345, 263.	3.7	16
113	Molecular determinants of presynaptic active zones. Current Opinion in Neurobiology, 2000, 10, 321-327.	4.2	191
114	PDZ domains in synapse assembly and signalling. Trends in Cell Biology, 2000, 10, 274-280.	7.9	507
115	Membrane Association of Presynaptic Cytomatrix Protein Bassoon. Biochemical and Biophysical Research Communications, 2000, 275, 43-46.	2.1	19
116	Temporal Appearance of the Presynaptic Cytomatrix Protein Bassoon during Synaptogenesis. Molecular and Cellular Neurosciences, 2000, 15, 417-428.	2.2	52
117	Assembly of New Individual Excitatory Synapses. Neuron, 2000, 27, 57-69.	8.1	454
118	Piccolo, a Presynaptic Zinc Finger Protein Structurally Related to Bassoon. Neuron, 2000, 25, 203-214.	8.1	259
119	Identification of a <i>cis</i> -Acting Dendritic Targeting Element in MAP2 mRNAs. Journal of Neuroscience, 1999, 19, 8818-8829.	3.6	173
120	Proline-Rich Synapse-Associated Protein-1/Cortactin Binding Protein 1 (ProSAP1/CortBP1) Is a PDZ-Domain Protein Highly Enriched in the Postsynaptic Density. Journal of Neuroscience, 1999, 19, 6506-6518.	3.6	230
121	Differential expression of the presynaptic cytomatrix protein bassoon among ribbon synapses in the mammalian retina. European Journal of Neuroscience, 1999, 11, 3683-3693.	2.6	145
122	Presynaptic cytomatrix protein Bassoon is localized at both excitatory and inhibitory synapses of rat brain. , 1999, 408, 437-448.		95
123	The Presynaptic Cytomatrix Protein Bassoon: Sequence and Chromosomal Localization of the HumanBSNGene. Genomics, 1999, 57, 389-397.	2.9	22
124	Proline-Rich Synapse-Associated Proteins ProSAP1 and ProSAP2 Interact with Synaptic Proteins of the SAPAP/GKAP Family. Biochemical and Biophysical Research Communications, 1999, 264, 247-252.	2.1	180
125	Functional analysis of the guanylate kinase-like domain in the synapse-associated protein SAP97. FEBS Journal, 1998, 252, 305-313.	0.2	46
126	Immunocytochemical localization of the synapse-associated protein SAP102 in the rat retina. Journal of Comparative Neurology, 1998, 397, 326-336.	1.6	24

#	Article	IF	CITATIONS
127	SAP90 Binds and Clusters Kainate Receptors Causing Incomplete Desensitization. Neuron, 1998, 21, 727-739.	8.1	257
128	SAP97 Is Associated with the α-Amino-3-hydroxy-5-methylisoxazole-4-propionic Acid Receptor GluR1 Subunit. Journal of Biological Chemistry, 1998, 273, 19518-19524.	3.4	385
129	Bassoon, a Novel Zinc-finger CAG/Glutamine-repeat Protein Selectively Localized at the Active Zone of Presynaptic Nerve Terminals. Journal of Cell Biology, 1998, 142, 499-509.	5.2	409
130	Caldendrin, a Novel Neuronal Calcium-binding Protein Confined to the Somato-dendritic Compartment. Journal of Biological Chemistry, 1998, 273, 21324-21331.	3.4	101
131	Synaptic Clustering of the Cell Adhesion Molecule Fasciclin II by Discs-Large and its Role in the Regulation of Presynaptic Structure. Neuron, 1997, 19, 787-799.	8.1	199
132	Functional expression of rat synapse-associated proteins SAP97 and SAP102 in Drosophila dlg-1 mutants: effects on tumor suppression and synaptic bouton structure. Mechanisms of Development, 1997, 62, 161-174.	1.7	89
133	Molecular characterization of dendritically localized transcripts encoding MAP2. Molecular Brain Research, 1996, 36, 63-69.	2.3	25
134	Ultrastructural localization of Shaker-related potassium channel subunits and synapse-associated protein 90 to septate-like junctions in rat cerebellar Pinceaux. Molecular Brain Research, 1996, 42, 51-61.	2.3	128
135	Protein components of a rat brain synaptic junctional protein preparation. Molecular Brain Research, 1996, 42, 118-122.	2.3	63
136	SAP102, a Novel Postsynaptic Protein That Interacts with NMDA Receptor Complexes In Vivo. Neuron, 1996, 17, 255-265.	8.1	407
137	Synaptic proteins and the assembly of synaptic junctions. Trends in Cell Biology, 1996, 6, 429-433.	7.9	69
138	Interaction of the N-Methyl—aspartate Receptor Complex with a Novel Synapse-associated Protein, SAP102. Journal of Biological Chemistry, 1996, 271, 21622-21628.	3.4	167
139	Spatial and sub-cellular localization of the membrane cytoskeleton-associated protein α-adducin in the rat brain. Brain Research, 1995, 700, 13-24.	2.2	46
140	Molecular characterization and spatial distribution of SAP97, a novel presynaptic protein homologous to SAP90 and the Drosophila discs-large tumor suppressor protein. Journal of Neuroscience, 1995, 15, 2354-2366.	3.6	376
141	Brevican, a Chondroitin Sulfate Proteoglycan of Rat Brain, Occurs as Secreted and Cell Surface Glycosylphosphatidylinositol-anchored Isoforms. Journal of Biological Chemistry, 1995, 270, 27206-27212.	3.4	132
142	Nucleotide bindind by the synapse associated protein SAP90. FEBS Letters, 1995, 359, 159-163.	2.8	67
143	Four repeat MAP2 isoforms in human and rat brain. Molecular Brain Research, 1994, 26, 218-224.	2.3	16
144	Isoform-specific interactions of apolipoprotein E with the microtubule-associated protein MAP2c: implications for Alzheimer's disease. Neuroscience Letters, 1994, 182, 55-58.	2.1	83

#	Article	IF	CITATIONS
145	Expression of Various Microtubule-Associated Protein 2 Forms in the Developing Mouse Brain and in Cultured Neurons and Astrocytes. Journal of Neurochemistry, 1991, 56, 385-391.	3.9	43
146	Molecular Cloning of Microtubule-Associated Protein 1 (MAP1A) and Microtubule-Associated Protein 5 (MAP1B): Identification of Distinct Genes and Their Differential Expression in Developing Brain. Journal of Neurochemistry, 1990, 55, 146-154.	3.9	138
147	Embryonic MAP2 lacks the cross-linking sidearm sequences and dendritic targeting signal of adult MAP2. Nature, 1989, 340, 650-652.	27.8	120
148	Microtubule-associated proteins MAP5 and MAP1x: closely related components of the neuronal cytoskeleton with different cytoplasmic distributions in the developing brain. Molecular Brain Research, 1989, 5, 85-92.	2.3	33
149	Selective localization of messenger RNA for cytoskeletal protein MAP2 in dendrites. Nature, 1988, 336, 674-677.	27.8	529
150	A 70-Kilodalton Microtubule-Associated Protein (MAP2c), Related to MAP2. Journal of Neurochemistry, 1988, 50, 609-615.	3.9	100
151	Single-shot cloning of multiple cDNAs coding for a set of related microtubule-associated proteins. Gene, 1988, 71, 483-490.	2.2	10
152	Structural analysis of 3-deoxy-d-arabino-heptulosonate 7-phosphate by 1H-and natural-abundance 13C-n.m.r. spectroscopy. Carbohydrate Research, 1984, 132, 317-322.	2.3	12