Kim Q Do

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8123261/publications.pdf

Version: 2024-02-01

168	10,787	54	98
papers	citations	h-index	g-index
180	180	180	10972
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Mitochondrial, exosomal miR137-COX6A2 and gamma synchrony as biomarkers of parvalbumin interneurons, psychopathology, and neurocognition in schizophrenia. Molecular Psychiatry, 2022, 27, 1192-1204.	4.1	40
2	Caught in vicious circles: a perspective on dynamic feed-forward loops driving oxidative stress in schizophrenia. Molecular Psychiatry, 2022, 27, 1886-1897.	4.1	53
3	Interaction Testing and Polygenic Risk Scoring to Estimate the Association of Common Genetic Variants With Treatment Resistance in Schizophrenia. JAMA Psychiatry, 2022, 79, 260.	6.0	44
4	Developmental oxidative stress leads to T-type Ca2+ channel hypofunction in thalamic reticular nucleus of mouse models pertinent to schizophrenia. Molecular Psychiatry, 2022, 27, 2042-2051.	4.1	10
5	Caught in vicious circles: a perspective on dynamic feed-forward loops driving oxidative stress in schizophrenia; Response to "Adaptive changes to oxidative stress in schizophrenia by Lena Palaniyappan― Molecular Psychiatry, 2022, 27, 3567-3568.	4.1	2
6	White Matter Alterations Between Brain Network Hubs Underlie Processing Speed Impairment in Patients With Schizophrenia. Schizophrenia Bulletin Open, 2021, 2, sgab033.	0.9	5
7	Fronto-Temporal Disconnection Within the Presence Hallucination Network in Psychotic Patients With Passivity Experiences. Schizophrenia Bulletin, 2021, 47, 1718-1728.	2.3	11
8	Redox Dysregulation, Myelination Deficit and Dysconnectivity in Schizophrenia: A Translational Study in First Episode Patients and Experimental Models. Biological Psychiatry, 2021, 89, S56.	0.7	О
9	Timely N-Acetyl-Cysteine and Environmental Enrichment Rescue Oxidative Stress-Induced Parvalbumin Interneuron Impairments via MMP9/RAGE Pathway: A Translational Approach for Early Intervention in Psychosis. Schizophrenia Bulletin, 2021, 47, 1782-1794.	2.3	21
10	Association of Age, Antipsychotic Medication, and Symptom Severity in Schizophrenia With Proton Magnetic Resonance Spectroscopy Brain Glutamate Level. JAMA Psychiatry, 2021, 78, 667.	6.0	72
11	Thalamic reticular nucleus impairments and abnormal prefrontal control of dopamine system in a developmental model of schizophrenia: prevention by N-acetylcysteine. Molecular Psychiatry, 2021, 26, 7679-7689.	4.1	18
12	MMP9/RAGE pathway overactivation mediates redox dysregulation and neuroinflammation, leading to inhibitory/excitatory imbalance: a reverse translation study in schizophrenia patients. Molecular Psychiatry, 2020, 25, 2889-2904.	4.1	76
13	Lactate measurement by neurochemical profiling in the dorsolateral prefrontal cortex at 7T: accuracy, precision, and relaxation times. Magnetic Resonance in Medicine, 2020, 83, 1895-1908.	1.9	10
14	S69. CLINICAL HIGH RISK STATE: STRATIFICATION BASED ON CLINICAL PROFILE AND REDOX STATUS. Schizophrenia Bulletin, 2020, 46, S60-S60.	2.3	0
15	Oxidative Stress Affects Prefrontal-Basal Ganglia-Thalamo-Cortical Circuits Involved in Selected Attention. Biological Psychiatry, 2020, 87, S32-S33.	0.7	O
16	Early onset of cannabis use and violent behavior in psychosis. European Psychiatry, 2020, 63, e78.	0.1	12
17	In vivo 31P magnetic resonance spectroscopy study of mouse cerebral NAD content and redox state during neurodevelopment. Scientific Reports, 2020, 10, 15623.	1.6	7
18	Partialâ€volume modeling reveals reduced gray matter in specific thalamic nuclei early in the time course of psychosis and chronic schizophrenia. Human Brain Mapping, 2020, 41, 4041-4061.	1.9	18

#	Article	IF	Citations
19	Tau accumulation in astrocytes of the dentate gyrus induces neuronal dysfunction and memory deficits in Alzheimer's disease. Nature Neuroscience, 2020, 23, 1567-1579.	7.1	121
20	Redox Dysregulation, Myelination Deficit and Dysconnectivity in Schizophrenia: A Translational Study in First Episode Patients and Experimental Models. Biological Psychiatry, 2020, 87, S100.	0.7	0
21	M16. PROFILING GLUTAMATE AND D-SERINE PATHWAYS IN TREATMENT RESISTANT EARLY PSYCHOSIS PATIENTS. Schizophrenia Bulletin, 2020, 46, S139-S139.	2.3	0
22	Somatosensory-visual effects in visual biological motion perception. PLoS ONE, 2020, 15, e0234026.	1.1	0
23	Prevention of Psychosis. JAMA Psychiatry, 2020, 77, 755.	6.0	287
24	Potential Roles of Redox Dysregulation in the Development of Schizophrenia. Biological Psychiatry, 2020, 88, 326-336.	0.7	62
25	Topology predicts long-term functional outcome in early psychosis. Molecular Psychiatry, 2020, 26, 5335-5346.	4.1	4
26	Stable biomarker identification for predicting schizophrenia in the human connectome. NeuroImage: Clinical, 2020, 27, 102316.	1.4	19
27	Sensorimotor Induction of Auditory Misattribution in Early Psychosis. Schizophrenia Bulletin, 2020, 46, 947-954.	2.3	28
28	Psychological trauma occurring during adolescence is associated with an increased risk of greater waist circumference in Early Psychosis patients treated with psychotropic medication. PLoS ONE, 2020, 15, e0242569.	1.1	10
29	Somatosensory-visual effects in visual biological motion perception. , 2020, 15, e0234026.		0
30	Somatosensory-visual effects in visual biological motion perception., 2020, 15, e0234026.		0
31	Somatosensory-visual effects in visual biological motion perception. , 2020, 15, e0234026.		0
32	Somatosensory-visual effects in visual biological motion perception., 2020, 15, e0234026.		0
33	Somatosensory-visual effects in visual biological motion perception. , 2020, 15, e0234026.		0
34	Somatosensory-visual effects in visual biological motion perception. , 2020, 15, e0234026.		0
35	Somatosensory-visual effects in visual biological motion perception. , 2020, 15, e0234026.		0
36	Somatosensory-visual effects in visual biological motion perception., 2020, 15, e0234026.		0

#	Article	IF	Citations
37	Somatosensory-visual effects in visual biological motion perception., 2020, 15, e0234026.		О
38	Somatosensory-visual effects in visual biological motion perception., 2020, 15, e0234026.		O
39	Frontal cortical thickness correlates positively with impulsivity in early psychosis male patients. Microbial Biotechnology, 2019, 13, 848-852.	0.9	1
40	N-Acetyl-Cysteine Supplementation Improves Functional Connectivity Within the Cingulate Cortex in Early Psychosis: A Pilot Study. International Journal of Neuropsychopharmacology, 2019, 22, 478-487.	1.0	25
41	European college of neuropsychopharmacology network on the prevention of mental disorders and mental health promotion (ECNP PMD-MHP). European Neuropsychopharmacology, 2019, 29, 1301-1311.	0.3	38
42	S9. GLUTATHIONE RELATED FACTORS IN TWO BIOTYPES OF SCHIZOPHRENIA. Schizophrenia Bulletin, 2019, 45, S309-S309.	2.3	0
43	S72. FUNCTIONAL DISCONNECTION WITHIN THE PRESENCE HALLUCINATION NETWORK IN PSYCHOTIC PATIENTS WITH FIRST-RANK SYMPTOMS. Schizophrenia Bulletin, 2019, 45, S334-S334.	2.3	0
44	12.4 THE BODILY SELF IN PSYCHOSIS: SENSORIMOTOR INDUCTION OF AUDITORY MISATTRIBUTION IN PSYCHOSIS IS LINKED TO NEURAL DISCONNECTIVITY. Schizophrenia Bulletin, 2019, 45, S107-S108.	2.3	0
45	A developmental redox dysregulation leads to spatio-temporal deficit of parvalbumin neuron circuitry in a schizophrenia mouse model. Schizophrenia Research, 2019, 213, 96-106.	1.1	40
46	Brain connectivity alterations in early psychosis: from clinical to neuroimaging staging. Translational Psychiatry, 2019, 9, 62.	2.4	31
47	Nutritional Intervention for Developmental Brain Damage: Effects of Lactoferrin Supplementation in Hypocaloric Induced Intrauterine Growth Restriction Rat Pups. Frontiers in Endocrinology, 2019, 10, 46.	1.5	11
48	Impulsivity in early psychosis: A complex link with violent behaviour and a target for intervention. European Psychiatry, 2018, 49, 30-36.	0.1	30
49	Patients participating to neurobiological research in early psychosis: A selected subgroup?. Schizophrenia Research, 2018, 201, 249-253.	1.1	4
50	Treatment in early psychosis with N-acetyl-cysteine for 6 months improves low-level auditory processing: Pilot study. Schizophrenia Research, 2018, 191, 80-86.	1.1	31
51	N-acetylcysteine in a Double-Blind Randomized Placebo-Controlled Trial: Toward Biomarker-Guided Treatment in Early Psychosis. Schizophrenia Bulletin, 2018, 44, 317-327.	2.3	121
52	Cannabis use in early psychosis is associated with reduced glutamate levels in the prefrontal cortex. Psychopharmacology, 2018, 235, 13-22.	1.5	27
53	A lack of GluN2A-containing NMDA receptors confers a vulnerability to redox dysregulation: Consequences on parvalbumin interneurons, and their perineuronal nets. Neurobiology of Disease, 2018, 109, 64-75.	2.1	32
54	The thalamic reticular nucleus in schizophrenia and bipolar disorder: role of parvalbumin-expressing neuron networks and oxidative stress. Molecular Psychiatry, 2018, 23, 2057-2065.	4.1	116

#	Article	IF	CITATIONS
55	F152. N-ACETYL-CYSTEINE SUPPLEMENTATION IMPROVES FUNCTIONAL CONNECTIVITY IN THE CINGULATE CORTEX IN EARLY PSYCHOSIS. Schizophrenia Bulletin, 2018, 44, S279-S279.	2.3	O
56	F227. PSYCHOLOGICAL TRAUMA OCCURRING DURING ADOLESCENCE IS ASSOCIATED WITH AN INCREASED RISK OF GREATER WAIST CIRCUMFERENCE IN EARLY PSYCHOSIS PATIENTS INDEPENDENTLY OF MEDICATION. Schizophrenia Bulletin, 2018, 44, S310-S310.	2.3	0
57	S164. "AT-RISK MENTAL STATES―PROGRAM IN LAUSANNE: INFLUENCE OF RECRUITMENT STRATEGIES ON RATE OF FALSE POSITIVES. Schizophrenia Bulletin, 2018, 44, S389-S389.	ГНЕ 2.3	O
58	Redox dysregulation as a link between childhood trauma and psychopathological and neurocognitive profile in patients with early psychosis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12495-12500.	3.3	37
59	N-acetylcysteine add-on treatment leads to an improvement of fornix white matter integrity in early psychosis: a double-blind randomized placebo-controlled trial. Translational Psychiatry, 2018, 8, 220.	2.4	44
60	T52. N-ACETYL-CYSTEINE ADD-ON TREATMENT LEADS TO AN IMPROVEMENT OF FORNIX WHITE MATTER INTEGRITY IN EARLY PSYCHOSIS. Schizophrenia Bulletin, 2018, 44, S133-S134.	2.3	1
61	T221. Sensorimotor Induction of Auditory Misattribution in Psychosis is Linked to Neural Disconnectivity. Biological Psychiatry, 2018, 83, S214.	0.7	0
62	10.2 REDOX DYSREGULATION, OLIGODENDROCYTES AND WHITE MATTER ALTERATIONS IN SCHIZOPHRENIA. Schizophrenia Bulletin, 2018, 44, S15-S16.	2.3	0
63	3.2 PARVALBUMIN INTERNEURON IMPAIRMENT INDUCED BY OXIDATIVE STRESS AS A COMMON PATHOLOGICAL MECHANISM IN ANIMAL MODELS OF SCHIZOPHRENIA. Schizophrenia Bulletin, 2018, 44, S1-S2.	2.3	0
64	Networks of blood proteins in the neuroimmunology of schizophrenia. Translational Psychiatry, 2018, 8, 112.	2.4	16
65	The coupling of low-level auditory dysfunction and oxidative stress in psychosis patients. Schizophrenia Research, 2017, 190, 52-59.	1.1	6
66	Potential mechanisms of development-dependent adverse effects of the herbicide paraquat in 3D rat brain cell cultures. NeuroToxicology, 2017, 60, 116-124.	1.4	19
67	Mild Depressive Symptoms Mediate the Impact of Childhood Trauma on Long-Term Functional Outcome in Early Psychosis Patients. Schizophrenia Bulletin, 2017, 43, 1027-1035.	2.3	37
68	Oxidative stress-driven parvalbumin interneuron impairment as a common mechanism in models of schizophrenia. Molecular Psychiatry, 2017, 22, 936-943.	4.1	280
69	Implication of the glutamate–cystine antiporter xCT in schizophrenia cases linked to impaired GSH synthesis. NPJ Schizophrenia, 2017, 3, 31.	2.0	22
70	Social isolation stress and chronic glutathione deficiency have a common effect on the glutamineâ€toâ€glutamate ratio and <i>myo</i> â€inositol concentration in the mouse frontal cortex. Journal of Neurochemistry, 2017, 142, 767-775.	2.1	15
71	N-acetyl-cysteine in a double-blind randomized placebo-controlled trial: Towards biomarker guided treatment in early psychosis. European Psychiatry, 2017, 41, s806-s806.	0.1	2
72	Redox dysregulation, neuroinflammation, and NMDA receptor hypofunction: A "central hub―in schizophrenia pathophysiology?. Schizophrenia Research, 2016, 176, 41-51.	1.1	194

#	Article	IF	CITATIONS
73	Role of Redox Dysregulation in White Matter Anomalies Associated with Schizophrenia. Handbook of Behavioral Neuroscience, 2016, , 481-500.	0.7	6
74	Decreased Brain Levels of Vitamin B12 in Aging, Autism and Schizophrenia. PLoS ONE, 2016, 11, e0146797.	1.1	114
75	Glutamate Cysteine Ligase—Modulatory Subunit Knockout Mouse Shows Normal Insulin Sensitivity but Reduced Liver Glycogen Storage. Frontiers in Physiology, 2016, 7, 142.	1.3	5
76	Tollip, an early regulator of the acute inflammatory response in the substantia nigra. Journal of Neuroinflammation, 2016, 13, 303.	3.1	26
77	Genetic Polymorphism Associated Prefrontal Glutathione and Its Coupling With Brain Glutamate and Peripheral Redox Status in Early Psychosis. Schizophrenia Bulletin, 2016, 42, 1185-1196.	2.3	83
78	Impaired fornix–hippocampus integrity is linked to peripheral glutathione peroxidase in early psychosis. Translational Psychiatry, 2016, 6, e859-e859.	2.4	32
79	Glutathione Deficit Affects the Integrity and Function of the Fimbria/Fornix and Anterior Commissure in Mice: Relevance for Schizophrenia. International Journal of Neuropsychopharmacology, 2016, 19, pyv110.	1.0	40
80	Linking early-life NMDAR hypofunction and oxidative stress in schizophrenia pathogenesis. Nature Reviews Neuroscience, 2016, 17, 125-134.	4.9	256
81	Age at the Time of Exposure to Trauma Modulates the Psychopathological Profile in Patients With Early Psychosis. Journal of Clinical Psychiatry, 2016, 77, e612-e618.	1.1	37
82	Childhood sexual and physical abuse: age at exposure modulates impact on functional outcome in early psychosis patients. Psychological Medicine, 2015, 45, 2727-2736.	2.7	88
83	Targeting Oxidative Stress and Aberrant Critical Period Plasticity in the Developmental Trajectory to Schizophrenia. Schizophrenia Bulletin, 2015, 41, 835-846.	2.3	135
84	Benefits of adjunctive N-acetylcysteine in a sub-group of clozapine-treated individuals diagnosed with schizophrenia. Psychiatry Research, 2015, 230, 982-983.	1.7	11
85	Prolonged Period of Cortical Plasticity upon Redox Dysregulation in Fast-Spiking Interneurons. Biological Psychiatry, 2015, 78, 396-402.	0.7	80
86	Characterizing the connectome in schizophrenia with diffusion spectrum imaging. Human Brain Mapping, 2015, 36, 354-366.	1.9	70
87	Glutathione deficit impairs myelin maturation: relevance for white matter integrity in schizophrenia patients. Molecular Psychiatry, 2015, 20, 827-838.	4.1	95
88	Juvenile Antioxidant Treatment Prevents Adult Deficits in a Developmental Model of Schizophrenia. Neuron, 2014, 83, 1073-1084.	3.8	169
89	Oxidative/Nitrosative Stress in Psychiatric Disorders: Are We There Yet?. Schizophrenia Bulletin, 2014, 40, 960-962.	2.3	24
90	Impaired Metabolic Reactivity to Oxidative Stress in Early Psychosis Patients. Schizophrenia Bulletin, 2014, 40, 973-983.	2.3	39

#	Article	IF	CITATIONS
91	Longitudinal neurochemical modifications in the aging mouse brain measured inÂvivo by 1H magnetic resonance spectroscopy. Neurobiology of Aging, 2014, 35, 1660-1668.	1.5	90
92	Fast oscillatory activity in the anterior cingulate cortex: dopaminergic modulation and effect of perineuronal net loss. Frontiers in Cellular Neuroscience, 2014, 8, 244.	1.8	42
93	Redox Dysregulation in the Pathophysiology of Schizophrenia and Bipolar Disorder: Insights from Animal Models. Antioxidants and Redox Signaling, 2013, 18, 1428-1443.	2.5	102
94	Early-Life Insults Impair Parvalbumin Interneurons via Oxidative Stress: Reversal by N-Acetylcysteine. Biological Psychiatry, 2013, 73, 574-582.	0.7	201
95	<scp>T</scp> reatment and <scp>E</scp> arly <scp>I</scp> ntervention in <scp>P</scp> sychosis <scp>P</scp> rogram (<scp>TIPP</scp> â€ <scp>L</scp> ausanne): implementation of an early intervention programme for psychosis in <scp>S</scp> witzerland. Microbial Biotechnology, 2013, 7, 322-328.	0.9	92
96	Perineuronal nets protect fast-spiking interneurons against oxidative stress. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9130-9135.	3.3	408
97	Behavioral phenotyping of glutathione-deficient mice: Relevance to schizophrenia and bipolar disorder. Behavioural Brain Research, 2012, 226, 563-570.	1.2	82
98	N-Acetylcysteine Normalizes Neurochemical Changes in the Glutathione-Deficient Schizophrenia Mouse Model During Development. Biological Psychiatry, 2012, 71, 1006-1014.	0.7	100
99	Cytotoxic tetraoxygenated xanthones from the bark of Garcinia schomburgkiana. Phytochemistry Letters, 2012, 5, 553-557.	0.6	16
100	Glutathione Precursor N-Acetyl-Cysteine Modulates EEG Synchronization in Schizophrenia Patients: A Double-Blind, Randomized, Placebo-Controlled Trial. PLoS ONE, 2012, 7, e29341.	1.1	63
101	Mapping the human connectome at multiple scales with diffusion spectrum MRI. Journal of Neuroscience Methods, 2012, 203, 386-397.	1.3	413
102	High b-value diffusion-weighted imaging: A sensitive method to reveal white matter differences in schizophrenia. Psychiatry Research - Neuroimaging, 2012, 201, 144-151.	0.9	21
103	Glutathione Deficit and Redox Dysregulation in Animal Models of Schizophrenia. Neuromethods, 2011, , 149-188.	0.2	2
104	Altered Glycogen Metabolism in Cultured Astrocytes from Mice with Chronic Glutathione Deficit; Relevance for Neuroenergetics in Schizophrenia. PLoS ONE, 2011, 6, e22875.	1.1	22
105	Interaction of GAG trinucleotide repeat and Câ^'129T polymorphisms impairs expression of the glutamate–cysteine ligase catalytic subunit gene. Free Radical Biology and Medicine, 2011, 50, 617-623.	1.3	9
106	Genetic Dysregulation of Glutathione Synthesis Predicts Alteration of Plasma Thiol Redox Status in Schizophrenia. Antioxidants and Redox Signaling, 2011, 15, 2003-2010.	2.5	56
107	Attenuated asymmetry of functional connectivity in schizophrenia: A high-resolution EEG study. Psychophysiology, 2010, 47, 706-16.	1.2	9
108	Neurochemical profile of the developing mouse cortex determined by ⟨i⟩in vivo⟨/i⟩⟨sup⟩1⟨/sup⟩H NMR spectroscopy at 14.1â€fT and the effect of recurrent anaesthesia. Journal of Neurochemistry, 2010, 115, 1466-1477.	2.1	51

#	Article	IF	CITATIONS
109	Redox Dysregulation Affects the Ventral But Not Dorsal Hippocampus: Impairment of Parvalbumin Neurons, Gamma Oscillations, and Related Behaviors. Journal of Neuroscience, 2010, 30, 2547-2558.	1.7	180
110	Redox Dysregulation and Oxidative Stress in Schizophrenia: Nutrigenetics as a Challenge in Psychiatric Disease Prevention. World Review of Nutrition and Dietetics, 2010, 101, 131-153.	0.1	11
111	REDOX DYSREGULATION AFFECTS PARVALBUMINE INTERNEURON'S INTEGRITY AND NEURAL SYNCHRONISATION IN VENTRAL BUT NOT DORSAL HIPPOCAMPUS. Schizophrenia Research, 2010, 117, 388.	1.1	1
112	Redox Dysregulation and Oxidative Stress in Schizophrenia: Nutrigenetics as a Challenge in Psychiatric Disease Prevention. Journal of Nutrigenetics and Nutrigenomics, 2010, 3, 267-289.	1.8	8
113	Redox dysregulation, neurodevelopment, and schizophrenia. Current Opinion in Neurobiology, 2009, 19, 220-230.	2.0	348
114	Curcumin, quercetin, and tBHQ modulate glutathione levels in astrocytes and neurons: importance of the glutamate cysteine ligase modifier subunit. Journal of Neurochemistry, 2009, 108, 1410-1422.	2.1	95
115	Skin fibroblast model to study an impaired glutathione synthesis: Consequences of a genetic polymorphism on the proteome. Brain Research Bulletin, 2009, 79, 46-52.	1.4	18
116	Mutation screening of the glutamate cysteine ligase modifier (GCLM) gene in patients with schizophrenia. Psychiatric Genetics, 2009, 19, 201-208.	0.6	10
117	Alpha rhythm and hypofrontality in schizophrenia. Acta Psychiatrica Scandinavica, 2008, 118, 188-199.	2.2	44
118	A glutathione deficit alters dopamine modulation of L-type calcium channels via D2 and ryanodine receptors in neurons. Free Radical Biology and Medicine, 2008, 44, 1042-1054.	1.3	26
119	N-Acetyl Cysteine as a Glutathione Precursor for Schizophrenia—A Double-Blind, Randomized, Placebo-Controlled Trial. Biological Psychiatry, 2008, 64, 361-368.	0.7	489
120	Glutathione Precursor, N-Acetyl-Cysteine, Improves Mismatch Negativity in Schizophrenia Patients. Neuropsychopharmacology, 2008, 33, 2187-2199.	2.8	321
121	Impaired glutathione synthesis in schizophrenia: Convergent genetic and functional evidence. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16621-16626.	3.3	275
122	TORC1 is a calcium- and cAMP-sensitive coincidence detector involved in hippocampal long-term synaptic plasticity. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4700-4705.	3.3	168
123	Transitory glutathione deficit during brain development induces cognitive impairment in juvenile and adult rats: Relevance to schizophrenia. Neurobiology of Disease, 2007, 26, 634-645.	2.1	77
124	Dysconnection Topography in Schizophrenia Revealed with State-Space Analysis of EEG. PLoS ONE, 2007, 2, e1059.	1.1	58
125	Schizophrenia and Oxidative Stress: Glutamate Cysteine Ligase Modifier as a Susceptibility Gene. American Journal of Human Genetics, 2006, 79, 586-592.	2.6	209
126	Synaptic plasticity impairment and hypofunction of NMDA receptors induced by glutathione deficit: Relevance to schizophrenia. Neuroscience, 2006, 137, 807-819.	1.1	157

#	Article	IF	CITATIONS
127	Glutathione deficit during development induces anomalies in the rat anterior cingulate GABAergic neurons: Relevance to schizophrenia. Neurobiology of Disease, 2006, 22, 624-637.	2.1	87
128	Glutamate-induced homocysteic acid release from astrocytes: possible implication in glia-neuron signaling. Neuroscience, 2004, 124, 377-386.	1.1	59
129	Release of homocysteic acid from rat thalamus following stimulation of somatosensory afferents in vivo: feasibility of glial participation in synaptic transmission. Neuroscience, 2004, 124, 387-393.	1.1	12
130	An animal model with relevance to schizophrenia: sex-dependent cognitive deficits in osteogenic disorder-Shionogi rats induced by glutathione synthesis and dopamine uptake inhibition during development. Neuroscience, 2004, 123, 821-834.	1.1	48
131	Low brain glutathione and ascorbic acid associated with dopamine uptake inhibition during rat's development induce long-term cognitive deficit: relevance to schizophrenia. Neurobiology of Disease, 2004, 15, 93-105.	2.1	62
132	Dopamine-induced oxidative stress in neurons with glutathione deficit: implication for schizophrenia. Schizophrenia Research, 2003, 62, 213-224.	1.1	125
133	New model of glutathione deficit during development: Effect on lipid peroxidation in the rat brain. Journal of Neuroscience Research, 2002, 70, 774-783.	1.3	34
134	Arginine Availability Controls the N-Methyl-d-Aspartate-Induced Nitric Oxide Synthesis: Involvement of a Glial-Neuronal Arginine Transfer. Journal of Neurochemistry, 2002, 71, 2139-2144.	2.1	35
135	Glial-derived arginine, the nitric oxide precursor, protects neurons from NMDA-induced excitotoxicity. European Journal of Neuroscience, 2001, 14, 1762-1770.	1.2	27
136	Schizophrenia: glutathione deficit in cerebrospinal fluid and prefrontal cortex in vivo. European Journal of Neuroscience, 2000, 12, 3721-3728.	1.2	461
137	Novel mode of nitric oxide neurotransmission mediated via S-nitroso-cysteinyl-glycine. European Journal of Neuroscience, 2000, 12, 3919-3925.	1.2	14
138	FC11.06 A Unified Hypothesis of Schizophrenia Based on Glutathione Deficit. European Psychiatry, 2000, 15, 299s-299s.	0.1	0
139	Glutamate-induced Release of the Nitric Oxide Precursor, Arginine, From Glial Cells. European Journal of Neuroscience, 1997, 9, 2248-2258.	1.2	45
140	Increased excitatory amino acid levels in brain cysts of epileptic patients. Epilepsy Research, 1997, 28, 245-254.	0.8	14
141	βâ€Adrenergic Stimulation Promotes Homocysteic Acid Release from Astrocyte Cultures: Evidence for a Role of Astrocytes in the Modulation of Synaptic Transmission. Journal of Neurochemistry, 1997, 68, 2386-2394.	2.1	49
142	SPECIFICITY OF CYSTEINE SULFINATE DECARBOXYLASE (CSD) FOR SULFUR-CONTAINING AMINO-ACIDS * *Part of this work was presented at the last meeting on †Taurine in health and disease' (1993) held in Cologne (Germany) Neurochemistry International, 1996, 28, 363-371.	1.9	19
143	Release of the nitric oxide precursor, arginine, from the thalamus upon sensory afferent stimulation, and its effect on thalamic neurons in vivo. Neuroscience, 1994, 60, 581-586.	1.1	65
144	Screening of Thiol Compounds: Depolarization-Induced Release of Glutathione and Cysteine from Rat Brain Slices. Journal of Neurochemistry, 1992, 59, 181-189.	2.1	129

#	Article	IF	Citations
145	Release of endogenous amino acids, including homocysteic acid and cysteine sulphinic acid, from rat hippocampal slices evoked by electrical stimulation of Schaffer collateral-commissural fibres. Neuroscience, 1992, 49, 557-570.	1.1	58
146	Delayed increase of extracellular arginine, the nitric oxide precursor, following electrical white matter stimulation in rat cerebellar slices. Neuroscience Letters, 1992, 142, 211-214.	1.0	100
147	Homocysteate and homocysteine sulfinate, excitatory transmitter candidates present in rat astroglial cultures. Neuroscience Letters, 1992, 145, 6-9.	1.0	15
148	Push-pull cannula for localized application of drugs and sampling of medium, combined with electrophysiological recordings in an interface slice chamber. Journal of Neuroscience Methods, 1992, 43, 35-42.	1.3	5
149	Murine brain macrophages induce NMDA receptor mediated neurotoxicity in vitro by secreting glutamate. Neuroscience Letters, 1991, 133, 159-162.	1.0	425
150	Homocysteate, an Excitatory Transmitter Candidate Localized in Glia. European Journal of Neuroscience, 1991, 3, 1370-1373.	1.2	50
151	Effect of Climbing Fibre Deprivation on the K+-evoked Release of Endogenous Adenosine from Rat Cerebellar Slices. European Journal of Neuroscience, 1991, 3, 201-208.	1.2	12
152	Effect of Climbing Fiber Deprivation on Release of Endogenous Aspartate, Glutamate, and Homocysteate in Slices of Rat Cerebellar Hemispheres and Vermis. Journal of Neurochemistry, 1990, 54, 1533-1540.	2.1	52
153	Potassium conductances in hippocampal neurons blocked by excitatory amino-acid transmitters. Nature, 1990, 347, 765-767.	13.7	421
154	Cysteine: Depolarization-Induced Release from Rat Brain In Vitro. Journal of Neurochemistry, 1989, 52, 1801-1806.	2.1	29
155	Differential effects of (d)- and (l)-homocysteic acid on the membrane potential of cat caudate neurons in situ. Neuroscience, 1989, 31, 213-217.	1.1	14
156	Release of neuroactive substances: homocysteic acid as an endogenous agonist of the NMDA receptor. Journal of Neural Transmission, 1988, 72, 185-190.	1.4	66
157	Release of N-Acetylaspartylglutamate on Depolarization of Rat Brain Slices. Journal of Neurochemistry, 1988, 51, 1919-1923.	2.1	62
158	Purine metabolite inosine is an adrenergic neurotrophic substance for cultured chicken sympathetic neurons Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 8301-8305.	3.3	34
159	Effects ofl-cysteine-sulphinate andl-aspartate, mixed excitatory amino acid agonists, on the membrane potential of cat caudate neurons. Brain Research, 1987, 414, 330-338.	1.1	17
160	9-Fluorenylmethoxycarbonylpyroglutamate, a side-product of derivatization of glutamate with 9-fluorenylmethyl chloroformate: A warning. Analytical Biochemistry, 1987, 166, 431-434.	1.1	12
161	Release of Ethanolamine, but Not of Serine or Choline, in Rat Pontine Nuclei on Stimulation of Afferents from the Cortex, In Vivo. Journal of Neurochemistry, 1986, 46, 1338-1343.	2.1	12
162	In Vitro Release of Endogenous Excitatory Sulfur-Containing Amino Acids from Various Rat Brain Regions. Journal of Neurochemistry, 1986, 46, 779-786.	2.1	157

#	ARTICLE	IF	CITATION
163	Synthesis and Opiate Activityin vitroof Five Newp-Nitrophenylalanine4-Enkephalin-like Peptides. Helvetica Chimica Acta, 1983, 66, 1053-1060.	1.0	5
164	Interaction of p-nitrophenylalanine enkephalins with $\hat{l}\frac{1}{4}$ -, \hat{l} - and \hat{l}^{2} -subtypes of the opiate receptor. European Journal of Pharmacology, 1982, 77, 339-342.	1.7	4
165	Synthesis and Biological Properties of Enkephalin-like Peptides Containing Carboranylalanine in Place of Phenylalanine. Helvetica Chimica Acta, 1981, 64, 2078-2083.	1.0	26
166	Synthesis and Biological Properties of Enkephalin-like Peptides Containing Adamantylalanine in Position 4 and 5. Helvetica Chimica Acta, 1981, 64, 2084-2089.	1.0	10
167	Electronic, Steric, and Hydrophobic Factors Influencing the Action of Enkephalin-Like Peptides on Opiate Receptors. Hoppe-Seyler's Zeitschrift Fýr Physiologische Chemie, 1981, 362, 601-610.	1.7	20
168	Unusually strong lipophilicity of â€~fat' or â€~super' amino-acids, including a new reference value for glycine. Experientia, 1980, 36, 1203-1204.	1.2	62