
## Yanli Pang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8122825/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Disruption of adipocyte HIF-1α improves atherosclerosis through the inhibition of ceramide generation.<br>Acta Pharmaceutica Sinica B, 2022, 12, 1899-1912.                                                      | 12.0 | 18        |
| 2  | Effects of Androgen Excess-Related Metabolic Disturbances on Granulosa Cell Function and Follicular Development. Frontiers in Endocrinology, 2022, 13, 815968.                                                   | 3.5  | 24        |
| 3  | Is there a relationship between plasma, cytokine concentrations, and the subsequent risk of postpartum hemorrhage?. American Journal of Obstetrics and Gynecology, 2022, 226, 835.e1-835.e17.                    | 1.3  | 5         |
| 4  | Systemic and ovarian inflammation in women with polycystic ovary syndrome. Journal of Reproductive Immunology, 2022, 151, 103628.                                                                                | 1.9  | 28        |
| 5  | The role of the gut microbiome and its metabolites in metabolic diseases. Protein and Cell, 2021, 12, 360-373.                                                                                                   | 11.0 | 175       |
| 6  | The impact of the gut microbiota on the reproductive and metabolic endocrine system. Gut Microbes, 2021, 13, 1-21.                                                                                               | 9.8  | 163       |
| 7  | Central Regulation of PCOS: Abnormal Neuronal-Reproductive-Metabolic Circuits in PCOS<br>Pathophysiology. Frontiers in Endocrinology, 2021, 12, 667422.                                                          | 3.5  | 46        |
| 8  | Intestinal hypoxia-inducible factor 2α regulates lactate levels to shape the gut microbiome and alter thermogenesis. Cell Metabolism, 2021, 33, 1988-2003.e7.                                                    | 16.2 | 80        |
| 9  | Macrophage HIF-2α suppresses NLRP3 inflammasome activation and alleviates insulin resistance. Cell<br>Reports, 2021, 36, 109607.                                                                                 | 6.4  | 32        |
| 10 | Metabolic Syndrome and PCOS: Pathogenesis and the Role of Metabolites. Metabolites, 2021, 11, 869.                                                                                                               | 2.9  | 51        |
| 11 | Loss of myeloidâ€specific lamin A/C drives lung metastasis through Gfiâ€1 and C/EBPεâ€mediated granulocytic differentiation. Molecular Carcinogenesis, 2020, 59, 679-690.                                        | 2.7  | 3         |
| 12 | The Role of Gut Microbiota in Host Lipid Metabolism: An Eye on Causation and Connection. Small<br>Methods, 2020, 4, 1900604.                                                                                     | 8.6  | 3         |
| 13 | The therapeutic effect of interleukin-22 in high androgen-induced polycystic ovary syndrome. Journal of Endocrinology, 2020, 245, 281-289.                                                                       | 2.6  | 30        |
| 14 | Gut microbiota–bile acid–interleukin-22 axis orchestrates polycystic ovary syndrome. Nature<br>Medicine, 2019, 25, 1225-1233.                                                                                    | 30.7 | 394       |
| 15 | Macrophage metabolic reprogramming aggravates aortic dissection through the HIF1α-ADAM17 pathway✰.<br>EBioMedicine, 2019, 49, 291-304.                                                                           | 6.1  | 74        |
| 16 | Elevated CD14++CD16+ Monocytes in Hyperhomocysteinemia-Associated Insulin Resistance in Polycystic<br>Ovary Syndrome. Reproductive Sciences, 2018, 25, 1629-1636.                                                | 2.5  | 6         |
| 17 | Hyperhomocysteinemia Promotes Insulin Resistance and Adipose Tissue Inflammation in PCOS Mice<br>Through Modulating M2 Macrophage Polarization via Estrogen Suppression. Endocrinology, 2017, 158,<br>1181-1193. | 2.8  | 30        |
| 18 | Platelet factor 4 is produced by subsets of myeloid cells in premetastatic lung and inhibits tumor metastasis. Oncotarget, 2017, 8, 27725-27739.                                                                 | 1.8  | 32        |

Yanli Pang

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Intermedin Restores Hyperhomocysteinemia-induced Macrophage Polarization and Improves Insulin Resistance in Mice. Journal of Biological Chemistry, 2016, 291, 12336-12345.                                            | 3.4 | 26        |
| 20 | Fractalkine restores the decreased expression of StAR and progesterone in granulosa cells from patients with polycystic ovary syndrome. Scientific Reports, 2016, 6, 26205.                                           | 3.3 | 10        |
| 21 | The role of anti-MÃ1⁄4llerian hormone in the pathogenesis and pathophysiological characteristics of polycystic ovary syndrome. European Journal of Obstetrics, Gynecology and Reproductive Biology, 2016, 199, 82-87. | 1.1 | 23        |
| 22 | Identification of a FOXP3+CD3+CD56+ population with immunosuppressive function in cancer tissues of human hepatocellular carcinoma. Scientific Reports, 2015, 5, 14757.                                               | 3.3 | 22        |
| 23 | Macrophage inflammasome mediates hyperhomocysteinemia-aggravated abdominal aortic aneurysm.<br>Journal of Molecular and Cellular Cardiology, 2015, 81, 96-106.                                                        | 1.9 | 51        |
| 24 | CCL9 Induced by TGFÎ <sup>2</sup> Signaling in Myeloid Cells Enhances Tumor Cell Survival in the Premetastatic<br>Organ. Cancer Research, 2015, 75, 5283-5298.                                                        | 0.9 | 61        |
| 25 | CXCR3 as a molecular target in breast cancer metastasis: inhibition of tumor cell migration and promotion of host anti-tumor immunity. Oncotarget, 2015, 6, 43408-43419.                                              | 1.8 | 65        |
| 26 | TGF-β Signaling in Myeloid Cells Is Required for Tumor Metastasis. Cancer Discovery, 2013, 3, 936-951.                                                                                                                | 9.4 | 134       |
| 27 | Hyperhomocysteinemia Promotes Insulin Resistance by Inducing Endoplasmic Reticulum Stress in<br>Adipose Tissue. Journal of Biological Chemistry, 2013, 288, 9583-9592.                                                | 3.4 | 96        |
| 28 | Grâ€1+CD11b+ cells are responsible for tumor promoting effect of TGFâ€Î² in breast cancer progression.<br>International Journal of Cancer, 2012, 131, 2584-2595.                                                      | 5.1 | 62        |
| 29 | Myeloid Suppressor Cells Regulate the Lung Environment—Response. Cancer Research, 2011, 71, 5052-5053.                                                                                                                | 0.9 | 5         |
| 30 | Gr-1+CD11b+ Myeloid Cells Tip the Balance of Immune Protection to Tumor Promotion in the<br>Premetastatic Lung. Cancer Research, 2010, 70, 6139-6149.                                                                 | 0.9 | 330       |
| 31 | TGF-Î <sup>2</sup> and immune cells: an important regulatory axis in the tumor microenvironment and progression.<br>Trends in Immunology, 2010, 31, 220-227.                                                          | 6.8 | 805       |
| 32 | Abstract 5320: Deletion of TGFß signaling in Gr-1+CD11b+ myeloid cells attenuates breast<br>adenocarcinoma progression. , 2010, , .                                                                                   |     | 0         |