Binal N Shah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/81238/publications.pdf

Version: 2024-02-01

		840776	794594
35	370	11	19
papers	citations	h-index	g-index
0.5	2.5	0.5	675
35	35	35	675
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Thrombomodulin and <scp>multiorgan</scp> failure in sickle cell anemia. American Journal of Hematology, 2022, 97, .	4.1	1
2	Engulfment and cell motility 1 (ELMO1) and apolipoprotein A1 (APOA1) as candidate genes for sickle cell nephropathy. British Journal of Haematology, 2021, 193, 628-632.	2.5	4
3	Biomarkers of clinical severity in treated and untreated sickle cell disease: a comparison by genotypes of a single center cohort and African Americans in the NHANES study. British Journal of Haematology, 2021, 194, 767-778.	2.5	6
4	Effects of reninâ€angiotensin blockade and APOL1 on kidney function in sickle cell disease. EJHaem, 2021, 2, 483-484.	1.0	2
5	Novel FOXM1 inhibitor identified via gene network analysis induces autophagic FOXM1 degradation to overcome chemoresistance of human cancer cells. Cell Death and Disease, 2021, 12, 704.	6.3	19
6	Biomarker Association with Hypertension in Mild Versus Severe Sickle Cell Disease Genotypes of a Single Center Cohort, in Comparison with African Americans from the Nhanes Study. Blood, 2021, 138, 2051-2051.	1.4	1
7	HIF-Mediated and Non-HIF-Mediated Differential Gene Expressions in Sickle Cell Reticulocyte and Their Impact on Clinical Manifestations. Blood, 2021, 138, 950-950.	1.4	O
8	Haptoglobin 1-1 Isoform Predicts Higher Serum Haptoglobin Concentration and Lower Multiorgan Failure Risk in Sickle Cell Disease. Blood, 2021, 138, 3095-3095.	1.4	0
9	<i>S100B</i> has pleiotropic effects on vasoâ€occlusive manifestations in sickle cell disease. American Journal of Hematology, 2020, 95, E62-E65.	4.1	1
10	The impact of delayed treatment of uncomplicated P. falciparum malaria on progression to severe malaria: A systematic review and a pooled multicentre individual-patient meta-analysis. PLoS Medicine, 2020, 17, e1003359.	8.4	50
11	The CYB5R3 c . 350C > G and G6PD A alleles modify severity of anemia in malaria and sickle cell disease. American Journal of Hematology, 2020, 95, 1269-1279.	4.1	8
12	Clinical, laboratory, and genetic risk factors for thrombosis in sickle cell disease. Blood Advances, 2020, 4, 1978-1986.	5. 2	28
13	Peripheral blood mononuclear cells show prominent gene expression by erythroid progenitors in diseases characterized by heightened erythropoiesis. British Journal of Haematology, 2020, 190, e42-e45.	2.5	2
14	Increased iron stores influence glucose metabolism in sickle cell anaemia. British Journal of Haematology, 2020, 189, e184-e187.	2. 5	1
15	Phlebotomy-Induced Iron Deficiency Increases the Expression of Prothrombotic Genes. Blood, 2020, 136, 11-12.	1.4	6
16	Circulating Extracellular Vesicle Tissue Factor Activity in Chuvash Erythrocytosis. Blood, 2020, 136, 36-36.	1.4	0
17	Genetic Association of Clinical Complications for Genes Differentially Expressed in Reticulocytes of Sickle Cell Anemia. Blood, 2020, 136, 13-13.	1.4	0
18	Kidney ultrasound findings according to kidney function in sickle cell anemia. American Journal of Hematology, 2019, 94, E288-E291.	4.1	4

#	Article	IF	CITATIONS
19	Thrombomodulin and Endothelial Dysfunction in Sickle Cell Anemia. Blood, 2019, 134, 3558-3558.	1.4	2
20	Relationship of Host Genetic Factors with Severe Malaria in Nigerian Children. Blood, 2019, 134, 942-942.	1.4	1
21	Biomarkers of Cardiopulmonary, Renal, and Liver Dysfunction in an Adult Sickle Cell Disease Cohort. Blood, 2019, 134, 3574-3574.	1.4	1
22	Risk Factors for Kidney Disease in Hb SC and Hb $\hat{Sl^2}$ +-Thalassemia Sickle Cell Disease. Blood, 2019, 134, 2299-2299.	1.4	0
23	Hypoxia Dependent and Independent Dysregulation of the Transcriptome in Sickle Cell Anemia. Blood, 2019, 134, 2262-2262.	1.4	0
24	Glucose Metabolism in Sickle Cell Disease. Blood, 2019, 134, 4830-4830.	1.4	0
25	Risk factors for vitamin D deficiency in sickle cell disease. British Journal of Haematology, 2018, 181, 828-835.	2.5	16
26	Fixed lowâ€dose hydroxyurea for the treatment of adults with sickle cell anemia in <scp>N</scp> igeria. American Journal of Hematology, 2018, 93, E193.	4.1	11
27	Hemolysis and hemolysisâ€related complications in females vs. males with sickle cell disease. American Journal of Hematology, 2018, 93, E376-E380.	4.1	14
28	Prospective study of thrombosis and thrombospondin-1 expression in Chuvash polycythemia. Haematologica, 2017, 102, e166-e169.	3.5	14
29	Gain-of-function EGLN1 prolyl hydroxylase (PHD2 D4E:C127S) in combination with EPAS1 (HIF-2α) polymorphism lowers hemoglobin concentration in Tibetan highlanders. Journal of Molecular Medicine, 2017, 95, 665-670.	3.9	52
30	APOL1, α-thalassemia, and BCL11A variants as a genetic risk profile for progression of chronic kidney disease in sickle cell anemia. Haematologica, 2017, 102, e1-e6.	3.5	47
31	Associations of $\hat{l}\pm$ -thalassemia and BCL11A with stroke in Nigerian, United States, and United Kingdom sickle cell anemia cohorts. Blood Advances, 2017, 1, 693-698.	5.2	12
32	Low Fixed Dose Hydroxyurea for the Treatment of Adults with Sickle Cell Disease in Nigeria. Blood, 2017, 130, 981-981.	1.4	3
33	Hypoxic Response-Dependent Genetic Regulation Revealed By Allele-Specific Expression in Reticulocytes of Chuvash Polycythemia. Blood, 2017, 130, 926-926.	1.4	0
34	A genetic variation associated with plasma erythropoietin and a non-coding transcript of PRKAR1Ain sickle cell disease. Human Molecular Genetics, 2016, 25, ddw299.	2.9	4
35	Genetic variants and cell-free hemoglobin processing in sickle cell nephropathy. Haematologica, 2015, 100, 1275-1284.	3.5	60