List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8123282/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells. Energy and Environmental Science, 2015, 8, 1160-1189.	30.8	725
2	Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model. Energy and Environmental Science, 2020, 13, 635-645.	30.8	636
3	Heterojunction Modification for Highly Efficient Organic–Inorganic Perovskite Solar Cells. ACS Nano, 2014, 8, 12701-12709.	14.6	614
4	New Phase for Organic Solar Cell Research: Emergence of Y-Series Electron Acceptors and Their Perspectives. ACS Energy Letters, 2020, 5, 1554-1567.	17.4	491
5	Functional fullerenes for organic photovoltaics. Journal of Materials Chemistry, 2012, 22, 4161.	6.7	478
6	The role of spin in the kinetic control of recombination in organic photovoltaics. Nature, 2013, 500, 435-439.	27.8	460
7	Dopant-Free Hole-Transporting Material with a <i>C</i> _{3<i>h</i>} Symmetrical Truxene Core for Highly Efficient Perovskite Solar Cells. Journal of the American Chemical Society, 2016, 138, 2528-2531.	13.7	446
8	Integrated Molecular, Interfacial, and Device Engineering towards Highâ€Performance Nonâ€Fullerene Based Organic Solar Cells. Advanced Materials, 2014, 26, 5708-5714.	21.0	400
9	An Unfused oreâ€Based Nonfullerene Acceptor Enables Highâ€Efficiency Organic Solar Cells with Excellent Morphological Stability at High Temperatures. Advanced Materials, 2018, 30, 1705208.	21.0	380
10	Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite. Journal of Materials Chemistry A, 2017, 5, 11462-11482.	10.3	378
11	Highly Efficient Fullerene-Free Organic Solar Cells Operate at Near Zero Highest Occupied Molecular Orbital Offsets. Journal of the American Chemical Society, 2019, 141, 3073-3082.	13.7	362
12	Simple non-fused electron acceptors for efficient and stable organic solar cells. Nature Communications, 2019, 10, 2152.	12.8	348
13	A spirobifluorene and diketopyrrolopyrrole moieties based non-fullerene acceptor for efficient and thermally stable polymer solar cells with high open-circuit voltage. Energy and Environmental Science, 2016, 9, 604-610.	30.8	347
14	Improved Charge Transport and Absorption Coefficient in Indacenodithieno[3,2â€b]thiopheneâ€based Ladderâ€Type Polymer Leading to Highly Efficient Polymer Solar Cells. Advanced Materials, 2012, 24, 6356-6361.	21.0	343
15	C ₆₀ as an Efficient n-Type Compact Layer in Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 2399-2405.	4.6	324
16	Highly Efficient Organic Solar Cells with Improved Vertical Donor–Acceptor Compositional Gradient Via an Inverted Offâ€Center Spinning Method. Advanced Materials, 2016, 28, 967-974.	21.0	256
17	Asymmetric Electron Acceptors for Highâ€Efficiency and Lowâ€Energyâ€Loss Organic Photovoltaics. Advanced Materials, 2020, 32, e2001160.	21.0	246
18	Doping of Fullerenes via Anionâ€Induced Electron Transfer and Its Implication for Surfactant Facilitated High Performance Polymer Solar Cells. Advanced Materials, 2013, 25, 4425-4430.	21.0	244

#	Article	IF	CITATIONS
19	Rigidifying Nonplanar Perylene Diimides by Ring Fusion Toward Geometryâ€Tunable Acceptors for Highâ€Performance Fullereneâ€Free Solar Cells. Advanced Materials, 2016, 28, 951-958.	21.0	238
20	Efficient Organic Solar Cells with Nonâ€Fullerene Acceptors. Small, 2017, 13, 1701120.	10.0	216
21	Suppressed Charge Recombination in Inverted Organic Photovoltaics via Enhanced Charge Extraction by Using a Conductive Fullerene Electron Transport Layer. Advanced Materials, 2014, 26, 6262-6267.	21.0	206
22	Molecular Engineered Holeâ€Extraction Materials to Enable Dopantâ€Free, Efficient pâ€iâ€n Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700012.	19.5	195
23	Highly Efficient Organic Solar Cells Based on S,N-Heteroacene Non-Fullerene Acceptors. Chemistry of Materials, 2018, 30, 5429-5434.	6.7	194
24	Enhanced Open ircuit Voltage in High Performance Polymer/Fullerene Bulkâ€Heterojunction Solar Cells by Cathode Modification with a C ₆₀ Surfactant. Advanced Energy Materials, 2012, 2, 82-86.	19.5	185
25	Interfacial Engineering of Ultrathin Metal Film Transparent Electrode for Flexible Organic Photovoltaic Cells. Advanced Materials, 2014, 26, 3618-3623.	21.0	178
26	Simple Nonâ€Fused Electron Acceptors Leading to Efficient Organic Photovoltaics. Angewandte Chemie - International Edition, 2021, 60, 12964-12970.	13.8	172
27	High-performance and eco-friendly semitransparent organic solar cells for greenhouse applications. Joule, 2021, 5, 945-957.	24.0	171
28	Non-halogenated solvents for environmentally friendly processing of high-performance bulk-heterojunction polymer solar cells. Energy and Environmental Science, 2013, 6, 3241.	30.8	168
29	Effective interfacial layer to enhance efficiency of polymer solar cells via solution-processed fullerene-surfactants. Journal of Materials Chemistry, 2012, 22, 8574.	6.7	159
30	Regioselective Synthesis of 1,4-Di(organo)[60]fullerenes through DMF-assisted Monoaddition of Silylmethyl Grignard Reagents and Subsequent Alkylation Reaction. Journal of the American Chemical Society, 2008, 130, 15429-15436.	13.7	156
31	10.4% Power Conversion Efficiency of ITOâ€Free Organic Photovoltaics Through Enhanced Light Trapping Configuration. Advanced Energy Materials, 2015, 5, 1500406.	19.5	154
32	Toward Highâ€Performance Semiâ€Transparent Polymer Solar Cells: Optimization of Ultraâ€Thin Light Absorbing Layer and Transparent Cathode Architecture. Advanced Energy Materials, 2013, 3, 417-423.	19.5	141
33	Highâ€Performance Semitransparent Organic Solar Cells with Excellent Infrared Reflection and Seeâ€Through Functions. Advanced Materials, 2020, 32, e2001621.	21.0	140
34	Solutionâ€Processible Highly Conducting Fullerenes. Advanced Materials, 2013, 25, 2457-2461.	21.0	130
35	Thiocyanate assisted performance enhancement of formamidinium based planar perovskite solar cells through a single one-step solution process. Journal of Materials Chemistry A, 2016, 4, 9430-9436. 	10.3	130
36	Non-fullerene acceptor organic photovoltaics with intrinsic operational lifetimes over 30 years. Nature Communications, 2021, 12, 5419.	12.8	128

#	Article	IF	CITATIONS
37	Optical Design of Transparent Thin Metal Electrodes to Enhance Inâ€Coupling and Trapping of Light in Flexible Polymer Solar Cells. Advanced Materials, 2012, 24, 6362-6367.	21.0	125
38	Highly Efficient Organic Solar Cells Consisting of Double Bulk Heterojunction Layers. Advanced Materials, 2017, 29, 1606729.	21.0	124
39	Revealing the effects of molecular packing on the performances of polymer solar cells based on A–D–C–D–A type non-fullerene acceptors. Journal of Materials Chemistry A, 2018, 6, 12132-12141.	10.3	119
40	Highâ€Performance Thickness Insensitive Perovskite Solar Cells with Enhanced Moisture Stability. Advanced Energy Materials, 2018, 8, 1800438.	19.5	118
41	A Scalable Synthesis of Methano[60]fullerene and Congeners by the Oxidative Cyclopropanation Reaction of Silylmethylfullerene. Journal of the American Chemical Society, 2011, 133, 8086-8089.	13.7	117
42	Highâ€Efficiency Polymer Solar Cells Achieved by Doping Plasmonic Metallic Nanoparticles into Dual Charge Selecting Interfacial Layers to Enhance Light Trapping. Advanced Energy Materials, 2013, 3, 666-673.	19.5	116
43	Nearâ€Infrared Electron Acceptors with Fluorinated Regioisomeric Backbone for Highly Efficient Polymer Solar Cells. Advanced Materials, 2018, 30, e1803769.	21.0	116
44	Management of perovskite intermediates for highly efficient inverted planar heterojunction perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 3193-3202.	10.3	113
45	Molecular electron acceptors for efficient fullerene-free organic solar cells. Physical Chemistry Chemical Physics, 2017, 19, 3440-3458.	2.8	112
46	A Versatile Fluoroâ€Containing Lowâ€Bandgap Polymer for Efficient Semitransparent and Tandem Polymer Solar Cells. Advanced Functional Materials, 2013, 23, 5084-5090.	14.9	110
47	A simple perylene diimide derivative with a highly twisted geometry as an electron acceptor for efficient organic solar cells. Journal of Materials Chemistry A, 2016, 4, 10659-10665.	10.3	110
48	Enhanced Light Utilization in Semitransparent Organic Photovoltaics Using an Optical Outcoupling Architecture. Advanced Materials, 2019, 31, e1903173.	21.0	105
49	Nonfullerene Tandem Organic Solar Cells with High Openâ€Circuit Voltage of 1.97 V. Advanced Materials, 2016, 28, 9729-9734.	21.0	104
50	A non-fullerene acceptor with a fully fused backbone for efficient polymer solar cells with a high open-circuit voltage. Journal of Materials Chemistry A, 2016, 4, 14983-14987.	10.3	97
51	Molecular insights of exceptionally photostable electron acceptors for organic photovoltaics. Nature Communications, 2021, 12, 3049.	12.8	97
52	Side-Chain Effect on Cyclopentadithiophene/Fluorobenzothiadiazole-Based Low Band Gap Polymers and Their Applications for Polymer Solar Cells. Macromolecules, 2013, 46, 5497-5503.	4.8	94
53	A Nearâ€Infrared Photoactive Morphology Modifier Leads to Significant Current Improvement and Energy Loss Mitigation for Ternary Organic Solar Cells. Advanced Science, 2018, 5, 1800755.	11.2	93
54	Semitransparent Organic Solar Cells with Vivid Colors. ACS Energy Letters, 2020, 5, 3115-3123.	17.4	93

CHANG-ZHI LI

#	Article	IF	CITATIONS
55	Near-Infrared Electron Acceptors with Unfused Architecture for Efficient Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 16700-16706.	8.0	93
56	Highâ€Performance Organic Solar Cells from Nonâ€Halogenated Solvents. Advanced Functional Materials, 2022, 32, 2107827.	14.9	92
57	Facile synthesis of a 56ï€-electron 1,2-dihydromethano-[60]PCBM and its application for thermally stable polymer solar cells. Chemical Communications, 2011, 47, 10082.	4.1	89
58	Microcavityâ€Enhanced Lightâ€Trapping for Highly Efficient Organic Parallel Tandem Solar Cells. Advanced Materials, 2014, 26, 6778-6784.	21.0	89
59	Influence of Regio- and Chemoselectivity on the Properties of Fluoro-Substituted Thienothiophene and Benzodithiophene Copolymers. Journal of the American Chemical Society, 2015, 137, 7616-7619.	13.7	89
60	Tuning terminal aromatics of electron acceptors to achieve high-efficiency organic solar cells. Journal of Materials Chemistry A, 2019, 7, 27632-27639.	10.3	86
61	Energy-level modulation of non-fullerene acceptors to achieve high-efficiency polymer solar cells at a diminished energy offset. Journal of Materials Chemistry A, 2017, 5, 9649-9654.	10.3	83
62	A Tetraperylene Diimides Based 3D Nonfullerene Acceptor for Efficient Organic Photovoltaics. Advanced Science, 2015, 2, 1500014.	11.2	79
63	A non-fullerene electron acceptor modified by thiophene-2-carbonitrile for solution-processed organic solar cells. Journal of Materials Chemistry A, 2016, 4, 3777-3783.	10.3	77
64	Nearâ€Infrared Nonfullerene Acceptors Based on Benzobis(thiazole) Unit for Efficient Organic Solar Cells with Low Energy Loss. Small Methods, 2019, 3, 1900531.	8.6	76
65	A Reversible Structural Phase Transition by Electrochemically-Driven Ion Injection into a Conjugated Polymer. Journal of the American Chemical Society, 2020, 142, 7434-7442.	13.7	74
66	Highly Efficient Polymer Tandem Cells and Semitransparent Cells for Solar Energy. Advanced Energy Materials, 2014, 4, 1301645.	19.5	71
67	Fullerene Active Layers for n-Type Organic Electrochemical Transistors. ACS Applied Materials & Interfaces, 2019, 11, 28138-28144.	8.0	70
68	Mitigating the Lead Leakage of High-Performance Perovskite Solar Cells via In Situ Polymerized Networks. ACS Energy Letters, 2021, 6, 3443-3449.	17.4	67
69	Boosting Organic–Metal Oxide Heterojunction via Conjugated Small Molecules for Efficient and Stable Nonfullerene Polymer Solar Cells. Advanced Energy Materials, 2019, 9, 1900887.	19.5	62
70	Polymer Triplet Energy Levels Need Not Limit Photocurrent Collection in Organic Solar Cells. Journal of the American Chemical Society, 2012, 134, 19661-19668.	13.7	61
71	Non-fullerene Acceptors with a Thieno[3,4-c]pyrrole-4,6-dione (TPD) Core for Efficient Organic Solar Cells. Chinese Journal of Polymer Science (English Edition), 2019, 37, 1005-1014.	3.8	61
72	Electron acceptors with varied linkages between perylene diimide and benzotrithiophene for efficient fullerene-free solar cells. Journal of Materials Chemistry A, 2017, 5, 9396-9401.	10.3	60

#	Article	IF	CITATIONS
73	Achieving efficient organic solar cells and broadband photodetectors via simple compositional tuning of ternary blends. Nano Energy, 2019, 63, 103807.	16.0	59
74	A Simple Electron Acceptor with Unfused Backbone for Polymer Solar Cells. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2019, 35, 394-400.	4.9	59
75	Enhanced Charge Transfer between Fullerene and Non-Fullerene Acceptors Enables Highly Efficient Ternary Organic Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 42444-42452.	8.0	58
76	Coldâ€Aging and Solvent Vapor Mediated Aggregation Control toward 18% Efficiency Binary Organic Solar Cells. Advanced Energy Materials, 2021, 11, 2102000.	19.5	57
77	Highly efficient prismatic perovskite solar cells. Energy and Environmental Science, 2019, 12, 929-937.	30.8	54
78	Highâ€Performance Semiâ€Transparent Organic Photovoltaic Devices via Improving Absorbing Selectivity. Advanced Energy Materials, 2021, 11, 2003408.	19.5	54
79	Enhanced intramolecular charge transfer of unfused electron acceptors for efficient organic solar cells. Materials Chemistry Frontiers, 2019, 3, 513-519.	5.9	53
80	Perovskite/Organic Bulkâ€Heterojunction Integrated Ultrasensitive Broadband Photodetectors with High Nearâ€Infrared External Quantum Efficiency over 70%. Small, 2018, 14, e1802349.	10.0	52
81	High-performance see-through power windows. Energy and Environmental Science, 2022, 15, 2629-2637.	30.8	51
82	Boosting Infrared Light Harvesting by Molecular Functionalization of Metal Oxide/Polymer Interfaces in Efficient Hybrid Solar Cells. Advanced Functional Materials, 2012, 22, 2160-2166.	14.9	49
83	Boosting Organic Photovoltaic Performance Over 11% Efficiency With Photoconductive Fullerene Interfacial Modifier. Solar Rrl, 2017, 1, 1600008.	5.8	49
84	Near infrared electron acceptors with a photoresponse beyond 1000 nm for highly efficient organic solar cells. Journal of Materials Chemistry A, 2020, 8, 18154-18161.	10.3	49
85	Luminescent Bow-Tie-Shaped Decaaryl[60]fullerene Mesogens. Journal of the American Chemical Society, 2009, 131, 17058-17059.	13.7	48
86	Evaluation of structure–property relationships of solution-processible fullerene acceptors and their n-channel field-effect transistor performance. Journal of Materials Chemistry, 2012, 22, 14976.	6.7	48
87	Face-to-face C6F5–[60]fullerene interaction for ordering fullerene molecules and application to thin-film organic photovoltaics. Chemical Communications, 2010, 46, 8582.	4.1	47
88	Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2020. Chinese Chemical Letters, 2022, 33, 1650-1658.	9.0	47
89	In situ doping and crosslinking of fullerenes to form efficient and robust electron-transporting layers for polymer solar cells. Energy and Environmental Science, 2014, 7, 638-643.	30.8	46
90	Enhancement of intra- and inter-molecular π-conjugated effects for a non-fullerene acceptor to achieve high-efficiency organic solar cells with an extended photoresponse range and optimized morphology. Materials Chemistry Frontiers, 2018, 2, 2006-2012.	5.9	46

#	Article	IF	CITATIONS
91	Modulate Organicâ€Metal Oxide Heterojunction via [1,6] Azafulleroid for Highly Efficient Organic Solar Cells. Advanced Materials, 2016, 28, 7269-7275.	21.0	45
92	Manganese(iii) acetate-mediated free radical reactions of [60]fullerene with β-dicarbonyl compounds. Organic and Biomolecular Chemistry, 2004, 2, 3464-3469.	2.8	43
93	Controlled crystallization of CH3NH3PbI3 films for perovskite solar cells by various PbI2(X) complexes. Solar Energy Materials and Solar Cells, 2016, 155, 331-340.	6.2	43
94	Simple Near-Infrared Electron Acceptors for Efficient Photovoltaics and Sensitive Photodetectors. ACS Applied Materials & Interfaces, 2020, 12, 39515-39523.	8.0	43
95	Conjugated Polymers for Photon-to-Electron and Photon-to-Fuel Conversions. ACS Applied Polymer Materials, 2021, 3, 60-92.	4.4	43
96	Open-Circuit Voltage Losses in Selenium-Substituted Organic Photovoltaic Devices from Increased Density of Charge-Transfer States. Chemistry of Materials, 2015, 27, 6583-6591.	6.7	42
97	Octupole-like Supramolecular Aggregates of Conical Iron Fullerene Complexes into a Three-Dimensional Liquid Crystalline Lattice. Journal of the American Chemical Society, 2010, 132, 15514-15515.	13.7	41
98	Highâ€Efficiency ITOâ€Free Organic Photovoltaics with Superior Flexibility and Upscalability. Advanced Materials, 2022, 34, e2200044.	21.0	41
99	Strong Stacking between Fâ‹â‹AN Hydrogenâ€Bonded Foldamers and Fullerenes: Formation of Supramolecular Nano Networks. Chemistry - A European Journal, 2007, 13, 9990-9998.	3.3	40
100	The effect of thieno[3,2-b]thiophene on the absorption, charge mobility and photovoltaic performance of diketopyrrolopyrrole-based low bandgap conjugated polymers. Journal of Materials Chemistry C, 2013, 1, 7526.	5.5	38
101	Conductive fullerene surfactants <i>via</i> anion doping as cathode interlayers for efficient organic and perovskite solar cells. Organic Chemistry Frontiers, 2018, 5, 2845-2851.	4.5	38
102	Unravelling the Mechanism of Ionic Fullerene Passivation for Efficient and Stable Methylammonium-Free Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 2015-2022.	17.4	38
103	Highâ€Performance Organic Solar Modules via Bilayerâ€Mergedâ€Annealing Assisted Blade Coating. Advanced Materials, 2022, 34, e2110569.	21.0	38
104	F··Ĥâ^'N and MeO···Hâ^'N Hydrogen-Bonding in the Solid States of Aromatic Amides and Hydrazides: Comparison Study. Crystal Growth and Design, 2007, 7, 1490-1496.	А _{3.0}	37
105	Doping Versatile n-Type Organic Semiconductors via Room Temperature Solution-Processable Anionic Dopants. ACS Applied Materials & Interfaces, 2017, 9, 1136-1144.	8.0	35
106	Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2021. Chinese Chemical Letters, 2023, 34, 107592.	9.0	35
107	Three-dimensional molecular donors combined with polymeric acceptors for high performance fullerene-free organic photovoltaic devices. Journal of Materials Chemistry A, 2015, 3, 22162-22169.	10.3	33
108	Achieving high-performance thick-film perovskite solar cells with electron transporting Bingel fullerenes. Journal of Materials Chemistry A, 2018, 6, 15495-15503.	10.3	32

#	Article	IF	CITATIONS
109	Multifunctional semitransparent organic solar cells with excellent infrared photon rejection. Chinese Chemical Letters, 2020, 31, 1608-1611.	9.0	31
110	Highly efficient ITO-free organic solar cells with a column-patterned microcavity. Energy and Environmental Science, 2021, 14, 3010-3018.	30.8	29
111	Combining Fusedâ€Ring and Unfusedâ€Core Electron Acceptors Enables Efficient Ternary Organic Solar Cells with Enhanced Fill Factor and Broad Compositional Tolerance. Solar Rrl, 2019, 3, 1900317.	5.8	28
112	Enhancing the Photovoltaic Performance and Moisture Stability of Perovskite Solar Cells <i>Via</i> Polyfluoroalkylated Imidazolium Additives. ACS Applied Materials & Interfaces, 2021, 13, 4553-4559.	8.0	28
113	A selenophene-containing near-infrared unfused acceptor for efficient organic solar cells. Chemical Engineering Journal, 2022, 429, 132298.	12.7	28
114	A non-fullerene acceptor enables efficient P3HT-based organic solar cells with small voltage loss and thickness insensitivity. Chinese Chemical Letters, 2019, 30, 1277-1281.	9.0	26
115	Modulation of hybrid organic–perovskite photovoltaic performance by controlling the excited dynamics of fullerenes. Materials Horizons, 2015, 2, 414-419.	12.2	24
116	Fulleropyrrolidinium Iodide As an Efficient Electron Transport Layer for Air-Stable Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 34612-34619.	8.0	24
117	Organic functional materials based buffer layers for efficient perovskite solar cells. Chinese Chemical Letters, 2017, 28, 503-511.	9.0	24
118	High-efficiency organic solar cells with low voltage-loss of 0.46 V. Chinese Chemical Letters, 2020, 31, 1991-1996.	9.0	24
119	Crystalline Co-Assemblies of Functional Fullerenes in Methanol with Enhanced Charge Transport. Journal of the American Chemical Society, 2015, 137, 2167-2170.	13.7	23
120	Intrinsically Chemo- and Thermostable Electron Acceptors for Efficient Organic Solar Cells. Bulletin of the Chemical Society of Japan, 2021, 94, 183-190.	3.2	22
121	Non-fused medium bandgap electron acceptors for efficient organic photovoltaics. Journal of Energy Chemistry, 2022, 70, 576-582.	12.9	22
122	Healing the degradable organic–inorganic heterointerface for highly efficient and stable organic solar cells. InformaÄnÃ-Materiály, 2022, 4, .	17.3	21
123	Efficient and 1,8-diiodooctane-free ternary organic solar cells fabricated via nanoscale morphology tuning using small-molecule dye additive. Nano Research, 2017, 10, 3765-3774.	10.4	20
124	Enhanced performance of inverted non-fullerene organic solar cells through modifying zinc oxide surface with self-assembled monolayers. Organic Electronics, 2018, 63, 143-148.	2.6	20
125	Foldamer-based pyridine–fullerene tweezer receptors for enhanced binding of zinc porphyrin. Tetrahedron, 2006, 62, 11054-11062.	1.9	18
126	Modulate Molecular Interaction between Hole Extraction Polymers and Lead Ions toward Hysteresisâ€Free and Efficient Perovskite Solar Cells. Advanced Materials Interfaces, 2018, 5, 1800090.	3.7	18

#	Article	IF	CITATIONS
127	Simple Nonâ€Fused Electron Acceptors Leading to Efficient Organic Photovoltaics. Angewandte Chemie, 2021, 133, 13074-13080.	2.0	18
128	Pot- and atom-economic synthesis of oligomeric non-fullerene acceptors <i>via</i> C–H direct arylation. Polymer Chemistry, 2022, 13, 2351-2361.	3.9	18
129	Tetrathienodibenzocarbazole Based Donor–Acceptor Type Wide Band-Gap Copolymers for Polymer Solar Cell Applications. Macromolecules, 2014, 47, 7407-7415.	4.8	17
130	Toward Efficient Triple-Junction Polymer Solar Cells through Rational Selection of Middle Cells. ACS Energy Letters, 2020, 5, 1771-1779.	17.4	17
131	Regioselective synthesis of tetra(aryl)-mono(silylmethyl)[60]fullerenes and derivatization to methanofullerene compound. Tetrahedron, 2011, 67, 9944-9949.	1.9	16
132	Highâ€Efficiency Ternary Organic Solar Cells Based on the Synergized Polymeric and Smallâ€Molecule Donors. Solar Rrl, 2020, 4, 2000537.	5.8	16
133	Self-Assembled Donor–Acceptor Dyad Molecules Stabilize the Heterojunction of Inverted Perovskite Solar Cells and Modules. ACS Applied Materials & Interfaces, 2022, 14, 6794-6800.	8.0	16
134	A-D-A small molecule donors based on pyrene and diketopyrrolopyrrole for organic solar cells. Science China Chemistry, 2017, 60, 561-569.	8.2	15
135	Aqueous solutionâ€processed NiO _x anode buffer layers applicable for polymer solar cells. Journal of Polymer Science Part A, 2017, 55, 747-753.	2.3	15
136	Solutionâ€Processable Conductive Organics via Anionâ€Induced nâ€Doping and Their Applications in Organic and Perovskite Solar Cells. Macromolecular Chemistry and Physics, 2019, 220, 1900084.	2.2	15
137	A conductive liquid crystal via facile doping of an n-type benzodifurandione derivative. Journal of Materials Chemistry A, 2015, 3, 6929-6934.	10.3	14
138	A non-fullerene electron acceptor with a spirobifluorene core and four diketopyrrolopyrrole arms end capped by 4-fluorobenzene. Dyes and Pigments, 2017, 143, 217-222.	3.7	14
139	Câ`'H Direct Arylation: A Robust Tool to Tailor the π onjugation Lengths of Nonâ€Fullerene Acceptors. ChemSusChem, 2022, 15, .	6.8	14
140	†Two-point'-bound supramolecular complexes from semi-rigidified dipyridine receptors and zinc porphyrins. Tetrahedron, 2006, 62, 6973-6980.	1.9	13
141	A medium-bandgap small molecule donor compatible with both fullerene and unfused-ring nonfullerene acceptors for efficient organic solar cells. Journal of Materials Chemistry C, 2019, 7, 13396-13401.	5.5	13
142	Influence of Bridging Groups on the Photovoltaic Properties of Wide-Bandgap Poly(BDTT- <i>alt</i> -BDD)s. ACS Applied Materials & Interfaces, 2019, 11, 1394-1401.	8.0	13
143	Controllable Anion Doping of Electron Acceptors for High-Efficiency Organic Solar Cells. ACS Energy Letters, 2022, 7, 1764-1773.	17.4	12
144	Foldamerâ€Derived Preorganized Bi―and Triâ€zinc Porphyrin Tweezers for a Pentafluorobenzeneâ€bearing Pyridine Guest: The Binding Pattern Study. Chinese Journal of Chemistry, 2013, 31, 582-588.	4.9	10

#	Article	IF	CITATIONS
145	Functional Carbon Nanofibers with Semiâ€Embedded Titanium Oxide Particles via Electrospinning. Macromolecular Rapid Communications, 2018, 39, e1800102.	3.9	10
146	Non-conjugated electrolytes as thickness-insensitive interfacial layers for high-performance organic solar cells. Journal of Materials Chemistry A, 2021, 9, 22926-22933.	10.3	9
147	Donor-acceptor (D-A) terpolymers based on alkyl-DPP and t -BocDPP moieties for polymer solar cells. Chinese Chemical Letters, 2017, 28, 2223-2226.	9.0	8
148	In Situ Investigation of the Cu/CH 3 NH 3 PbI 3 Interface in Perovskite Device. Advanced Materials Interfaces, 2021, 8, 2100120.	3.7	8
149	Hydrogen Bonded Semiâ€Rigidified Bispyridylâ€Incorporating Aryl Amide Oligomers: Efficient "C"â€Styled Receptors for Aliphatic Ammoniums, a Remarkable Protonation Effect and Chiral Induction. Chinese Journal of Chemistry, 2007, 25, 1417-1422.	4.9	7
150	Photovoltaic performance of ladder-type indacenodithieno[3,2-b]thiophene-based polymers with alkoxyphenyl side chains. RSC Advances, 2015, 5, 26680-26685.	3.6	7
151	Narrow bandgap semiconducting polymers for solar cells with near-infrared photo response and low energy loss. Tetrahedron Letters, 2017, 58, 2975-2980.	1.4	7
152	Doping of Organic Semiconductors with Lewis Base Anions: Mechanism, Applications and Perspectives. Acta Chimica Sinica, 2020, 78, 1287.	1.4	7
153	Unaxisymmetric Non-Fused Electron Acceptors for Efficient Polymer Solar Cells. Chinese Journal of Polymer Science (English Edition), 2022, 40, 944-950.	3.8	7
154	High Efficiency Semi-Transparent Organic Photovoltaics. , 2019, , .		3
155	Tandem Organic Solar Cells: Nonfullerene Tandem Organic Solar Cells with High Open-Circuit Voltage of 1.97 V (Adv. Mater. 44/2016). Advanced Materials, 2016, 28, 9870-9870.	21.0	2
156	Photovoltaics: A Tetraperylene Diimides Based 3D Nonfullerene Acceptor for Efficient Organic Photovoltaics (Adv. Sci. 4/2015). Advanced Science, 2015, 2, .	11.2	1
157	Interfacial Materials for Efficient Solution Processable Organic Photovoltaic Devices. Topics in Applied Physics, 2015, , 273-297.	0.8	1
158	Manganese(III) Acetate-Mediated Free Radical Reactions of [60]Fullerene with ?-Dicarbonyl Compounds ChemInform, 2005, 36, no.	0.0	0
159	Chemical modification of AlQ3 to a potential electron acceptor for solution-processed organic solar cells. Tetrahedron Letters, 2016, 57, 2797-2799.	1.4	0
160	Organic Solar Cells: Highly Efficient Organic Solar Cells Consisting of Double Bulk Heterojunction Layers (Adv. Mater. 19/2017). Advanced Materials, 2017, 29, .	21.0	0