
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8123186/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of isosorbide based polyurethanes: An isocyanate free method. Reactive and Functional Polymers, 2013, 73, 588-594.	4.1	152
2	Chemical modification of lignin by phosphorus molecules to improve the fire behavior of polybutylene succinate. Polymer Degradation and Stability, 2015, 113, 135-143.	5.8	115
3	Nafion®–sepiolite composite membranes for improved proton exchange membrane fuel cell performance. Journal of Membrane Science, 2013, 430, 167-179.	8.2	65
4	Janus hybrid silica/polymer nanoparticles as effective compatibilizing agents for polystyrene/polyamide-6 melted blends. Polymer, 2016, 90, 34-44.	3.8	61
5	Synthesis of Telechelic Oligomers via Atom Transfer Radical Polymerization, 1. Macromolecular Chemistry and Physics, 2004, 205, 154-164.	2.2	58
6	Improving the flame retardancy of flax fabrics by radiation grafting of phosphorus compounds. European Polymer Journal, 2015, 68, 313-325.	5.4	54
7	Fire retardancy of ethylene vinyl acetate/ultrafine kaolinite composites. Polymer Degradation and Stability, 2014, 100, 54-62.	5.8	40
8	Study of the combustion efficiency of polymers using a pyrolysis–combustion flow calorimeter. Combustion and Flame, 2013, 160, 2182-2193.	5.2	39
9	Interactions between kaolinite and phosphinate-based flame retardant in Polyamide 6. Applied Clay Science, 2018, 157, 248-256.	5.2	38
10	Synthesis of telechelic oligomers by atom transfer radical polymerization: A study of acrylate monomers. Journal of Polymer Science Part A, 2005, 43, 2377-2394.	2.3	37
11	Incorporation of modified Stöber silica nanoparticles in polystyrene/polyamide-6 blends: Coalescence inhibition and modification of the thermal degradation via controlled dispersion at the interface. Polymer, 2014, 55, 2704-2715.	3.8	36
12	Grafting of phosphorus flame retardants on flax fabrics: Comparison between two routes. Polymer Degradation and Stability, 2018, 147, 25-34.	5.8	36
13	Radical copolymerization of vinylidene fluoride with perfluoroalkylvinyl ethers. European Polymer Journal, 2005, 41, 1747-1756.	5.4	33
14	Relationships between the molecular structure and the flammability of polymers: Study of phosphonate functions using microscale combustion calorimeter. Polymer, 2012, 53, 1258-1266.	3.8	32
15	Prediction of thermosets flammability using a model based on group contributions. Polymer, 2017, 127, 203-213.	3.8	31
16	Effects of functionalized halloysite on morphology and properties of polyamide-11/SEBS-g-MA blends. European Polymer Journal, 2017, 90, 418-430.	5.4	30
17	Combination effect of polyhedral oligomeric silsesquioxane (POSS) and a phosphorus modified PMMA, flammability and thermal stability properties. Materials Chemistry and Physics, 2012, 136, 762-770.	4.0	28
18	Improvement of Nafion®-sepiolite composite membranes for PEMFC with sulfo-fluorinated sepiolite. Journal of Membrane Science, 2015, 495, 392-403.	8.2	26

#	Article	IF	CITATIONS
19	Fire retardancy of polypropylene/kaolinite composites. Polymer Degradation and Stability, 2016, 129, 260-267.	5.8	26
20	Fire retardancy of ethylene-vinyl acetate composites – Evaluation of synergistic effects between ATH and diatomite fillers. Polymer Degradation and Stability, 2016, 129, 246-259.	5.8	26
21	Predicting the flammability of polymers from their chemical structure: An improved model based on group contributions. Polymer, 2016, 86, 42-55.	3.8	26
22	Synthesis of maleimide-terminatedn-butyl acrylate oligomers by atom transfer radical polymerization: Study of their copolymerization with vinyl ethers. Journal of Polymer Science Part A, 2005, 43, 4303-4322.	2.3	24
23	Controlled Radical Polymerization of n-Butyl \hat{I} ±-Fluoroacrylate. 1. Use of Atom Transfer Radical Polymerization as the Polymerization Method. Macromolecules, 2002, 35, 7634-7641.	4.8	23
24	Use of Py-GC/MS and PCFC to characterize the surface modification of flax fibres. Journal of Analytical and Applied Pyrolysis, 2014, 105, 122-130.	5.5	22
25	Inner surface modification of halloysite nanotubes and its influence on morphology and thermal properties of polystyrene/polyamideâ€11 blends. Polymer International, 2017, 66, 300-312.	3.1	22
26	Synthesis of Telechelic Oligomers via Atom Transfer Radical Polymerization, 3. Macromolecular Chemistry and Physics, 2004, 205, 2002-2011.	2.2	20
27	Influence of a treated kaolinite on the thermal degradation and flame retardancy of poly(methyl) Tj ETQq1	1 0.784314 rgBT	- /Overlock I
28	Physicochemical properties of Aquivion/fluorine grafted sepiolite electrolyte membranes for use in PEMFC. Electrochimica Acta, 2019, 319, 933-946.	5.2	18
29	Viscoelastic properties of polystyrene/polyamide-6 blend compatibilized with silica/polystyrene Janus hybrid nanoparticles. Journal of Rheology, 2017, 61, 305-310.	2.6	17
30	Surfaces and Interfaces in Natural Fibre Reinforced Composites. Springer Briefs in Molecular Science, 2018, , .	0.1	17
31	Synthesis and copolymerisation of fluorinated monomers bearing a reactive lateral group. Journal of Fluorine Chemistry, 2005, 126, 1009-1016.	1.7	16
32	The influence of dispersion and distribution of ultrafine kaolinite in polyamide-6 on the mechanical properties and fire retardancy. Applied Clay Science, 2015, 116-117, 8-15.	5.2	16
33	Nanocomposites of polypropylene/polyamide 6 blends based on three different nanoclays: thermal stability and flame retardancy. Polimery, 2013, 58, 350-360.	0.7	16
34	Ethylene-vinyl acetate copolymer/aluminium trihydroxide composites: A new method to predict the barrier effect during cone calorimeter tests. Polymer Degradation and Stability, 2015, 120, 23-31.	5.8	15
35	Fire retardancy effect of phosphorusâ€modified halloysite on polyamideâ€11 nanocomposites. Polymer Engineering and Science, 2019, 59, 526-534.	3.1	15
36	Improvement of the fire behavior of poly(1,4â€butanediol succinate)/flax biocomposites by fiber surface modification with phosphorus compounds: molecular <i>versus</i> macromolecular strategy. Polymer International, 2014, 63, 1665-1673.	3.1	14

#	Article	IF	CITATIONS
37	Radiation-grafting of flame retardants on flax fabrics – A comparison between different flame retardant structures. Radiation Physics and Chemistry, 2018, 145, 135-142.	2.8	14
38	Correlation between process and silica dispersion/distribution into composite: Impact on mechanical properties and Weibull statistical analysis. Polymer Testing, 2018, 70, 92-101.	4.8	14
39	Fire behavior of innovative alginate foams. Carbohydrate Polymers, 2020, 250, 116910.	10.2	14
40	Flame Retardant-Functionalized Cotton Cellulose Using Phosphonate-Based Ionic Liquids. Molecules, 2020, 25, 1629.	3.8	14
41	Influence of monomer reactivity on radiation grafting of phosphorus flame retardants on flax fabrics. Polymer Degradation and Stability, 2019, 166, 86-98.	5.8	13
42	Halloysite nanotubes (HNTs)/polymer nanocomposites: thermal degradation and flame retardancy. , 2020, , 67-93.		13
43	Influence of radiation-crosslinking on flame retarded polymer materials—How crosslinking disrupts the barrier effect. Radiation Physics and Chemistry, 2015, 106, 278-288.	2.8	12
44	Influence of lignocellulosic substrate and phosphorus flame retardant type on grafting yield and flame retardancy. Reactive and Functional Polymers, 2020, 153, 104612.	4.1	12
45	Thermal degradation of polyesters filled with magnesium dihydroxide and magnesium oxide. Fire and Materials, 2016, 40, 445-463.	2.0	9
46	Hyperelastic behavior of modified sepiolite/SEBS thermoplastic elastomers. Journal of Materials Science, 2017, 52, 7591-7604.	3.7	9
47	Modification of the Interface/Interphase in Natural Fibre Reinforced Composites: Treatments and Processes. Springer Briefs in Molecular Science, 2018, , 35-70.	0.1	9
48	Dispersion control of raw and modified silica particles in PMMA. Impact on mechanical properties, from experiments to modelling. Composites Part B: Engineering, 2019, 157, 163-172.	12.0	9
49	Studying the thermo-oxidative stability of chars using pyrolysis-combustion flow calorimetry. Polymer Degradation and Stability, 2016, 134, 340-348.	5.8	8
50	Influence of colemanite on the fire retardancy of ethylene-vinyl acetate and ethylene-methyl acrylate copolymers. Polymer Degradation and Stability, 2017, 144, 401-410.	5.8	8
51	Exploring the Contribution of Two Phosphorus-Based Groups to Polymer Flammability via Pyrolysis–Combustion Flow Calorimetry. Materials, 2019, 12, 2961.	2.9	8
52	Polypropylene/Poly(vinyl alcohol) Blends Compatibilized with Kaolinite Janus Hybrid Particles and Their Transformation into Fibers. Industrial & Engineering Chemistry Research, 2019, 58, 10931-10940.	3.7	8
53	Chemical treatments of flax fibers – Control of the diffusion of molecules into the fiber structure. Industrial Crops and Products, 2019, 132, 430-439.	5.2	8
54	Flame retardancy of flax fibers by pre-irradiation grafting of a phosphonate monomer. Industrial Crops and Products, 2022, 176, 114334.	5.2	7

#	Article	IF	CITATIONS
55	Synthesis of triblock copolymers from glycolysed poly(ethylene terephthalate) by living radical polymerization. Journal of Polymer Science Part A, 2008, 46, 433-443.	2.3	6
56	Correlation between multiple chemical modification strategies on graphene or graphite and physical/electrical properties. FlatChem, 2022, 33, 100376.	5.6	6
57	Controlling interfacial interactions in LDPE/flax fibre biocomposites by a combined chemical and radiation-induced grafting approach. Cellulose, 2020, 27, 6333-6351.	4.9	5
58	Kinetic and thermodynamic parameters guiding the localization of regioselectively modified kaolin platelets into a PS/PA6 co-continuous blend. Polymer, 2020, 191, 122277.	3.8	5
59	Simultaneous surface modification and mechanical enhancement of micro/nanofiber fabrics achieved by Janus particles. EXPRESS Polymer Letters, 2021, 15, 626-640.	2.1	5
60	Composite short-side-chain PFSA electrolyte membranes containing selectively modified halloysite nanotubes (HNTs). Journal of Materials Science, 2021, 56, 13108-13127.	3.7	5
61	Synthesis of an Organotin Specific Molecularly Imprinted Polymer for Organotin Passive Sampling in Seawater. Water (Switzerland), 2022, 14, 1786.	2.7	3
62	Interfaces in Natural Fibre Reinforced Composites: Definitions and Roles. Springer Briefs in Molecular Science, 2018, , 23-34.	0.1	2
63	Characterization of the Fibre Modifications and Localization of the Functionalization Molecules. Springer Briefs in Molecular Science, 2018, , 71-100.	0.1	1
64	Assessment of olive pomace wastes as flame retardants. Journal of Applied Polymer Science, 2020, 137, 47715.	2.6	1
65	Introduction on Natural Fibre Structure: From the Molecular to the Macrostructural Level. Springer Briefs in Molecular Science, 2018, , 1-22.	0.1	0
66	Characterization of the Interface/Interphase in Natural Fibre Based Composites. Springer Briefs in Molecular Science, 2018, , 101-133.	0.1	0