Payam A Gammage

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8123263/publications.pdf

Version: 2024-02-01

21 papers 1,705 citations

16 h-index 713466 21 g-index

22 all docs 22 docs citations

times ranked

22

2341 citing authors

#	Article	IF	CITATIONS
1	Mitochondrially targeted <scp>ZFN</scp> s for selective degradation of pathogenic mitochondrial genomes bearing largeâ€scale deletions or point mutations. EMBO Molecular Medicine, 2014, 6, 458-466.	6.9	237
2	Mitochondrial Genome Engineering: The Revolution May Not Be CRISPR-Ized. Trends in Genetics, 2018, 34, 101-110.	6.7	230
3	Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo. Nature Medicine, 2018, 24, 1691-1695.	30.7	215
4	NADH Shuttling Couples Cytosolic Reductive Carboxylation of Glutamine with Glycolysis in Cells with Mitochondrial Dysfunction. Molecular Cell, 2018, 69, 581-593.e7.	9.7	171
5	Linear mitochondrial DNA is rapidly degraded by components of the replication machinery. Nature Communications, 2018, 9, 1727.	12.8	151
6	MRM2 and MRM3 are involved in biogenesis of the large subunit of the mitochondrial ribosome. Molecular Biology of the Cell, 2014, 25, 2542-2555.	2.1	99
7	Near-complete elimination of mutant mtDNA by iterative or dynamic dose-controlled treatment with mtZFNs. Nucleic Acids Research, 2016, 44, 7804-7816.	14.5	97
8	Mitochondrial DNA: the overlooked oncogenome?. BMC Biology, 2019, 17, 53.	3.8	92
9	C7orf30 is necessary for biogenesis of the large subunit of the mitochondrial ribosome. Nucleic Acids Research, 2012, 40, 4097-4109.	14.5	64
10	Respiratory complex and tissue lineage drive recurrent mutations in tumour mtDNA. Nature Metabolism, 2021, 3, 558-570.	11.9	58
11	Alternative translation initiation augments the human mitochondrial proteome. Nucleic Acids Research, 2013, 41, 2354-2369.	14.5	56
12	Therapeutic Manipulation of mtDNA Heteroplasmy: A Shifting Perspective. Trends in Molecular Medicine, 2020, 26, 698-709.	6.7	52
13	PINK1 drives production of mtDNA-containing extracellular vesicles to promote invasiveness. Journal of Cell Biology, 2021, 220, .	5.2	46
14	Engineered mtZFNs for Manipulation of Human Mitochondrial DNA Heteroplasmy. Methods in Molecular Biology, 2016, 1351, 145-162.	0.9	33
15	Mitochondrially-targeted APOBEC1 is a potent mtDNA mutator affecting mitochondrial function and organismal fitness in Drosophila. Nature Communications, 2019, 10, 3280.	12.8	23
16	Energetic costs of cellular and therapeutic control of stochastic mitochondrial DNA populations. PLoS Computational Biology, 2019, 15, e1007023.	3.2	20
17	Heterozygous SSBP1 start loss mutation co-segregates with hearing loss and the m.1555A>G mtDNA variant in a large multigenerational family. Brain, 2018, 141, 55-62.	7.6	19
18	Mitonuclear genotype remodels the metabolic and microenvironmental landscape of HÃ $\frac{1}{4}$ rthle cell carcinoma. Science Advances, 2022, 8, .	10.3	15

#	Article	IF	CITATIONS
19	Enhanced Manipulation of Human Mitochondrial DNA Heteroplasmy In Vitro Using Tunable mtZFN Technology. Methods in Molecular Biology, 2018, 1867, 43-56.	0.9	8
20	Delivery of mtZFNs into Early Mouse Embryos. Methods in Molecular Biology, 2018, 1867, 215-228.	0.9	6
21	Mitochondrially targeted zinc finger nucleases. , 2020, , 499-514.		0