Anders R Nilsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8123592/publications.pdf

Version: 2024-02-01

356 papers 33,253 citations

88 h-index 168 g-index

366 all docs

366 does citations

366 times ranked 25957 citing authors

#	Article	IF	CITATIONS
1	Direct Evidence of Subsurface Oxygen Formation in Oxideâ€Derived Cu by Xâ€ray Photoelectron Spectroscopy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	37
2	Following the Crystallization of Amorphous Ice after Ultrafast Laser Heating. Journal of Physical Chemistry B, 2022, 126, 2299-2307.	1.2	8
3	Operando Observation of Oxygenated Intermediates during CO Hydrogenation on Rh Single Crystals. Journal of the American Chemical Society, 2022, 144, 7038-7042.	6.6	10
4	Rýcktitelbild: Direct Evidence of Subsurface Oxygen Formation in Oxideâ€Derived Cu by Xâ€ray Photoelectron Spectroscopy (Angew. Chem. 3/2022). Angewandte Chemie, 2022, 134, .	1.6	0
5	Back Cover: Direct Evidence of Subsurface Oxygen Formation in Oxideâ€Derived Cu by Xâ€ray Photoelectron Spectroscopy (Angew. Chem. Int. Ed. 3/2022). Angewandte Chemie - International Edition, 2022, 61, .	7.2	1
6	Origin of the anomalous properties in supercooled water based on experimental probing inside "no-man's land― Journal of Non-Crystalline Solids: X, 2022, 14, 100095.	0.5	9
7	The state of zinc in methanol synthesis over a Zn/ZnO/Cu(211) model catalyst. Science, 2022, 376, 603-608.	6.0	65
8	In Situ Surface-Sensitive Investigation of Multiple Carbon Phases on Fe(110) in the Fischer–Tropsch Synthesis. ACS Catalysis, 2022, 12, 7609-7621.	5 . 5	13
9	Chemisorbed oxygen or surface oxides steer the selectivity in Pd electrocatalytic propene oxidation observed by <i>operando</i> Pd L-edge X-ray absorption spectroscopy. Catalysis Science and Technology, 2021, 11, 3347-3352.	2.1	6
10	Enhancement and maximum in the isobaric specific-heat capacity measurements of deeply supercooled water using ultrafast calorimetry. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	42
11	The Structure of the Active Pd State During Catalytic Carbon Monoxide Oxidization. Journal of Physical Chemistry Letters, 2021, 12, 4461-4465.	2.1	15
12	Ultrafast Adsorbate Excitation Probed with Subpicosecond-Resolution X-Ray Absorption Spectroscopy. Physical Review Letters, 2021, 127, 016802.	2.9	11
13	Electrochemical Carbon Dioxide Reduction on Femtosecond Laser-Processed Copper Electrodes: Effect on the Liquid Products by Structuring and Doping. ACS Applied Energy Materials, 2021, 4, 5927-5934.	2.5	5
14	Bridging the Pressure Gap in CO Oxidation. ACS Catalysis, 2021, 11, 9128-9135.	5.5	14
15	Direct observation of ultrafast hydrogen bond strengthening in liquid water. Nature, 2021, 596, 531-535.	13.7	53
16	Stroboscopic operando spectroscopy of the dynamics in heterogeneous catalysis by event-averaging. Nature Communications, 2021, 12, 6117.	5. 8	27
17	Anomalous temperature dependence of the experimental x-ray structure factor of supercooled water. Journal of Chemical Physics, 2021, 155, 214501.	1.2	7
18	Time-resolved observation of transient precursor state of CO on Ru(0001) using carbon K-edge spectroscopy. Physical Chemistry Chemical Physics, 2020, 22, 2677-2684.	1.3	15

#	Article	IF	CITATIONS
19	Experimental observation of the liquid-liquid transition in bulk supercooled water under pressure. Science, 2020, 370, 978-982.	6.0	143
20	Key activity descriptors of nickel-iron oxygen evolution electrocatalysts in the presence of alkali metal cations. Nature Communications, 2020, 11, 6181.	5.8	80
21	Anisotropic X-Ray Scattering of Transiently Oriented Water. Physical Review Letters, 2020, 125, 076002.	2.9	13
22	X-Ray Studies of Water. , 2020, , 1935-1988.		5
23	Temperature dependent anomalous fluctuations in water: shift of â‰^1 kbar between experiment and classical force field simulations. Molecular Physics, 2019, 117, 3232-3240.	0.8	7
24	Measurements of ultrafast dissociation in resonant inelastic x-ray scattering of water. Journal of Chemical Physics, 2019, 150, 204201.	1.2	12
25	A high-pressure x-ray photoelectron spectroscopy instrument for studies of industrially relevant catalytic reactions at pressures of several bars. Review of Scientific Instruments, 2019, 90, .	0.6	63
26	Chemical Dissolution of Pt(111) during Potential Cycling under Negative pH Conditions Studied by Operando X-ray Photoelectron Spectroscopy. Journal of Physical Chemistry C, 2019, 123, 25128-25134.	1.5	19
27	Apparent power-law behavior of water's isothermal compressibility and correlation length upon supercooling. Physical Chemistry Chemical Physics, 2019, 21, 26-31.	1.3	28
28	Intermediate range O–O correlations in supercooled water down to 235 K. Journal of Chemical Physics, 2019, 150, 224506.	1.2	28
29	X-ray studies of the transformation from high- to low-density amorphous water. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180164.	1.6	17
30	Do X-ray spectroscopies provide evidence for continuous distribution models of water at ambient conditions?. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17156-17157.	3.3	16
31	Operando Observation of Chemical Transformations of Iridium Oxide During Photoelectrochemical Water Oxidation. ACS Applied Energy Materials, 2019, 2, 1371-1379.	2.5	18
32	X-Ray Studies of Water., 2019, , 1-54.		0
33	Vatten. Kosmos, 2019, 95, 52-75.	0.0	0
34	Relationship between x-ray emission and absorption spectroscopy and the local H-bond environment in water. Journal of Chemical Physics, 2018, 148, 144507.	1.2	37
35	X-Ray Probe Targets Interfaces. Physics Magazine, 2018, 11, .	0.1	0
36	Atom-specific activation in CO oxidation. Journal of Chemical Physics, 2018, 149, 234707.	1.2	2

#	Article	IF	CITATIONS
37	Coherent X-rays reveal the influence of cage effects on ultrafast water dynamics. Nature Communications, 2018, 9, 1917.	5.8	59
38	Response to Comment on "Maxima in the thermodynamic response and correlation functions of deeply supercooled water― Science, 2018, 360, .	6.0	25
39	X-ray Scattering and O–O Pair-Distribution Functions of Amorphous Ices. Journal of Physical Chemistry B, 2018, 122, 7616-7624.	1.2	58
40	<i>Operando</i> XAS Study of the Surface Oxidation State on a Monolayer IrO _{<i>x</i>} on RuO _{<i>x</i>} and Ru Oxide Based Nanoparticles for Oxygen Evolution in Acidic Media. Journal of Physical Chemistry B, 2018, 122, 878-887.	1.2	59
41	Catalysis in real time using X-ray lasers. Chemical Physics Letters, 2017, 675, 145-173.	1.2	45
42	Subsurface Oxygen in Oxide-Derived Copper Electrocatalysts for Carbon Dioxide Reduction. Journal of Physical Chemistry Letters, 2017, 8, 285-290.	2.1	332
43	Stability and Effects of Subsurface Oxygen in Oxide-Derived Cu Catalyst for CO ₂ Reduction. Journal of Physical Chemistry C, 2017, 121, 25010-25017.	1.5	92
44	Nature and Distribution of Stable Subsurface Oxygen in Copper Electrodes During Electrochemical CO ₂ Reduction. Journal of Physical Chemistry C, 2017, 121, 25003-25009.	1.5	98
45	Correction: Retraction: Transferring electrons to water. Nature Chemistry, 2017, 9, 828-828.	6.6	0
46	Real-Time Elucidation of Catalytic Pathways in CO Hydrogenation on Ru. Journal of Physical Chemistry Letters, 2017, 8, 3820-3825.	2.1	9
47	Modelling pH and potential in dynamic structures of the water/Pt(111) interface on the atomic scale. Physical Chemistry Chemical Physics, 2017, 19, 23505-23514.	1.3	48
48	Temperature-Independent Nuclear Quantum Effects on the Structure of Water. Physical Review Letters, 2017, 119, 075502.	2.9	26
49	Probing the OH Stretch in Different Local Environments in Liquid Water. Journal of Physical Chemistry Letters, 2017, 8, 5487-5491.	2.1	30
50	Diffusive dynamics during the high-to-low density transition in amorphous ice. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8193-8198.	3.3	155
51	How Cubic Can Ice Be?. Journal of Physical Chemistry Letters, 2017, 8, 3216-3222.	2.1	46
52	Maxima in the thermodynamic response and correlation functions of deeply supercooled water. Science, 2017, 358, 1589-1593.	6.0	270
53	Water—The Most Anomalous Liquid. Chemical Reviews, 2016, 116, 7459-7462.	23.0	124
54	Electroreduction of Carbon Monoxide Over a Copper Nanocube Catalyst: Surface Structure and pH Dependence on Selectivity. ChemCatChem, 2016, 8, 1119-1124.	1.8	76

#	Article	IF	CITATIONS
55	The structural validity of various thermodynamical models of supercooled water. Journal of Chemical Physics, 2016, 145, 134507.	1.2	41
56	Evaporative cooling of microscopic water droplets <i>in vacuo</i> : Molecular dynamics simulations and kinetic gas theory. Journal of Chemical Physics, 2016, 144, 124502.	1.2	22
57	The temperature dependence of intermediate range oxygen-oxygen correlations in liquid water. Journal of Chemical Physics, 2016, 145, 084503.	1.2	33
58	X-ray and Neutron Scattering of Water. Chemical Reviews, 2016, 116, 7570-7589.	23.0	170
59	Formation of Copper Catalysts for CO ₂ Reduction with High Ethylene/Methane Product Ratio Investigated with In Situ X-ray Absorption Spectroscopy. Journal of Physical Chemistry Letters, 2016, 7, 1466-1470.	2.1	131
60	Operando X-Ray Photoelectron Spectroscopy Studies of Aqueous Electrocatalytic Systems. Topics in Catalysis, 2016, 59, 439-447.	1.3	23
61	Chemical Bond Activation Observed with an X-ray Laser. Journal of Physical Chemistry Letters, 2016, 7, 3647-3651.	2.1	21
62	Operando Analyses of Solar Fuels Light Absorbers and Catalysts. Electrochimica Acta, 2016, 211, 711-719.	2.6	23
63	Probing the nanoscale structure of the catalytically active overlayer on Pt alloys with rare earths. Nano Energy, 2016, 29, 249-260.	8.2	49
64	X-ray and Electron Spectroscopy of Water. Chemical Reviews, 2016, 116, 7551-7569.	23.0	143
64 65	X-ray and Electron Spectroscopy of Water. Chemical Reviews, 2016, 116, 7551-7569. Probing water with X-ray lasers. Advances in Physics: X, 2016, 1, 226-245.	23.0	143
65	Probing water with X-ray lasers. Advances in Physics: X, 2016, 1, 226-245. Elucidating the electronic structure of supported gold nanoparticles and its relevance to catalysis	1.5	8
65	Probing water with X-ray lasers. Advances in Physics: X, 2016, 1, 226-245. Elucidating the electronic structure of supported gold nanoparticles and its relevance to catalysis by means of hard X-ray photoelectron spectroscopy. Surface Science, 2016, 650, 24-33. Pt Gd alloy formation on Pt(111): Preparation and structural characterization. Surface Science, 2016,	0.8	23
65 66 67	Probing water with X-ray lasers. Advances in Physics: X, 2016, 1, 226-245. Elucidating the electronic structure of supported gold nanoparticles and its relevance to catalysis by means of hard X-ray photoelectron spectroscopy. Surface Science, 2016, 650, 24-33. Pt Gd alloy formation on Pt(111): Preparation and structural characterization. Surface Science, 2016, 652, 114-122. Ambient-Pressure XPS Study of a Ni–Fe Electrocatalyst for the Oxygen Evolution Reaction. Journal of	0.8 0.8	23
65 66 67 68	Probing water with X-ray lasers. Advances in Physics: X, 2016, 1, 226-245. Elucidating the electronic structure of supported gold nanoparticles and its relevance to catalysis by means of hard X-ray photoelectron spectroscopy. Surface Science, 2016, 650, 24-33. Pt Gd alloy formation on Pt(111): Preparation and structural characterization. Surface Science, 2016, 652, 114-122. Ambient-Pressure XPS Study of a Ni–Fe Electrocatalyst for the Oxygen Evolution Reaction. Journal of Physical Chemistry C, 2016, 120, 2247-2253.	1.5 0.8 0.8	8 23 16 336
65 66 67 68	Probing water with X-ray lasers. Advances in Physics: X, 2016, 1, 226-245. Elucidating the electronic structure of supported gold nanoparticles and its relevance to catalysis by means of hard X-ray photoelectron spectroscopy. Surface Science, 2016, 650, 24-33. Pt Gd alloy formation on Pt(111): Preparation and structural characterization. Surface Science, 2016, 652, 114-122. Ambient-Pressure XPS Study of a Ni–Fe Electrocatalyst for the Oxygen Evolution Reaction. Journal of Physical Chemistry C, 2016, 120, 2247-2253. THz-Pulse-Induced Selective Catalytic CO Oxidation on Ru. Physical Review Letters, 2015, 115, 036103. Indication of non-thermal contribution to visible femtosecond laser-induced CO oxidation on	1.5 0.8 0.8 1.5	8 23 16 336 46

#	Article	IF	Citations
7 3	From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. Journal of Catalysis, 2015, 328, 36-42.	3.1	1,271
74	Optical laser-induced CO desorption from Ru(0001) monitored with a free-electron X-ray laser: DFT prediction and X-ray confirmation of a precursor state. Surface Science, 2015, 640, 80-88.	0.8	13
7 5	High Selectivity for Ethylene from Carbon Dioxide Reduction over Copper Nanocube Electrocatalysts. Angewandte Chemie - International Edition, 2015, 54, 5179-5182.	7.2	429
76	The structural origin of anomalous properties of liquid water. Nature Communications, 2015, 6, 8998.	5.8	373
77	Probing the transition state region in catalytic CO oxidation on Ru. Science, 2015, 347, 978-982.	6.0	193
78	Long-range ion–water and ion–ion interactions in aqueous solutions. Physical Chemistry Chemical Physics, 2015, 17, 8427-8430.	1.3	15
79	Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting. Journal of the American Chemical Society, 2015, 137, 1305-1313.	6.6	2,018
80	Anomalous Behavior of the Homogeneous Ice Nucleation Rate in "No-Man's Land― Journal of Physical Chemistry Letters, 2015, 6, 2826-2832.	2.1	102
81	Low Barrier Carbon Induced CO Dissociation on Stepped Cu. Physical Review Letters, 2015, 114, 246101.	2.9	8
82	Strong Influence of Coadsorbate Interaction on CO Desorption Dynamics on Ru(0001) Probed by Ultrafast X-Ray Spectroscopy and AbÂlnitioSimulations. Physical Review Letters, 2015, 114, 156101.	2.9	25
83	Direct observation of the dealloying process of a platinum–yttrium nanoparticle fuel cell cathode and its oxygenated species during the oxygen reduction reaction. Physical Chemistry Chemical Physics, 2015, 17, 28121-28128.	1.3	54
84	X-ray emission spectroscopy of bulk liquid water in "no-man's land― Journal of Chemical Physics, 2015, 142, 044505.	1.2	32
85	The structure of water; from ambient to deeply supercooled. Journal of Non-Crystalline Solids, 2015, 407, 399-417.	1.5	51
86	Determination of the surface electronic structure of Fe3O4(1 11) by soft X-ray spectroscopy. Catalysis Today, 2015, 240, 184-189.	2,2	20
87	Comparison of x-ray absorption spectra between water and ice: New ice data with low pre-edge absorption cross-section. Journal of Chemical Physics, 2014, 141, 034507.	1.2	60
88	Operando Characterization of an Amorphous Molybdenum Sulfide Nanoparticle Catalyst during the Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2014, 118, 29252-29259.	1.5	87
89	Reabsorption of Soft X-Ray Emission at High X-Ray Free-Electron Laser Fluences. Physical Review Letters, 2014, 113, 153002.	2.9	33
90	A Molecular Perspective on the d-Band Model: Synergy Between Experiment and Theory. Topics in Catalysis, 2014, 57, 2-13.	1.3	90

#	Article	IF	Citations
91	JCAP Research on Solar Fuel Production at Light Sources. Synchrotron Radiation News, 2014, 27, 14-17.	0.2	26
92	Inâ€Situ Observation of Surface Species on Iridium Oxide Nanoparticles during the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2014, 53, 7169-7172.	7.2	386
93	Structure, Redox Chemistry, and Interfacial Alloy Formation in Monolayer and Multilayer Cu/Au(111) Model Catalysts for CO ₂ Electroreduction. Journal of Physical Chemistry C, 2014, 118, 7954-7961.	1.5	68
94	Preparation, Structure, and Orientation of Pyrite FeS ₂ {100} Surfaces: Anisotropy, Sulfur Monomers, Dimer Vacancies, and a Possible FeS Surface Phase. Journal of Physical Chemistry C, 2014, 118, 21896-21903.	1.5	28
95	Mass-selected nanoparticles of PtxY as model catalysts for oxygen electroreduction. Nature Chemistry, 2014, 6, 732-738.	6.6	298
96	Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature. Nature, 2014, 510, 381-384.	13.7	385
97	A different view of structure-making and structure-breaking in alkali halide aqueous solutions through x-ray absorption spectroscopy. Journal of Chemical Physics, 2014, 140, 244506.	1.2	70
98	Different Reactivity of the Various Platinum Oxides and Chemisorbed Oxygen in CO Oxidation on Pt(111). Journal of the American Chemical Society, 2014, 136, 6340-6347.	6.6	71
99	Highly Compressed Two-Dimensional Form of Water at Ambient Conditions. Scientific Reports, 2013, 3, 1074.	1.6	31
100	X-ray Photoemission and Density Functional Theory Study of the Interaction of Water Vapor with the Fe $<$ sub $>$ 0 $<$ sub $>$ 0 $<$ sub $>$ 4 $<$ sub $>$ 001) Surface at Near-Ambient Conditions. Journal of Physical Chemistry C, 2013, 117, 2719-2733.	1.5	92
101	Interlayer Carbon Bond Formation Induced by Hydrogen Adsorption in Few-Layer Supported Graphene. Physical Review Letters, 2013, 111, 085503.	2.9	110
102	Stability of Pt-Modified Cu(111) in the Presence of Oxygen and Its Implication on the Overall Electronic Structure. Journal of Physical Chemistry C, 2013, 117, 16371-16380.	1.5	5
103	Resonant inelastic X-ray scattering of liquid water. Journal of Electron Spectroscopy and Related Phenomena, 2013, 188, 84-100.	0.8	45
104	Direct observation of the oxygenated species during oxygen reduction on a platinum fuel cell cathode. Nature Communications, 2013, 4, .	5.8	325
105	On the chemical state of Co oxide electrocatalysts during alkaline water splitting. Physical Chemistry Chemical Physics, 2013, 15, 17460.	1.3	89
106	Ambient-pressure photoelectron spectroscopy for heterogeneous catalysis and electrochemistry. Catalysis Today, 2013, 205, 101-105.	2,2	103
107	Ultrafast soft X-ray emission spectroscopy of surface adsorbates using an X-ray free electron laser. Journal of Electron Spectroscopy and Related Phenomena, 2013, 187, 9-14.	0.8	27
108	Comment on "Using Photoelectron Spectroscopy and Quantum Mechanics to Determine d-Band Energies of Metals for Catalytic Applications― Journal of Physical Chemistry C, 2013, 117, 6914-6915.	1.5	15

#	Article	IF	Citations
109	Benchmark oxygen-oxygen pair-distribution function of ambient water from x-ray diffraction measurements with a wide $\langle i \rangle Q \langle j \rangle$ -range. Journal of Chemical Physics, 2013, 138, 074506.	1.2	407
110	Real-Time Observation of Surface Bond Breaking with an X-ray Laser. Science, 2013, 339, 1302-1305.	6.0	179
111	The Electronic States of Rhenium Bipyridyl Electrocatalysts for CO ₂ Reduction as Revealed by Xâ€ray Absorption Spectroscopy and Computational Quantum Chemistry. Angewandte Chemie - International Edition, 2013, 52, 4841-4844.	7.2	119
112	Electronic structure effects in catalysis probed by X-ray and electron spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2013, 190, 113-124.	0.8	13
113	Identification of the electronic structure differences between polar isostructural FeO and CoO films by core-level soft x-ray spectroscopy. Physical Review B, 2013, 87, .	1.1	2
114	Solvation structures of protons and hydroxide ions in water. Journal of Chemical Physics, 2013, 138, 154506.	1.2	19
115	Unique water-water coordination tailored by a metal surface. Journal of Chemical Physics, 2013, 138, 234708.	1.2	1
116	Selective Probing of the OH or OD Stretch Vibration in Liquid Water Using Resonant Inelastic Soft-X-Ray Scattering. Physical Review Letters, 2013, 111, 193001.	2.9	90
117	Selective Ultrafast Probing of Transient Hot Chemisorbed and Precursor States of CO on Ru(0001). Physical Review Letters, 2013, 110, 186101.	2.9	51
118	Microscopic probing of the size dependence in hydrophobic solvation. Journal of Chemical Physics, 2012, 136, 074507.	1.2	30
119	Polarization dependent resonant x-ray emission spectroscopy of D2O and H2O water: Assignment of the local molecular orbital symmetry. Journal of Chemical Physics, 2012, 136, 044517.	1.2	42
120	Probing substrate effects in the carbon-projected band structure of graphene on $Pt(111)$ through resonant inelastic x-ray scattering. Physical Review B, 2012, 85, .	1.1	27
121	Electrochemical Oxidation of Size-Selected Pt Nanoparticles Studied Using in Situ High-Energy-Resolution X-ray Absorption Spectroscopy. ACS Catalysis, 2012, 2, 2371-2376.	5.5	105
122	Balance of Nanostructure and Bimetallic Interactions in Pt Model Fuel Cell Catalysts: In Situ XAS and DFT Study. Journal of the American Chemical Society, 2012, 134, 9664-9671.	6.6	117
123	Fluctuations in ambient water. Journal of Molecular Liquids, 2012, 176, 2-16.	2.3	86
124	Reversible graphene-metal contact through hydrogenation. Physical Review B, 2012, 86, .	1.1	28
125	Tuning the Metal–Adsorbate Chemical Bond through the Ligand Effect on Platinum Subsurface Alloys. Angewandte Chemie - International Edition, 2012, 51, 7724-7728.	7.2	15
126	In situ X-ray probing reveals fingerprints of surface platinum oxide. Physical Chemistry Chemical Physics, 2011, 13, 262-266.	1.3	110

#	Article	IF	Citations
127	Spatially inhomogeneous bimodal inherent structure of simulated liquid water. Physical Chemistry Chemical Physics, 2011, 13, 19918.	1.3	136
128	Enhanced small-angle scattering connected to the Widom line in simulations of supercooled water. Journal of Chemical Physics, 2011, 134, 214506.	1.2	67
129	Autocatalytic Surface Hydroxylation of MgO(100) Terrace Sites Observed under Ambient Conditions. Journal of Physical Chemistry C, 2011, 115, 12864-12872.	1.5	71
130	Ab Initio van der Waals Interactions in Simulations of Water Alter Structure from Mainly Tetrahedral to High-Density-Like. Journal of Physical Chemistry B, 2011, 115, 14149-14160.	1.2	83
131	Hydrogen Spillover in Pt-Single-Walled Carbon Nanotube Composites: Formation of Stable Câ^'H Bonds. Journal of the American Chemical Society, 2011, 133, 5580-5586.	6.6	93
132	Wide-angle X-ray diffraction and molecular dynamics study of medium-range order in ambient and hot water. Physical Chemistry Chemical Physics, 2011, 13, 19997.	1.3	63
133	The structure of water in the hydration shell of cations from x-ray Raman and small angle x-ray scattering measurements. Journal of Chemical Physics, 2011, 134, 064513.	1.2	111
134	Increased fraction of low-density structures in aqueous solutions of fluoride. Journal of Chemical Physics, 2011, 134, 224507.	1.2	18
135	Perspective on the structure of liquid water. Chemical Physics, 2011, 389, 1-34.	0.9	289
136	Degradation of Bimetallic Model Electrocatalysts: An In Situ Xâ€Ray Absorption Spectroscopy Study. Angewandte Chemie - International Edition, 2011, 50, 10190-10192.	7.2	50
137	Formation of hydroxyl and water layers on MgO films studied with ambient pressure XPS. Surface Science, 2011, 605, 89-94.	0.8	130
138	Oxidation of Pt(111) under Near-Ambient Conditions. Physical Review Letters, 2011, 107, 195502.	2.9	151
139	Vibrational interference effects in x-ray emission of a model water dimer: Implications for the interpretation of the liquid spectrum. Journal of Chemical Physics, 2011, 134, 044513.	1.2	46
140	X-ray Raman scattering provides evidence for interfacial acetonitrile-water dipole interactions in aqueous solutions. Journal of Chemical Physics, 2011, 135, 164509.	1.2	19
141	Theoretical approximations to X-ray absorption spectroscopy of liquid water and ice. Journal of Electron Spectroscopy and Related Phenomena, 2010, 177, 135-157.	0.8	132
142	X-ray absorption spectroscopy and X-ray Raman scattering of water and ice; an experimental view. Journal of Electron Spectroscopy and Related Phenomena, 2010, 177, 99-129.	0.8	158
143	High resolution X-ray emission spectroscopy of water and its assignment based on two structural motifs. Journal of Electron Spectroscopy and Related Phenomena, 2010, 177, 192-205.	0.8	100
144	Chemical bonding of water to metal surfaces studied with core-level spectroscopies. Journal of Electron Spectroscopy and Related Phenomena, 2010, 177, 85-98.	0.8	55

#	Article	IF	CITATIONS
145	Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nature Chemistry, 2010, 2, 454-460.	6.6	2,489
146	Transferring electrons to water. Nature Chemistry, 2010, 2, 800-802.	6.6	5
147	Semiclassical description of nuclear dynamics in x-ray emission of water. Physical Review B, 2010, 82, .	1.1	34
148	Reply to Soper et al.: Fluctuations in water around a bimodal distribution of local hydrogen-bonded structural motifs. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, .	3.3	44
149	Oxygen-oxygen correlations in liquid water: Addressing the discrepancy between diffraction and extended x-ray absorption fine-structure using a novel multiple-data set fitting technique. Journal of Chemical Physics, 2010, 132, 104513.	1.2	37
150	Spectroscopic Identification of a Hydrogen Peroxide-Like Intermediate Formed after Molecular Oxygen Adsorption on Hydrogen Rich Pt(111). ECS Transactions, 2010, 33, 97-103.	0.3	0
151	The role of substrate electrons in the wetting of a metal surface. Journal of Chemical Physics, 2010, 132, 094701.	1.2	39
152	Low O2 dissociation barrier on Pt(111) due to adsorbate–adsorbate interactions. Journal of Chemical Physics, 2010, 133, 224701.	1.2	49
153	Increasing correlation length in bulk supercooled H2O, D2O, and NaCl solution determined from small angle x-ray scattering. Journal of Chemical Physics, 2010, 133, 134504.	1.2	84
154	Direct Interaction of Water Ice with Hydrophobic Methyl-Terminated Si(111). Journal of Physical Chemistry C, 2010, 114, 19004-19008.	1.5	7
155	Water Adsorption on \hat{l} ±-Fe $<$ sub $>$ 2 $<$ /sub $>$ 0 $<$ sub $>$ 3 $<$ /sub $>$ (0001) at near Ambient Conditions. Journal of Physical Chemistry C, 2010, 114, 2256-2266.	1.5	238
156	Chemical Bonding on Metal Surfaces. , 2010, , 253-274.		3
157	Cooperativity in Surface Bonding and Hydrogen Bonding of Water and Hydroxyl at Metal Surfaces. Journal of Physical Chemistry C, 2010, 114, 10240-10248.	1.5	51
158	Peroxide-like intermediate observed at hydrogen rich condition on Pt(111) after interaction with oxygen. Physical Chemistry Chemical Physics, 2010, 12, 5712.	1.3	15
159	Complementarity between high-energy photoelectron and L-edge spectroscopy for probing the electronic structure of 5d transition metal catalysts. Physical Chemistry Chemical Physics, 2010, 12, 5694.	1.3	23
160	Sensitivity of x-ray absorption spectroscopy to hydrogen bond topology. Physical Review B, 2009, 80, .	1.1	37
161	Assessing the electric-field approximation to IR and Raman spectra of dilute HOD in D2O. Journal of Chemical Physics, 2009, 131, 034501.	1.2	11
162	Increased fraction of weakened hydrogen bonds of water in aerosol OT reverse micelles. Journal of Chemical Physics, 2009, 131, 031103.	1,2	19

#	Article	IF	CITATIONS
163	The inhomogeneous structure of water at ambient conditions. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15214-15218.	3.3	526
164	NO ₂ Adsorption on Ag(100) Supported MgO(100) Thin Films: Controlling the Adsorption State with Film Thickness. Journal of Physical Chemistry C, 2009, 113, 7355-7363.	1.5	32
165	On the Range of Water Structure Models Compatible with X-ray and Neutron Diffraction Data. Journal of Physical Chemistry B, 2009, 113, 6246-6255.	1.2	81
166	Water growth on metals and oxides: binding, dissociation and role of hydroxyl groups. Faraday Discussions, 2009, 141, 221-229.	1.6	68
167	Energetics of Câ^'H Bonds Formed at Single-Walled Carbon Nanotubes. Nano Letters, 2009, 9, 1301-1306.	4.5	16
168	Probing the hydrogen-bond network of water via time-resolved soft X-ray spectroscopy. Physical Chemistry Chemical Physics, 2009, 11, 3951.	1.3	71
169	High resolution X-ray emission spectroscopy of liquid water: The observation of two structural motifs. Chemical Physics Letters, 2008, 460, 387-400.	1.2	328
170	Electronic structure effects in liquid water studied by photoelectron spectroscopy and density functional theory. Chemical Physics Letters, 2008, 460, 86-92.	1.2	61
171	Spectroscopic evidence for the formation of 3-D crystallites during isothermal heating of amorphous ice on Pt(111). Surface Science, 2008, 602, 2004-2008.	0.8	15
172	C–H bond formation at the graphite surface studied with core level spectroscopy. Surface Science, 2008, 602, 2575-2580.	0.8	99
173	<i>In situ</i> x-ray photoelectron spectroscopy studies of water on metals and oxides at ambient conditions. Journal of Physics Condensed Matter, 2008, 20, 184025.	0.7	204
174	Autocatalytic Water Dissociation on $Cu(110)$ at Near Ambient Conditions. Journal of the American Chemical Society, 2008, 130, 2793-2797.	6.6	126
175	The structure of mixed H2O–OH monolayer films on Ru(0001). Journal of Chemical Physics, 2008, 129, 154109.	1.2	50
176	Diffraction and IR/Raman data do not prove tetrahedral water. Journal of Chemical Physics, 2008, 129, 084502.	1.2	94
177	Hydrogen Storage in Carbon Nanotubes through the Formation of Stable Câ ⁻ 'H Bonds. Nano Letters, 2008, 8, 162-167.	4.5	186
178	Adsorbate Electronic Structure and Bonding on Metal Surfaces. , 2008, , 57-142.		32
179	Comment on "lsotope and Temperature Effects in Liquid Water Probed by X-Ray Absorption and Resonant X-Ray Emission Spectroscopy― Physical Review Letters, 2008, 100, 249801; author reply 249802.	2.9	40
180	Double Role of Water in the Fuel Cell Oxygen Reduction Reaction. ECS Transactions, 2008, 16, 1385-1394.	0.3	12

#	Article	IF	Citations
181	Nearest-neighbor oxygen distances in liquid water and ice observed by x-ray Raman based extended x-ray absorption fine structure. Journal of Chemical Physics, 2007, 127, 174504.	1.2	118
182	Geometric and electronic structure of methane adsorbed on a Pt surface. Journal of Chemical Physics, 2007, 127, 144702.	1.2	21
183	Isotope effects in liquid water probed by x-ray Raman spectroscopy. Physical Review B, 2007, 76, .	1.1	72
184	Dynamical core-hole screening in the x-ray absorption spectra of hydrogenated carbon nanotubes and graphene. Physical Review B, 2007, 76, .	1.1	19
185	Probing the Electron Delocalization in Liquid Water and Ice at Attosecond Time Scales. Physical Review Letters, 2007, 99, 217406.	2.9	117
186	Bridging the Pressure Gap in Water and Hydroxyl Chemistry on Metal Surfaces:  The Cu(110) Case. Journal of Physical Chemistry C, 2007, 111, 14493-14499.	1.5	68
187	Hydroxyl-Induced Wetting of Metals by Water at Near-Ambient Conditions. Journal of Physical Chemistry C, 2007, 111, 7848-7850.	1.5	138
188	The Nature of Water Nucleation Sites on TiO2(110) Surfaces Revealed by Ambient Pressure X-ray Photoelectron Spectroscopy. Journal of Physical Chemistry C, 2007, 111, 8278-8282.	1.5	374
189	Structure and Bonding of the Waterâ^'Hydroxyl Mixed Phase on Pt(111). Journal of Physical Chemistry C, 2007, 111, 15003-15012.	1.5	117
190	Geometrical characterization of adenine and guanine on $Cu(110)$ by NEXAFS, XPS, and DFT calculation. Surface Science, 2007, 601, 5433-5440.	0.8	67
191	Are recent water models obtained by fitting diffraction data consistent with infrared/Raman and x-ray absorption spectra?. Journal of Chemical Physics, 2006, 125, 244510.	1.2	60
192	Bonding in metal–carbonyls: A comparison with experiment and calculations on adsorbed CO. Computational and Theoretical Chemistry, 2006, 762, 123-132.	1.5	20
193	The local structure of protonated water from x-ray absorption and density functional theory. Journal of Chemical Physics, 2006, 124, 194508.	1.2	49
194	Structure of water adsorbed on the open Cu(110) surface: H-up, H-down, or both?. Chemical Physics Letters, 2006, 429, 415-419.	1.2	82
195	Soft X-ray microscopy and spectroscopy at the molecular environmental science beamline at the Advanced Light Source. Journal of Electron Spectroscopy and Related Phenomena, 2006, 150, 86-104.	0.8	292
196	Physisorption-Induced C-H Bond Elongation in Methane. Physical Review Letters, 2006, 96, 146104.	2.9	34
197	X-ray absorption spectrum of liquid water from molecular dynamics simulations: Asymmetric model. Physical Review B, 2006, 73, .	1,1	88
198	Correlation of hydrogen bond lengths and angles in liquid water based on Compton scattering. Journal of Chemical Physics, 2006, 125, 084504.	1.2	55

#	Article	IF	Citations
199	Auger decay calculations with core-hole excited-state molecular-dynamics simulations of water. Journal of Chemical Physics, 2006, 124, 064307.	1.2	45
200	Molecularly intact and dissociative adsorption of water on clean $Cu(110)$: A comparison with the water/ $Ru(001)$ system. Surface Science, 2005, 585, L183-L189.	0.8	84
201	The electronic structure effect in heterogeneous catalysis. Catalysis Letters, 2005, 100, 111-114.	1.4	349
202	Comment on "Energetics of Hydrogen Bond Network Rearrangements in Liquid Water". Science, 2005, 308, 793a-793a.	6.0	90
203	Spectroscopic characterization of microscopic hydrogen-bonding disparities in supercritical water. Journal of Chemical Physics, 2005, 123, 154503.	1.2	79
204	Ultrafast Core-Hole-Induced Dynamics in Water Probed by X-Ray Emission Spectroscopy. Physical Review Letters, 2005, 94, 227401.	2.9	117
205	The hydrogen bond in ice probed by soft x-ray spectroscopy and density functional theory. Journal of Chemical Physics, 2005, 122, 154505.	1.2	79
206	Half or full core hole in density functional theory X-ray absorption spectrum calculations of water?. Physical Chemistry Chemical Physics, 2005, 7, 2854.	1.3	96
207	X-ray Absorption Spectroscopy Study of the Hydrogen Bond Network in the Bulk Water of Aqueous Solutions. Journal of Physical Chemistry A, 2005, 109, 5995-6002.	1.1	156
208	Role of Water in Electron-Initiated Processes and Radical Chemistry:  Issues and Scientific Advances. Chemical Reviews, 2005, 105, 355-390.	23.0	560
209	X-ray Absorption Spectroscopy Measurements of Liquid Water. Journal of Physical Chemistry B, 2005, 109, 13835-13839.	1.2	120
210	Hydrogenation of Single-Walled Carbon Nanotubes. Physical Review Letters, 2005, 95, 225507.	2.9	241
211	X-ray Absorption Spectroscopy of Liquid Methanol Microjets:Â Bulk Electronic Structure and Hydrogen Bonding Network. Journal of Physical Chemistry B, 2005, 109, 10194-10203.	1.2	74
212	Water Dissociation on Ru(001): An Activated Process. Physical Review Letters, 2004, 93, 196101.	2.9	196
213	Ultrafast Molecular Dissociation of Water in Ice. Physical Review Letters, 2004, 93, 148302.	2.9	71
214	Compton profiles for water and mixed water-neon clusters: A measure of coordination. Physical Review B, 2004, 70, .	1.1	30
215	X-ray absorption spectra of water within a plane-wave Car-Parrinello molecular dynamics framework. Journal of Chemical Physics, 2004, 121, 10065-10075.	1.2	45
216	Experimental and theoretical characterization of the structure of defects at the pyriteFeS2(100)surface. Physical Review B, 2004, 70, .	1.1	62

#	Article	IF	Citations
217	X-ray emission spectroscopy of (23×23)R30°CO/Ru(0001): Comparison to c(2×2)CO/Ni(100) and c(2×2)CO/Cu(100). Journal of Chemical Physics, 2004, 121, 4848-4852.	1.2	20
218	Geometric structure and chemical bonding of acetylene adsorbed on Cu(110). Surface Science, 2004, 565, 206-222.	0.8	24
219	Chemical bonding on surfaces probed by X-ray emission spectroscopy and density functional theory. Surface Science Reports, 2004, 55, 49-167.	3.8	273
220	Ethylene on Cu(110) and Ni(110): electronic structure and bonding derived from X-ray spectroscopy and theory. Surface Science, 2004, 559, 85-99.	0.8	30
221	Surface structure of thin ice films. Chemical Physics Letters, 2004, 395, 161-165.	1.2	66
222	The Structure of the First Coordination Shell in Liquid Water. Science, 2004, 304, 995-999.	6.0	1,287
223	Geometrical characterization of pyrimidine base molecules adsorbed on Cu() surfaces: XPS and NEXAFS studies. Surface Science, 2003, 532-535, 261-266.	0.8	60
224	XPS and XAS investigation of condensed and adsorbed n-octane on a $Cu(110)$ surface. Journal of Electron Spectroscopy and Related Phenomena, 2003, 128, 179-191.	0.8	40
225	Hydrogen bonding between adsorbed deprotonated glycine molecules on Cu(110). Journal of Chemical Physics, 2003, 119, 12577-12585.	1.2	103
226	X-ray fluorescence spectra of metals excited below threshold. Physical Review B, 2003, 68, .	1.1	11
227	Direct Evidence of Orbital Mixing between Water and Solvated Transition-Metal lons:  An Oxygen 1s XAS and DFT Study of Aqueous Systems. Journal of Physical Chemistry A, 2003, 107, 6869-6876.	1.1	67
228	Orbital rehybridization in n-octane adsorbed on Cu(110). Journal of Chemical Physics, 2003, 118, 3782-3789.	1.2	41
229	Bonding of Saturated Hydrocarbons to Metal Surfaces. Physical Review Letters, 2003, 91, 046102.	2.9	60
230	X-ray Raman spectroscopy at the oxygenKedge of water and ice: Implications on local structure models. Physical Review B, 2002, 66, .	1.1	101
231	Structure and Bonding of Water on Pt(111). Physical Review Letters, 2002, 89, 276102.	2.9	512
232	Characterization of hydrogen bond acceptor molecules at the water surface using near-edge x-ray absorption fine-structure spectroscopy and density functional theory. Journal of Physics Condensed Matter, 2002, 14, L221-L226.	0.7	85
233	Spectroscopic probing of local hydrogen-bonding structures in liquid water. Journal of Physics Condensed Matter, 2002, 14, L213-L219.	0.7	262
234	Scanning Tunneling Microscopy and Near Edge X-ray Absorption Fine Structure Studies of Adsorption of Trans-2-butene on Pd(110). Japanese Journal of Applied Physics, 2002, 41, 4911-4915.	0.8	9

#	Article	IF	Citations
235	Applications of core level spectroscopy to adsorbates. Journal of Electron Spectroscopy and Related Phenomena, 2002, 126, 3-42.	0.8	87
236	The interpretation of X-ray absorption spectra of water and ice. Chemical Physics Letters, 2002, 364, 363-370.	1.2	182
237	XPS and XAS study of oxygen coadsorbed with a dispersed phase of K on graphite. Surface Science, 2001, 488, 1-6.	0.8	9
238	Electronic structure effects from hydrogen bonding in the liquid phase and in chemisorption: an integrated theory and experimental effort. Journal of Synchrotron Radiation, 2001, 8, 136-140.	1.0	7
239	Auger Resonant Raman Scattering in Itinerant Electron Systems: Continuum Excitation in Cu. Physical Review Letters, 2001, 88, 027601.	2.9	24
240	Limits to the quantitative analysis of multiatom resonant photoemission: The case of c(2 $ ilde{A}$ -2)O/Ni(100). Physical Review B, 2001, 63, .	1.1	24
241	The electronic structure and surface chemistry of glycine adsorbed on Cu(110). Journal of Chemical Physics, 2000, 112, 5420-5427.	1.2	167
242	Probing chemical bonding in adsorbates using X-ray emission spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2000, 110-111, 15-39.	0.8	43
243	The bonding of simple carboxylic acids on Cu(110). Journal of Chemical Physics, 2000, 112, 8146-8155.	1.2	46
244	How Carbon Monoxide Adsorbs in Different Sites. Physical Review Letters, 2000, 85, 3309-3312.	2.9	157
245	Crystal-field splitting in coadsorbate systems:c(2×2)CO/K/Ni(100). Physical Review B, 2000, 62, 11192-11196.	1.1	24
246	Ground-state interpretation of x-ray emission spectroscopy on adsorbates: CO adsorbed on Cu(100). Physical Review B, 2000, 61, 16229-16240.	1.1	72
247	Observation of short- and long-range hybridization of a buried Cu monolayer in Ni. Physical Review B, 2000, 62, R16239-R16242.	1.1	7
248	The Bonding and Electronic Structure Changes upon Adsorption of Important Functional Groups:Â Glycine on Copper. Journal of Physical Chemistry B, 2000, 104, 11480-11483.	1.2	34
249	Direct Experimental Measurement of Donation/Back-Donation in Unsaturated Hydrocarbon Bonding to Metals. Journal of the American Chemical Society, 2000, 122, 12310-12316.	6.6	52
250	The bonding of CO to metal surfaces. Journal of Chemical Physics, 2000, 112, 1946-1958.	1.2	165
251	Core Electron Spectroscopy of Chromium Hexacarbonyl. A Comparative Theoretical and Experimental Study. Physica Scripta, 1999, 59, 138-146.	1.2	4
252	Angular-dependent resonant-photoemission processes at the2pthresholds in nickel metal. Physical Review B, 1999, 60, 2436-2440.	1.1	10

#	Article	IF	CITATIONS
253	Photoemission study of K on graphite. Physical Review B, 1999, 59, 8292-8304.	1.1	81
254	Resonant soft-x-ray emission spectroscopy of surface adsorbates:â€,â€,Theory, computations, and measurements of ethylene and benzene on Cu(110). Physical Review B, 1999, 59, 5189-5200.	1.1	39
255	Interpretation of x-ray emission spectra: NO adsorbed on Ru(001). Journal of Chemical Physics, 1999, 111, 4704-4713.	1.2	21
256	Ammonia adsorbed on Cu(110): An angle resolved x-ray spectroscopic and ab initio study. Journal of Chemical Physics, 1999, 110, 4880-4890.	1.2	38
257	Resonant processes in the soft X-ray regime. Journal of Electron Spectroscopy and Related Phenomena, 1999, 100, 379-393.	0.8	8
258	Franck–Condon breakdown in core-level photoelectron spectroscopy of chemisorbed CO. Chemical Physics Letters, 1999, 315, 194-200.	1.2	22
259	Nature of the ns-derived states for an isolated alkali atom on a surface. Surface Science, 1999, 429, 309-319.	0.8	22
260	X-ray emission studies of adsorbates. Journal of Electron Spectroscopy and Related Phenomena, 1998, 93, 143-152.	0.8	13
261	The adsorption structure of glycine adsorbed on Cu(110); comparison with formate and. Surface Science, 1998, 407, 221-236.	0.8	200
262	Core level spectroscopy study of N2 adsorbed on (2×2)K/graphite. Surface Science, 1998, 414, 118-130.	0.8	6
263	Electronic structure of benzene on Ni(100) and Cu(110): An x-ray-spectroscopy study. Physical Review B, 1998, 58, 7351-7360.	1.1	66
264	New final state in the autoionization decay detected for N2/($2\tilde{A}$ –2)K/graphite: Relevance for the affinity level of NO on a K monolayer. Journal of Chemical Physics, 1998, 109, 1209-1211.	1.2	4
265	Resonant Auger spectroscopy at theL2,3shake-up thresholds as a probe of electron correlation effects in nickel. Physical Review B, 1998, 58, 3677-3681.	1.1	26
266	Beyond the Chemical Shift: Vibrationally Resolved Core-Level Photoelectron Spectra of Adsorbed CO. Physical Review Letters, 1998, 81, 1730-1733.	2.9	66
267	Local aspects of the adsorbate-substrate chemical bond in N/Cu(100) and O/Cu(100). Physical Review B, 1998, 58, 1655-1664.	1.1	43
268	Nature of the surface chemical bond in N2 on Ni (100) studied by x-ray-emission spectroscopy and ab initiocal culations. Physical Review B, 1998, 57, 9274-9284.	1.1	61
269	Bonding of an Isolated K atom to a Surface: Experiment and Theory. Physical Review Letters, 1997, 78, 4994-4997.	2.9	52
270	An Atom-Specific Look at the Surface Chemical Bond. Physical Review Letters, 1997, 78, 2847-2850.	2.9	108

#	Article	IF	Citations
271	Resonant Photoemission at the2pEdges of Ni: Resonant Raman and Interference Effects. Physical Review Letters, 1997, 78, 967-970.	2.9	114
272	A photoemission and XAS study of oxygen coadsorbed with a (2 $\tilde{A}-2$) layer of K on graphite. Surface Science, 1997, 383, 149-161.	0.8	16
273	Local probing of the surface chemical bond using X-ray emission spectroscopy. Applied Physics A: Materials Science and Processing, 1997, 65, 147-154.	1.1	61
274	Coherent and incoherent processes in resonant photoemission. Applied Physics A: Materials Science and Processing, 1997, 65, 159-167.	1.1	49
275	Manifestation of the paramagnetic splitting of physisorbed O2 in core and valence spectroscopies. Surface Science, 1996, 352-354, 511-517.	0.8	3
276	One-Step and Two-Step Description of Deexcitation Processes in Weakly Interacting Systems. Physical Review Letters, 1996, 76, 1380-1383.	2.9	96
277	Determination of the electronic density of states near buried interfaces: Application to Co/Cu multilayers. Physical Review B, 1996, 54, 2917-2921.	1.1	32
278	Doping dependence of the O1score-level photoemission in Bi-Sr-Ca-Cu-O superconductors. Physical Review B, 1996, 53, R14753-R14756.	1.1	13
279	L-edge x-ray absorption in fcc and bcc Cu metal: Comparison of experimental and first-principles theoretical results. Physical Review B, 1996, 53, 16067-16073.	1.1	64
280	Autoionization as a tool for studying adsorbed atoms and molecules. Journal of Electron Spectroscopy and Related Phenomena, 1995, 72, 1-8.	0.8	18
281	On the origin of core-level binding energy shifts. Journal of Electron Spectroscopy and Related Phenomena, 1995, 75, 209-223.	0.8	94
282	Initial and final state rules in X-ray spectroscopies of adsorbates. Physica B: Condensed Matter, 1995, 208-209, 19-22.	1.3	38
283	Cluster-configuration-interaction analysis of Cu 2pand valence-band photoemission measurements onBi2Sr2CaCu2O8andBi2Sr2CuO6superconductors. Physical Review B, 1995, 51, 1213-1222.	1.1	4
284	Direct probing of the adsorbate-substrate chemical bond using angle-dependent x-ray-emission spectroscopy. Physical Review B, 1995, 51, 10244-10247.	1.1	50
285	Physisorbed, chemisorbed and dissociated O2 on Pt(111) studied by different core level spectroscopy methods. Surface Science, 1995, 342, 119-133.	0.8	277
286	π*andσ*Excitons in C1sAbsorption of Graphite. Physical Review Letters, 1995, 74, 614-617.	2.9	224
287	The inner valence region of CO adsorbed on Pd(100). Journal of Physics Condensed Matter, 1994, 6, 10659-10668.	0.7	6
288	Vibrationally selective autoionization of physisorbed molecular nitrogen. Physical Review B, 1994, 49, 2001-2004.	1.1	8

#	Article	lF	Citations
289	Imagelike screening mechanisms for weakly adsorbed atoms. Physical Review Letters, 1994, 72, 2604-2607.	2.9	3
290	Vibrationally and Orientationally Selective Probing of Intramolecular Potentials in Physisorbed Molecules. Physical Review Letters, 1994, 73, 2551-2554.	2.9	8
291	Resonant Auger studies of CO adsorbed on two groups ofdtransition metals. Physical Review B, 1994, 49, 10136-10153.	1.1	48
292	Magnetic dichroism inL2,3emission of Fe, Co, and Ni following energy-dependent excitation with circularly polarized x rays. Physical Review B, 1994, 50, 16758-16761.	1.1	47
293	C1s and O1s gas phase shake-up spectra from Mo(CO)6. Chemical Physics, 1994, 179, 303-312.	0.9	15
294	A very high resolution electron spectrometer. Journal of Electron Spectroscopy and Related Phenomena, 1994, 70, 117-128.	0.8	250
295	Overlayer structure from adsorbate and substrate core level binding energy shifts: CO, CCH3 and O on Pt(111). Surface Science, 1994, 315, L983-L989.	0.8	167
296	Photoemission, autoionization, and x-ray-absorption spectroscopy of ultrathin-filmC60on Au(110). Physical Review B, 1994, 49, 10717-10725.	1.1	191
297	On the growth of Ni on Cu(100). Surface Science, 1994, 302, 64-72.	0.8	30
298	Local probing of adsorbate electronic structure using soft X-ray emission; atomic nitrogen on Ni(100) and Cu(100). Surface Science, 1994, 304, L451-L455.	0.8	32
299	CO-induced reversible surface to bulk transformation of carbidic carbon on Ni(100). Surface Science, 1994, 310, L583-L588.	0.8	26
300	Chemisorption of CO on Cu(100), Ag(110) and Au(110). Surface Science, 1994, 310, 16-26.	0.8	54
301	Shake-up and shake-off structures in core level photoemission spectra from adsorbates. Journal of Electron Spectroscopy and Related Phenomena, 1993, 62, 73-93.	0.8	81
302	X-ray and UV photoemission studies of mono-, bi- and multilayers of physisorbed molecules: O2 and N2 on graphite. Surface Science, 1993, 295, 1-12.	0.8	71
303	Distinction between different adsorption states: Chemisorbed and physisorbed Ar. Surface Science, 1993, 293, L835-L840.	0.8	11
304	Core level spectroscopy of physisorbed molecules on graphite. Surface Science, 1993, 287-288, 758-769.	0.8	38
305	Electronic structure of atomic oxygen adsorbed on Ni(100) and Cu(100) studied by soft-x-ray emission and photoelectron spectroscopies. Physical Review B, 1993, 47, 16464-16470.	1.1	31
306	C1sshakeup spectrum of C60: Global charge-transfer satellites and their relation to the x-ray threshold singularities in macroscopic systems. Physical Review B, 1993, 48, 14629-14637.	1.1	59

#	Article	IF	CITATIONS
307	Electronic structure of atomic adsorbates from x-ray-absorption spectroscopy: Threshold effects and higher excited states. Physical Review B, 1993, 48, 2632-2641.	1.1	40
308	Autoionization as a tool for interpretation of x-ray absorption spectra:N2/Ni(100). Physical Review Letters, 1993, 70, 2000-2003.	2.9	49
309	Higher excited states in x-ray-absorption spectra of adsorbates. Physical Review B, 1993, 47, 2308-2319.	1.1	35
310	Core-hole decay studies of O/Ni(100)c(2×2). Physical Review B, 1993, 48, 11347-11351.	1.1	3
311	Observation of CO-metal hybridization in Ni 2px-ray-absorption and -photoemission spectra. Physical Review B, 1993, 47, 16052-16055.	1.1	8
312	Adsorption-site-dependent x-ray-absorption spectroscopy: CO/H,H2/Ni(100). Physical Review B, 1993, 47, 1699-1702.	1.1	25
313	Auger and photoelectron study of the HubbardUinC60,K3C60, andK6C60. Physical Review B, 1993, 48, 18296-18299.	1.1	83
314	Final-state effects in surface core-level shifts. Physical Review B, 1993, 47, 13590-13593.	1.1	12
315	Autoionization of Adsorbates. Physica Scripta, 1992, T41, 217-225.	1.2	35
316	2Ï€-resonance broadening in x-ray-absorption spectroscopy of adsorbed CO. Physical Review B, 1992, 46, 10353-10365.	1.1	63
317	Orientation-dependent final-state effects in photoelectron spectra of physisorbed molecules. Physical Review Letters, 1992, 68, 982-985.	2.9	42
318	Soft x-ray emission studies of adsorbates. Physical Review Letters, 1992, 69, 812-815.	2.9	59
319	Determination of time scales for charge-transfer screening in physisorbed molecules. Physical Review Letters, 1992, 68, 1892-1895.	2.9	188
320	High resolution xâ€ray photoelectron spectroscopy study of Cr(CO)6in the gas phase. Journal of Chemical Physics, 1992, 96, 8770-8780.	1.2	32
321	Studies of the COî—,H,H2î—,Ni(100) system using photoelectron spectroscopy. Surface Science, 1992, 273, 47-60.	0.8	49
322	Orientation of a molecular precursor: a NEXAFS study of O2/Ag(110). Surface Science, 1992, 278, 239-245.	0.8	70
323	NEXAFS study of molecular orientation in physisorbed oxygen on graphite. Surface Science, 1992, 269-270, 432-437.	0.8	28
324	Photoabsorption and the unoccupied partial density of states of chemisorbed molecules. Chemical Physics Letters, 1992, 197, 12-16.	1,2	87

#	Article	lF	CITATIONS
325	Adsorption of NO on Ni(100). Surface Science, 1991, 251-252, 971-978.	0.8	23
326	Lying down NO on Ni(100). Surface Science Letters, 1991, 241, L1-L5.	0.1	2
327	X-ray excited photoelectron spectra of free molecules containing oxygen. Journal of Electron Spectroscopy and Related Phenomena, 1991, 56, 117-164.	0.8	57
328	Core-level shake-up spectra from ordered C, N and O overlayers on Ni(100). Chemical Physics Letters, 1991, 182, 147-151.	1.2	15
329	Electronic structure of adsorbates from core-level shake-up spectra:N2on Ni(100). Physical Review Letters, 1991, 67, 1015-1018.	2.9	68
330	Inner valence satellite structure in high resolution X-ray excited photoelectron spectra of N2and CO. Physica Scripta, 1991, 44, 184-190.	1.2	57
331	Vibrational motion and geometrical structure in adsorbed CO studied by core level photoelectron spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 1990, 54-55, 601-613.	0.8	74
332	Core-Level line shapes of adsorbates: effects of electronic and vibrational excitations. Journal of Electron Spectroscopy and Related Phenomena, 1990, 52, 1-46.	0.8	73
333	Core level line widths of metallic systems. Journal of Electron Spectroscopy and Related Phenomena, 1990, 52, 47-48.	0.8	11
334	Resonant photoemission at core-level shake-up thresholds: Valence-band satellites in nickel. Physical Review B, 1990, 41, 10408-10412.	1.1	35
335	Two-dimensional intermetallic Yb-Ni compounds. Surface Science, 1990, 232, 63-72.	0.8	6
336	Valence changes and core-level shifts of Sm adsorbed on Mo(110). Physical Review B, 1989, 40, 5916-5923.	1.1	61
337	Vibrational broadening in core-level spectra from adsorbates: C, N and O on Ni(100). Physical Review Letters, 1989, 63, 1483-1486.	2.9	35
338	Valence-transition-induced 5×5 surface reconstruction of Sm(0001). Physical Review Letters, 1989, 63, 187-190.	2.9	57
339	Multielectron excitations in high-energy photoelectron spectra of CO adsorbed on Ni(100). Physical Review B, 1989, 40, 10249-10261.	1.1	89
340	Measurement of metal-metal adhesion and interface segregation energies by core-level photoelectron spectroscopy: Al and Si on Mo(110). Journal of Physics Condensed Matter, 1989, 1, 7309-7313.	0.7	10
341	Two-dimensional inter-metallic compound formation: Yb-Ni/Mo(110). Journal of Physics Condensed Matter, 1989, 1, SB271-SB272.	0.7	1
342	Vibrational effects and site dependent shifts in core level spectra from adsorbates: CO/Ni(100). Solid State Communications, 1989, 70, 923-926.	0.9	33

#	Article	IF	Citations
343	XPS and TSD results on the adsorption of CO on the Yb/Ni(100) system. Surface Science, 1989, 217, 127-139.	0.8	1
344	Vibrational effects in core level spectra from adsorbates. Surface Science, 1989, 211-212, 303-313.	0.8	16
345	Coverage dependent core level shifts for electropositive metals adsorbed on metals; Yb on Mo(110). Surface Science, 1989, 211-212, 470-480.	0.8	32
346	Adsorption and compound formation of Yb on Ni(100). Surface Science, 1988, 202, 183-203.	0.8	36
347	Experimental and INDO/CI calculated gas phase C1s shakeâ€up spectra of C6H6, C6H5OH, and C6H5CH2OH. Journal of Chemical Physics, 1988, 88, 2630-2636.	1.2	44
348	Quantitative studies of metal-metal adhesion and interface segregation energies using photoelectron spectroscopy. Physical Review Letters, 1988, 60, 1731-1734.	2.9	58
349	Core-level binding-energy shifts during metal adsorption and compound formation: Yb/Ni(100). Physical Review B, 1988, 38, 10357-10370.	1.1	71
350	Heterogenous mixed-valence and compound formation in ordered Yb/Ni(100) overlayers. Physical Review B, 1987, 36, 9308-9311.	1.1	26
351	Some structural aspects of the Yb/Ni(100) interface. Surface Science, 1987, 189-190, 399-404.	0.8	25
352	Growth and properties of Cu on Ni(100). Surface Science, 1985, 152-153, 247-253.	0.8	26
353	Surface core level shifts and energies of segregation in La and Yb systems. Surface Science, 1985, 162, 51-58.	0.8	19
354	Direct Evidence of Subsurface Oxygen Formation in Oxideâ€Derived CuÂby Xâ€ray Photoelectron Spectroscopy. Angewandte Chemie, 0, , .	1.6	1
355	<i>Operando</i> X-Ray Photoelectron Spectroscopy for High-Pressure Catalysis Research Using the POLARIS Endstation. Synchrotron Radiation News, 0, , 1-8.	0.2	3
356	Concluding remarks: Photoelectron spectroscopy and the future of surface analysis. Faraday Discussions, 0, , .	1.6	1