William P Leeman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/812285/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas. Earth and Planetary Science Letters, 2009, 279, 20-33.	4.4	587
2	High-magnesian andesite from Mount Shasta: A product of magma mixing and contamination, not a primitive mantle melt. Geology, 2007, 35, 351.	4.4	395
3	Similar V/Sc Systematics in MORB and Arc Basalts: Implications for the Oxygen Fugacities of their Mantle Source Regions. Journal of Petrology, 2005, 46, 2313-2336.	2.8	364
4	Fractionation of trace elements by subduction-zone metamorphism — effect of convergent-margin thermal evolution. Earth and Planetary Science Letters, 1999, 171, 63-81.	4.4	260
5	The redox state of arc mantle using Zn/Fe systematics. Nature, 2010, 468, 681-685.	27.8	232
6	Compositional diversity of Late Cenozoic basalts in a transect across the southern Washington Cascades: Implications for subduction zone magmatism. Journal of Geophysical Research, 1990, 95, 19561-19582.	3.3	182
7	Boron depletion during progressive metamorphism: Implications for subduction processes. Earth and Planetary Science Letters, 1992, 111, 331-349.	4.4	180
8	Boron and lithium isotopic variations in a hot subduction zone—the southern Washington Cascades. Chemical Geology, 2004, 212, 101-124.	3.3	168
9	Boron geochemistry of the Central American Volcanic Arc: Constraints on the genesis of subduction-related magmas. Geochimica Et Cosmochimica Acta, 1994, 58, 149-168.	3.9	167
10	Petrogenesis of Mount St. HElens dacitic magmas. Journal of Geophysical Research, 1987, 92, 10313-10334.	3.3	131
11	Precise boron isotopic analysis of complex silicate (rock) samples using alkali carbonate fusion and ion-exchange separation. Chemical Geology, 1997, 142, 129-137.	3.3	126
12	Petrologic constraints on the thermal structure of the Cascades arc. Journal of Volcanology and Geothermal Research, 2005, 140, 67-105.	2.1	123
13	Subduction erosion of forearc mantle wedge implicated in the genesis of the South Sandwich Island (SSI) arc: Evidence from boron isotope systematics. Earth and Planetary Science Letters, 2011, 301, 275-284.	4.4	116
14	Miocene silicic volcanism in southwestern Idaho: geochronology, geochemistry, and evolution of the central Snake River Plain. Bulletin of Volcanology, 2008, 70, 315-342.	3.0	109
15	The boron systematics of intraplate lavas: Implications for crust and mantle evolution. Geochimica Et Cosmochimica Acta, 1996, 60, 415-422.	3.9	101
16	Along-strike trace element and isotopic variation in Aleutian Island arc basalt: Subduction melts sediments and dehydrates serpentine. Journal of Geophysical Research, 2007, 112, .	3.3	100
17	Partial melting of melt metasomatized subcontinental mantle and the magma source potential of the lower lithosphere. Journal of Geophysical Research, 1995, 100, 10255-10269.	3.3	96
18	The origin of Mount St. Helens andesites. Journal of Volcanology and Geothermal Research, 1993, 55, 271-303.	2.1	75

William P Leeman

#	Article	IF	CITATIONS
19	Lithium isotopic composition of marine sediments. Geochemistry, Geophysics, Geosystems, 2006, 7, n/a-n/a.	2.5	65
20	A Study of Cathodoluminescence and Trace Element Compositional Zoning in Natural Quartz from Volcanic Rocks: Mapping Titanium Content in Quartz. Microscopy and Microanalysis, 2012, 18, 1322-1341.	0.4	63
21	Boron and oxygen isotope evidence for recycling of subducted components over the past 2.5 Gyr. Nature, 2007, 447, 702-705.	27.8	60
22	The B isotopic composition of arc lavas from Martinique, Lesser Antilles. Earth and Planetary Science Letters, 1997, 146, 303-314.	4.4	55
23	Thermal structure beneath the Snake River Plain: Implications for the Yellowstone hotspot. Journal of Volcanology and Geothermal Research, 2009, 188, 57-67.	2.1	52
24	Mineralogy and geothermometry of high-temperature rhyolites from the central and western Snake River Plain. Bulletin of Volcanology, 1992, 54, 220-237.	3.0	51
25	Subduction of fracture zones controls mantle melting and geochemical signature above slabs. Nature Communications, 2014, 5, 5095.	12.8	51
26	Snake River Plain – Yellowstone silicic volcanism: implications for magma genesis and magma fluxes. Geological Society Special Publication, 2008, 304, 235-259.	1.3	47
27	Boron isotope variations in <scp>T</scp> ongaâ€ <scp>K</scp> ermadecâ€ <scp>N</scp> ew <scp>Z</scp> ealand arc lavas: Implications for the origin of subduction components and mantle influences. Geochemistry, Geophysics, Geosystems, 2017, 18, 1126-1162.	2.5	43
28	Boron and Other Fluid-mobile Elements in Volcanic Arc Lavas: Implications for Subduction Processes. Geophysical Monograph Series, 0, , 269-276.	0.1	42
29	Origin of hybrid ferrolatite lavas from Magic Reservoir eruptive center, Snake River Plain, Idaho. Contributions To Mineralogy and Petrology, 1987, 96, 163-177.	3.1	38
30	Petrology of "Mt. Shasta―high-magnesian andesite (HMA): A product of multi-stage crustal assembly. American Mineralogist, 2018, 103, 216-240.	1.9	29
31	Boron isotopic variations in NW USA rhyolites: Yellowstone, Snake River Plain, Eastern Oregon. Journal of Volcanology and Geothermal Research, 2009, 188, 162-172.	2.1	26
32	The role of magma mixing, identification of mafic magma inputs, and structure of the underlying magmatic system at Mount St. Helens. American Mineralogist, 2018, 103, 1925-1944.	1.9	24
33	Boron Contents in Selected International Geochemical Reference Samples. Geostandards and Geoanalytical Research, 1988, 12, 61-62.	3.1	23
34	Tracing chlorine sources of thermal and mineral springs along and across the Cascade Range using halogen concentrations and chlorine isotope compositions. Earth and Planetary Science Letters, 2015, 426, 225-234.	4.4	21
35	Old/New Subduction Zone Paradigms as Seen From the Cascades. Frontiers in Earth Science, 2020, 8, .	1.8	14