
Payam A Gammage

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8123263/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Mitonuclear genotype remodels the metabolic and microenvironmental landscape of Hürthle cell carcinoma. Science Advances, 2022, 8, .	4.7	15
2	Respiratory complex and tissue lineage drive recurrent mutations in tumour mtDNA. Nature Metabolism, 2021, 3, 558-570.	5.1	58
3	PINK1 drives production of mtDNA-containing extracellular vesicles to promote invasiveness. Journal of Cell Biology, 2021, 220, .	2.3	46
4	Mitochondrially targeted zinc finger nucleases. , 2020, , 499-514.		0
5	Therapeutic Manipulation of mtDNA Heteroplasmy: A Shifting Perspective. Trends in Molecular Medicine, 2020, 26, 698-709.	3.5	52
6	Mitochondrial DNA: the overlooked oncogenome?. BMC Biology, 2019, 17, 53.	1.7	92
7	Mitochondrially-targeted APOBEC1 is a potent mtDNA mutator affecting mitochondrial function and organismal fitness in Drosophila. Nature Communications, 2019, 10, 3280.	5.8	23
8	Energetic costs of cellular and therapeutic control of stochastic mitochondrial DNA populations. PLoS Computational Biology, 2019, 15, e1007023.	1.5	20
9	Heterozygous SSBP1 start loss mutation co-segregates with hearing loss and the m.1555A>G mtDNA variant in a large multigenerational family. Brain, 2018, 141, 55-62.	3.7	19
10	NADH Shuttling Couples Cytosolic Reductive Carboxylation of Glutamine with Glycolysis in Cells with Mitochondrial Dysfunction. Molecular Cell, 2018, 69, 581-593.e7.	4.5	171
11	Linear mitochondrial DNA is rapidly degraded by components of the replication machinery. Nature Communications, 2018, 9, 1727.	5.8	151
12	Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo. Nature Medicine, 2018, 24, 1691-1695.	15.2	215
13	Delivery of mtZFNs into Early Mouse Embryos. Methods in Molecular Biology, 2018, 1867, 215-228.	0.4	6
14	Enhanced Manipulation of Human Mitochondrial DNA Heteroplasmy In Vitro Using Tunable mtZFN Technology. Methods in Molecular Biology, 2018, 1867, 43-56.	0.4	8
15	Mitochondrial Genome Engineering: The Revolution May Not Be CRISPR-Ized. Trends in Genetics, 2018, 34, 101-110.	2.9	230
16	Near-complete elimination of mutant mtDNA by iterative or dynamic dose-controlled treatment with mtZFNs. Nucleic Acids Research, 2016, 44, 7804-7816.	6.5	97
17	Engineered mtZFNs for Manipulation of Human Mitochondrial DNA Heteroplasmy. Methods in Molecular Biology, 2016, 1351, 145-162.	0.4	33
18	MRM2 and MRM3 are involved in biogenesis of the large subunit of the mitochondrial ribosome. Molecular Biology of the Cell, 2014, 25, 2542-2555.	0.9	99

#	Article	IF	CITATIONS
19	Mitochondrially targeted <scp>ZFN</scp> s for selective degradation of pathogenic mitochondrial genomes bearing largeâ€scale deletions or point mutations. EMBO Molecular Medicine, 2014, 6, 458-466.	3.3	237
20	Alternative translation initiation augments the human mitochondrial proteome. Nucleic Acids Research, 2013, 41, 2354-2369.	6.5	56
21	C7orf30 is necessary for biogenesis of the large subunit of the mitochondrial ribosome. Nucleic Acids Research, 2012, 40, 4097-4109.	6.5	64