Nicole Zitzmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8123897/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mouse models of Japanese encephalitis virus infection: A systematic review and meta-analysis using a meta-regression approach. PLoS Neglected Tropical Diseases, 2022, 16, e0010116.	1.3	8
2	Immunoglobulin M seroneutralization for improved confirmation of Japanese encephalitis virus infection in a flavivirus-endemic area. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2022, 116, 1032-1042.	0.7	3
3	Flavivirus cross-reactivity would explain the apparent findings of Japanese encephalitis virus infection in Nigeria. Journal of Immunoassay and Immunochemistry, 2022, , 1-3.	0.5	Ο
4	Antiviral effects of deoxynojirimycin (DNJ)-based iminosugars in dengue virus-infected primary dendritic cells. Antiviral Research, 2022, 199, 105269.	1.9	4
5	Host-targeting oral antiviral drugs to prevent pandemics. Lancet, The, 2022, 399, 1381-1382.	6.3	14
6	COVID-19 therapeutics: Challenges and directions for the future. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119893119.	3.3	92
7	Assessing Antigen Structural Integrity through Glycosylation Analysis of the SARS-CoV-2 Viral Spike. ACS Central Science, 2021, 7, 586-593.	5.3	68
8	Clamping, bending, and twisting inter-domain motions in the misfold-recognizing portion of UDP-glucose: Glycoprotein glucosyltransferase. Structure, 2021, 29, 357-370.e9.	1.6	15
9	Hepatitis C virus E2 envelope glycoprotein produced in <i>Nicotiana benthamiana</i> triggers humoral response with virusâ€neutralizing activity in vaccinated mice. Plant Biotechnology Journal, 2021, 19, 2027-2039.	4.1	8
10	Pathogenâ€induced inflammation is attenuated by the iminosugar M O Nâ€DNJ via modulation of the unfolded protein response. Immunology, 2021, 164, 587-601.	2.0	6
11	Human Basigin (CD147) Does Not Directly Interact with SARS-CoV-2 Spike Glycoprotein. MSphere, 2021, 6, e0064721.	1.3	40
12	N-Substituted Valiolamine Derivatives as Potent Inhibitors of Endoplasmic Reticulum α-Glucosidases I and II with Antiviral Activity. Journal of Medicinal Chemistry, 2021, 64, 18010-18024.	2.9	40
13	Allosteric Inhibition of the SARSâ€CoVâ€2 Main Protease: Insights from Mass Spectrometry Based Assays**. Angewandte Chemie, 2020, 132, 23750-23754.	1.6	10
14	Allosteric Inhibition of the SARS oVâ€2 Main Protease: Insights from Mass Spectrometry Based Assays**. Angewandte Chemie - International Edition, 2020, 59, 23544-23548.	7.2	92
15	Structure of human endo-α-1,2-mannosidase (MANEA), an antiviral host-glycosylation target. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29595-29601.	3.3	14
16	A need to raise the bar — A systematic review of temporal trends in diagnostics for Japanese encephalitis virus infection, and perspectives for future research. International Journal of Infectious Diseases, 2020, 95, 444-456.	1.5	17
17	Targeting Endoplasmic Reticulum α-Glucosidase I with a Single-Dose Iminosugar Treatment Protects against Lethal Influenza and Dengue Virus Infections. Journal of Medicinal Chemistry, 2020, 63, 4205-4214.	2.9	37
18	lminosugars counteract the downregulation of the interferon Î ³ receptor by dengue virus. Antiviral Research, 2019, 170, 104551.	1.9	10

NICOLE ZITZMANN

#	Article	IF	CITATIONS
19	Use of Modified Clostridium perfringens Enterotoxin Fragments for Claudin Targeting in Liver and Skin Cells. International Journal of Molecular Sciences, 2019, 20, 4774.	1.8	10
20	α-GLUCOSIDASE INHIBITION OF LACTONE INTERMEDIATES OF THE IMINOSUGAR DEOXYNOJIRIMYCIN. Jurnal Teknologi (Sciences and Engineering), 2019, 81, .	0.3	0
21	The circadian clock components BMAL1 and REV-ERBα regulate flavivirus replication. Nature Communications, 2019, 10, 377.	5.8	71
22	Hepatitis C virus sequence divergence preserves p7 viroporin structural and dynamic features. Scientific Reports, 2019, 9, 8383.	1.6	13
23	Perturbations of Native Membrane Protein Structure in Alkyl Phosphocholine Detergents: A Critical Assessment of NMR and Biophysical Studies. Chemical Reviews, 2018, 118, 3559-3607.	23.0	132
24	Integrity of Glycosylation Processing of a Glycan-Depleted Trimeric HIV-1 Immunogen Targeting Key B-Cell Lineages. Journal of Proteome Research, 2018, 17, 987-999.	1.8	23
25	Target highlights from the first postâ€₽SI CASP experiment (CASP12, May–August 2016). Proteins: Structure, Function and Bioinformatics, 2018, 86, 27-50.	1.5	11
26	ToP-DNJ, a Selective Inhibitor of Endoplasmic Reticulum α-Glucosidase II Exhibiting Antiflaviviral Activity. ACS Chemical Biology, 2018, 13, 60-65.	1.6	28
27	Optimization of Zika virus envelope protein production for ELISA and correlation of antibody titers with virus neutralization in Mexican patients from an arbovirus endemic region. Virology Journal, 2018, 15, 193.	1.4	11
28	Re-evaluating the p7 viroporin structure. Nature, 2018, 562, E8-E18.	13.7	14
29	Structural Insights into the Broad-Spectrum Antiviral Target Endoplasmic Reticulum Alpha-Glucosidase II. Advances in Experimental Medicine and Biology, 2018, 1062, 265-276.	0.8	8
30	Mechanisms of Antiviral Activity of Iminosugars Against Dengue Virus. Advances in Experimental Medicine and Biology, 2018, 1062, 277-301.	0.8	25
31	In Planta Preliminary Screening of ER Glycoprotein Folding Quality Control (ERQC) Modulators. International Journal of Molecular Sciences, 2018, 19, 2135.	1.8	5
32	The role of the unfolded protein response in dengue virus pathogenesis. Cellular Microbiology, 2017, 19, e12734.	1.1	44
33	Iminosugar antivirals: the therapeutic sweet spot. Biochemical Society Transactions, 2017, 45, 571-582.	1.6	78
34	Iminosugars: Promising therapeutics for influenza infection. Critical Reviews in Microbiology, 2017, 43, 521-545.	2.7	41
35	Absolute quantitation of disease protein biomarkers in a single LC-MS acquisition using apolipoprotein F as an example. Scientific Reports, 2017, 7, 12072.	1.6	5
36	Molecular Architecture of the Cleavage-Dependent Mannose Patch on a Soluble HIV-1 Envelope Glycoprotein Trimer. Journal of Virology, 2017, 91, .	1.5	77

NICOLE ZITZMANN

#	Article	IF	CITATIONS
37	Interdomain conformational flexibility underpins the activity of UGGT, the eukaryotic glycoprotein secretion checkpoint. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8544-8549.	3.3	48
38	Structures of mammalian ER α-glucosidase II capture the binding modes of broad-spectrum iminosugar antivirals. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4630-8.	3.3	65
39	Multiple reaction monitoring and multiple reaction monitoring cubed based assays for the quantitation of apolipoprotein F. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1033-1034, 278-286.	1.2	7
40	Native functionality and therapeutic targeting of arenaviral glycoproteins. Current Opinion in Virology, 2016, 18, 70-75.	2.6	15
41	Ion Channel Function and Cross-Species Determinants in Viral Assembly of Nonprimate Hepacivirus p7. Journal of Virology, 2016, 90, 5075-5089.	1.5	4
42	Composition and Antigenic Effects of Individual Glycan Sites of a Trimeric HIV-1 Envelope Glycoprotein. Cell Reports, 2016, 14, 2695-2706.	2.9	250
43	Inhibition of endoplasmic reticulum glucosidases is required for inÂvitro and inÂvivo dengue antiviral activity by the iminosugar UV-4. Antiviral Research, 2016, 129, 93-98.	1.9	52
44	lminosugars Inhibit Dengue Virus Production via Inhibition of ER Alpha-Glucosidases—Not Glycolipid Processing Enzymes. PLoS Neglected Tropical Diseases, 2016, 10, e0004524.	1.3	69
45	Minimal In Vivo Efficacy of Iminosugars in a Lethal Ebola Virus Guinea Pig Model. PLoS ONE, 2016, 11, e0167018.	1.1	11
46	Fragments of Bacterial Endoglycosidase S and Immunoglobulin G Reveal Subdomains of Each That Contribute to Deglycosylation. Journal of Biological Chemistry, 2014, 289, 13876-13889.	1.6	27
47	Emerging Principles for the Therapeutic Exploitation of Glycosylation. Science, 2014, 343, 1235681.	6.0	381
48	Glucocorticosteroids as Dengue Therapeutics: Resolving Clinical Observations With a Primary Human Macrophage Model. Clinical Infectious Diseases, 2013, 56, 901-903.	2.9	4
49	Liposome-Mediated Delivery of Iminosugars Enhances Efficacy against Dengue VirusIn Vivo. Antimicrobial Agents and Chemotherapy, 2012, 56, 6379-6386.	1.4	39
50	Discovery of Novel Biomarker Candidates for Liver Fibrosis in Hepatitis C Patients: A Preliminary Study. PLoS ONE, 2012, 7, e39603.	1.1	40
51	The influence of different lipid environments on the structure and function of the hepatitis C virus p7 ion channel protein. Molecular Membrane Biology, 2011, 28, 254-264.	2.0	18
52	Uptake and trafficking of liposomes to the endoplasmic reticulum. FASEB Journal, 2010, 24, 1866-1878.	0.2	70
53	Targeting a host process as an antiviral approach against dengue virus. Trends in Microbiology, 2010, 18, 323-330.	3.5	47
54	The 3-dimensional structure of a hepatitis C virus p7 ion channel by electron microscopy. Proceedings of the United States of America, 2009, 106, 12712-12716	3.3	139

NICOLE ZITZMANN

#	Article	IF	CITATIONS
55	Determination of Pore-Lining Residues in the Hepatitis C Virus p7 Protein. Biophysical Journal, 2009, 96, L10-L12.	0.2	41
56	N-Butyldeoxynojirimycin is a broadly effective anti-HIV therapy significantly enhanced by targeted liposome delivery. Aids, 2008, 22, 1961-1969.	1.0	57
57	Reduction of the infectivity of hepatitis C virus pseudoparticles by incorporation of misfolded glycoproteins induced by glucosidase inhibitors. Journal of General Virology, 2007, 88, 1133-1143.	1.3	51
58	Antiviral effects of amantadine and iminosugar derivatives against hepatitis C virus. Hepatology, 2007, 46, 330-338.	3.6	127
59	Proteinâ~'Protein Interactions:Â Modeling the Hepatitis C Virus Ion Channel p7. Journal of Medicinal Chemistry, 2006, 49, 648-655.	2.9	93
60	Productive Folding of Tyrosinase Ectodomain Is Controlled by the Transmembrane Anchor. Journal of Biological Chemistry, 2006, 281, 21682-21689.	1.6	9
61	Antiviral effect of α-glucosidase inhibitors on viral morphogenesis and binding properties of hepatitis C virus-like particles. Journal of General Virology, 2006, 87, 861-871.	1.3	43
62	Glycosylation: Disease Targets and Therapy. Advances in Experimental Medicine and Biology, 2005, 564, 1-2.	0.8	12
63	The hepatitis C virus p7 protein forms an ion channel that is inhibited by long-alkyl-chain iminosugar derivatives. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6104-6108.	3.3	341
64	Antiviral Effects of an Iminosugar Derivative on Flavivirus Infections. Journal of Virology, 2002, 76, 3596-3604.	1.5	208
65	Targeting glycosylation as a therapeutic approach. Nature Reviews Drug Discovery, 2002, 1, 65-75.	21.5	409
66	Study of the Mechanism of Antiviral Action of Iminosugar Derivatives against Bovine Viral Diarrhea Virus. Journal of Virology, 2001, 75, 8987-8998.	1.5	149
67	Antiviral Effect ofN-Butyldeoxynojirimycin against Bovine Viral Diarrhea Virus Correlates with Misfolding of E2 Envelope Proteins and Impairment of Their Association into E1-E2 Heterodimers. Journal of Virology, 2001, 75, 3527-3536.	1.5	79
68	Glycoproteins: Rapid Sequencing Technology for N-linked and GPI Anchor Glycans. Biotechnology and Genetic Engineering Reviews, 1999, 16, 1-22.	2.4	23
69	α-Glucosidase inhibitors as potential broad based anti-viral agents. FEBS Letters, 1998, 430, 17-22.	1.3	251