Nicole Zitzmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8123897/publications.pdf

Version: 2024-02-01

69 papers

4,307 citations

34 h-index 63 g-index

73 all docs

73 docs citations

times ranked

73

5658 citing authors

#	Article	IF	CITATIONS
1	Targeting glycosylation as a therapeutic approach. Nature Reviews Drug Discovery, 2002, 1, 65-75.	21.5	409
2	Emerging Principles for the Therapeutic Exploitation of Glycosylation. Science, 2014, 343, 1235681.	6.0	381
3	The hepatitis C virus p7 protein forms an ion channel that is inhibited by long-alkyl-chain iminosugar derivatives. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6104-6108.	3 . 3	341
4	α-Glucosidase inhibitors as potential broad based anti-viral agents. FEBS Letters, 1998, 430, 17-22.	1.3	251
5	Composition and Antigenic Effects of Individual Glycan Sites of a Trimeric HIV-1 Envelope Glycoprotein. Cell Reports, 2016, 14, 2695-2706.	2.9	250
6	Antiviral Effects of an Iminosugar Derivative on Flavivirus Infections. Journal of Virology, 2002, 76, 3596-3604.	1.5	208
7	Study of the Mechanism of Antiviral Action of Iminosugar Derivatives against Bovine Viral Diarrhea Virus. Journal of Virology, 2001, 75, 8987-8998.	1.5	149
8	The 3-dimensional structure of a hepatitis C virus p7 ion channel by electron microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12712-12716.	3.3	139
9	Perturbations of Native Membrane Protein Structure in Alkyl Phosphocholine Detergents: A Critical Assessment of NMR and Biophysical Studies. Chemical Reviews, 2018, 118, 3559-3607.	23.0	132
10	Antiviral effects of amantadine and iminosugar derivatives against hepatitis C virus. Hepatology, 2007, 46, 330-338.	3 . 6	127
11	Proteinâ^Protein Interactions:Â Modeling the Hepatitis C Virus Ion Channel p7. Journal of Medicinal Chemistry, 2006, 49, 648-655.	2.9	93
12	Allosteric Inhibition of the SARSâ€CoVâ€2 Main Protease: Insights from Mass Spectrometry Based Assays**. Angewandte Chemie - International Edition, 2020, 59, 23544-23548.	7.2	92
13	COVID-19 therapeutics: Challenges and directions for the future. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119893119.	3.3	92
14	Antiviral Effect of N-Butyldeoxynojirimycin against Bovine Viral Diarrhea Virus Correlates with Misfolding of E2 Envelope Proteins and Impairment of Their Association into E1-E2 Heterodimers. Journal of Virology, 2001, 75, 3527-3536.	1.5	79
15	Iminosugar antivirals: the therapeutic sweet spot. Biochemical Society Transactions, 2017, 45, 571-582.	1.6	78
16	Molecular Architecture of the Cleavage-Dependent Mannose Patch on a Soluble HIV-1 Envelope Glycoprotein Trimer. Journal of Virology, 2017, 91, .	1.5	77
17	The circadian clock components BMAL1 and REV-ERBα regulate flavivirus replication. Nature Communications, 2019, 10, 377.	5.8	71
18	Uptake and trafficking of liposomes to the endoplasmic reticulum. FASEB Journal, 2010, 24, 1866-1878.	0.2	70

#	Article	IF	CITATIONS
19	lminosugars Inhibit Dengue Virus Production via Inhibition of ER Alpha-Glucosidases—Not Glycolipid Processing Enzymes. PLoS Neglected Tropical Diseases, 2016, 10, e0004524.	1.3	69
20	Assessing Antigen Structural Integrity through Glycosylation Analysis of the SARS-CoV-2 Viral Spike. ACS Central Science, 2021, 7, 586-593.	5.3	68
21	Structures of mammalian ER α-glucosidase II capture the binding modes of broad-spectrum iminosugar antivirals. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4630-8.	3.3	65
22	N-Butyldeoxynojirimycin is a broadly effective anti-HIV therapy significantly enhanced by targeted liposome delivery. Aids, 2008, 22, 1961-1969.	1.0	57
23	Inhibition of endoplasmic reticulum glucosidases is required for inÂvitro and inÂvivo dengue antiviral activity by the iminosugar UV-4. Antiviral Research, 2016, 129, 93-98.	1.9	52
24	Reduction of the infectivity of hepatitis C virus pseudoparticles by incorporation of misfolded glycoproteins induced by glucosidase inhibitors. Journal of General Virology, 2007, 88, 1133-1143.	1.3	51
25	Interdomain conformational flexibility underpins the activity of UGGT, the eukaryotic glycoprotein secretion checkpoint. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8544-8549.	3.3	48
26	Targeting a host process as an antiviral approach against dengue virus. Trends in Microbiology, 2010, 18, 323-330.	3.5	47
27	The role of the unfolded protein response in dengue virus pathogenesis. Cellular Microbiology, 2017, 19, e12734.	1.1	44
28	Antiviral effect of \hat{I}_{\pm} -glucosidase inhibitors on viral morphogenesis and binding properties of hepatitis C virus-like particles. Journal of General Virology, 2006, 87, 861-871.	1.3	43
29	Determination of Pore-Lining Residues in the Hepatitis C Virus p7 Protein. Biophysical Journal, 2009, 96, L10-L12.	0.2	41
30	Iminosugars: Promising therapeutics for influenza infection. Critical Reviews in Microbiology, 2017, 43, 521-545.	2.7	41
31	Discovery of Novel Biomarker Candidates for Liver Fibrosis in Hepatitis C Patients: A Preliminary Study. PLoS ONE, 2012, 7, e39603.	1.1	40
32	Human Basigin (CD147) Does Not Directly Interact with SARS-CoV-2 Spike Glycoprotein. MSphere, 2021, 6, e0064721.	1.3	40
33	N-Substituted Valiolamine Derivatives as Potent Inhibitors of Endoplasmic Reticulum α-Glucosidases I and II with Antiviral Activity. Journal of Medicinal Chemistry, 2021, 64, 18010-18024.	2.9	40
34	Liposome-Mediated Delivery of Iminosugars Enhances Efficacy against Dengue VirusIn Vivo. Antimicrobial Agents and Chemotherapy, 2012, 56, 6379-6386.	1.4	39
35	Targeting Endoplasmic Reticulum α-Glucosidase I with a Single-Dose Iminosugar Treatment Protects against Lethal Influenza and Dengue Virus Infections. Journal of Medicinal Chemistry, 2020, 63, 4205-4214.	2.9	37
36	ToP-DNJ, a Selective Inhibitor of Endoplasmic Reticulum α-Glucosidase II Exhibiting Antiflaviviral Activity. ACS Chemical Biology, 2018, 13, 60-65.	1.6	28

3

#	Article	IF	Citations
37	Fragments of Bacterial Endoglycosidase S and Immunoglobulin G Reveal Subdomains of Each That Contribute to Deglycosylation. Journal of Biological Chemistry, 2014, 289, 13876-13889.	1.6	27
38	Mechanisms of Antiviral Activity of Iminosugars Against Dengue Virus. Advances in Experimental Medicine and Biology, 2018, 1062, 277-301.	0.8	25
39	Glycoproteins: Rapid Sequencing Technology for N-linked and GPI Anchor Glycans. Biotechnology and Genetic Engineering Reviews, 1999, 16, 1-22.	2.4	23
40	Integrity of Glycosylation Processing of a Glycan-Depleted Trimeric HIV-1 Immunogen Targeting Key B-Cell Lineages. Journal of Proteome Research, 2018, 17, 987-999.	1.8	23
41	The influence of different lipid environments on the structure and function of the hepatitis C virus p7 ion channel protein. Molecular Membrane Biology, 2011, 28, 254-264.	2.0	18
42	A need to raise the bar $\hat{a} \in \mathbb{Z}$ A systematic review of temporal trends in diagnostics for Japanese encephalitis virus infection, and perspectives for future research. International Journal of Infectious Diseases, 2020, 95, 444-456.	1.5	17
43	Native functionality and therapeutic targeting of arenaviral glycoproteins. Current Opinion in Virology, 2016, 18, 70-75.	2.6	15
44	Clamping, bending, and twisting inter-domain motions in the misfold-recognizing portion of UDP-glucose: Glycoprotein glucosyltransferase. Structure, 2021, 29, 357-370.e9.	1.6	15
45	Re-evaluating the p7 viroporin structure. Nature, 2018, 562, E8-E18.	13.7	14
46	Structure of human endo- $\hat{1}\pm1,2$ -mannosidase (MANEA), an antiviral host-glycosylation target. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29595-29601.	3.3	14
47	Host-targeting oral antiviral drugs to prevent pandemics. Lancet, The, 2022, 399, 1381-1382.	6.3	14
48	Hepatitis C virus sequence divergence preserves p7 viroporin structural and dynamic features. Scientific Reports, 2019, 9, 8383.	1.6	13
49	Glycosylation: Disease Targets and Therapy. Advances in Experimental Medicine and Biology, 2005, 564, 1-2.	0.8	12
50	Target highlights from the first postâ€PSI CASP experiment (CASP12, May–August 2016). Proteins: Structure, Function and Bioinformatics, 2018, 86, 27-50.	1.5	11
51	Optimization of Zika virus envelope protein production for ELISA and correlation of antibody titers with virus neutralization in Mexican patients from an arbovirus endemic region. Virology Journal, 2018, 15, 193.	1.4	11
52	Minimal In Vivo Efficacy of Iminosugars in a Lethal Ebola Virus Guinea Pig Model. PLoS ONE, 2016, 11, e0167018.	1,1	11
53	Iminosugars counteract the downregulation of the interferon \hat{l}^3 receptor by dengue virus. Antiviral Research, 2019, 170, 104551.	1.9	10
54	Use of Modified Clostridium perfringens Enterotoxin Fragments for Claudin Targeting in Liver and Skin Cells. International Journal of Molecular Sciences, 2019, 20, 4774.	1.8	10

#	Article	IF	CITATIONS
55	Allosteric Inhibition of the SARSâ€CoVâ€2 Main Protease: Insights from Mass Spectrometry Based Assays**. Angewandte Chemie, 2020, 132, 23750-23754.	1.6	10
56	Productive Folding of Tyrosinase Ectodomain Is Controlled by the Transmembrane Anchor. Journal of Biological Chemistry, 2006, 281, 21682-21689.	1.6	9
57	Structural Insights into the Broad-Spectrum Antiviral Target Endoplasmic Reticulum Alpha-Glucosidase II. Advances in Experimental Medicine and Biology, 2018, 1062, 265-276.	0.8	8
58	Hepatitis C virus E2 envelope glycoprotein produced in <i>Nicotiana benthamiana</i> triggers humoral response with virusâ€neutralizing activity in vaccinated mice. Plant Biotechnology Journal, 2021, 19, 2027-2039.	4.1	8
59	Mouse models of Japanese encephalitis virus infection: A systematic review and meta-analysis using a meta-regression approach. PLoS Neglected Tropical Diseases, 2022, 16, e0010116.	1.3	8
60	Multiple reaction monitoring and multiple reaction monitoring cubed based assays for the quantitation of apolipoprotein F. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1033-1034, 278-286.	1.2	7
61	Pathogenâ€induced inflammation is attenuated by the iminosugar M O Nâ€DNJ via modulation of the unfolded protein response. Immunology, 2021, 164, 587-601.	2.0	6
62	Absolute quantitation of disease protein biomarkers in a single LC-MS acquisition using apolipoprotein F as an example. Scientific Reports, 2017, 7, 12072.	1.6	5
63	In Planta Preliminary Screening of ER Glycoprotein Folding Quality Control (ERQC) Modulators. International Journal of Molecular Sciences, 2018, 19, 2135.	1.8	5
64	Glucocorticosteroids as Dengue Therapeutics: Resolving Clinical Observations With a Primary Human Macrophage Model. Clinical Infectious Diseases, 2013, 56, 901-903.	2.9	4
65	Ion Channel Function and Cross-Species Determinants in Viral Assembly of Nonprimate Hepacivirus p7. Journal of Virology, 2016, 90, 5075-5089.	1.5	4
66	Antiviral effects of deoxynojirimycin (DNJ)-based iminosugars in dengue virus-infected primary dendritic cells. Antiviral Research, 2022, 199, 105269.	1.9	4
67	Immunoglobulin M seroneutralization for improved confirmation of Japanese encephalitis virus infection in a flavivirus-endemic area. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2022, 116, 1032-1042.	0.7	3
68	\hat{l}_{\pm} -GLUCOSIDASE INHIBITION OF LACTONE INTERMEDIATES OF THE IMINOSUGAR DEOXYNOJIRIMYCIN. Jurnal Teknologi (Sciences and Engineering), 2019, 81, .	0.3	0
69	Flavivirus cross-reactivity would explain the apparent findings of Japanese encephalitis virus infection in Nigeria. Journal of Immunoassay and Immunochemistry, 2022, , 1-3.	0.5	0