Gyu-Tae Kim ## List of Publications by Year in descending order Source: https://exaly.com/author-pdf/8122630/publications.pdf Version: 2024-02-01 | 117 | 8,602 | 23 | 92 | |----------|----------------|--------------|----------------| | papers | citations | h-index | g-index | | 117 | 117 | 117 | 17123 | | all docs | docs citations | times ranked | citing authors | | # | Article | IF | CITATIONS | |----|---|-----|-----------| | 1 | Lifetime assessment of organic light emitting diodes by compact model incorporated with deep learning technique. Organic Electronics, 2022, 101, 106404. | 1.4 | 4 | | 2 | Simulator acceleration and inverse design of fin field-effect transistors using machine learning. Scientific Reports, 2022, 12, 1140. | 1.6 | 10 | | 3 | SPICE Study of STDP Characteristics in a Drift and Diffusive Memristor-Based Synapse for Neuromorphic Computing. IEEE Access, 2022, 10, 6381-6392. | 2.6 | 1 | | 4 | Tailoring the Electrical Characteristics of MoS ₂ FETs through Controllable Surface Charge Transfer Doping Using Selective Inkjet Printing. ACS Nano, 2022, 16, 6215-6223. | 7.3 | 11 | | 5 | Hidden surface channel in two-dimensional multilayers. 2D Materials, 2022, 9, 035004. | 2.0 | 5 | | 6 | Emergence of Quantum Tunneling in Ambipolar Black Phosphorus Multilayers without Heterojunctions. Advanced Functional Materials, 2022, 32, . | 7.8 | 6 | | 7 | Energy-Efficient III–V Tunnel FET-Based Synaptic Device with Enhanced Charge Trapping Ability Utilizing
Both Hot Hole and Hot Electron Injections for Analog Neuromorphic Computing. ACS Applied
Materials & Interfaces, 2022, 14, 24592-24601. | 4.0 | 5 | | 8 | Understanding random telegraph noise in two-dimensional BP/ReS ₂ heterointerface. Applied Physics Letters, 2022, 120, 253507. | 1.5 | 3 | | 9 | Defect spectroscopy of sidewall interfaces in gate-all-around silicon nanosheet FET. Nanotechnology, 2021, 32, 165202. | 1.3 | 3 | | 10 | Metal-Contact Improvement in a Multilayer WSe ₂ Transistor through Strong Hot Carrier Injection. ACS Applied Materials & Samp; Interfaces, 2021, 13, 2829-2835. | 4.0 | 3 | | 11 | Modeling and Understanding the Compact Performance of hâ€BN Dualâ€Gated ReS 2 Transistor. Advanced Functional Materials, 2021, 31, 2100625. | 7.8 | 9 | | 12 | Restricted Channel Migration in 2D Multilayer ReS ₂ . ACS Applied Materials & amp; Interfaces, 2021, 13, 19016-19022. | 4.0 | 13 | | 13 | Cyclic Thermal Effects on Devices of Twoâ€Dimensional Layered Semiconducting Materials. Advanced Electronic Materials, 2021, 7, 2100348. | 2.6 | 4 | | 14 | Multiple machine learning approach to characterize two-dimensional nanoelectronic devices via featurization of charge fluctuation. Npj 2D Materials and Applications, 2021, 5, . | 3.9 | 7 | | 15 | MWCNT-coated cotton yarn array for piezoresistive force and bending sensor applications in Internet of Things systems. Sensors and Actuators A: Physical, 2021, 332, 113209. | 2.0 | 3 | | 16 | Effect of Ir(pq)2acac doping on CBP in phosphorescence organic light-emitting diodes. Current Applied Physics, 2020, 20, 78-81. | 1.1 | 4 | | 17 | Effect of interlayer tunneling barrier on carrier transport and fluctuation in multilayer ReS2. Applied Physics Letters, 2020, 117, . | 1.5 | 6 | | 18 | Channel Length-Dependent Operation of Ambipolar Schottky-Barrier Transistors on a Single Si
Nanowire. ACS Applied Materials & Samp; Interfaces, 2020, 12, 43927-43932. | 4.0 | 8 | | # | Article | IF | CITATIONS | |----|--|-----|-----------| | 19 | Origin of exciplex degradation in organic light emitting diodes: Thermal stress effects over glass transition temperature of emission layer. Applied Physics Letters, 2020, 117, . | 1.5 | 12 | | 20 | A 2D material-based floating gate device with linear synaptic weight update. Nanoscale, 2020, 12, 24503-24509. | 2.8 | 34 | | 21 | Real-time effect of electron beam on MoS ₂ field-effect transistors. Nanotechnology, 2020, 31, 455202. | 1.3 | 8 | | 22 | Tuning the on/off current ratio in ionic-liquid gated multi-layer MoS ₂ field-effect transistors. Journal Physics D: Applied Physics, 2020, 53, 275104. | 1.3 | 5 | | 23 | Understanding tunable photoresponsivity of two-dimensional multilayer phototransistors: Interplay between thickness and carrier mobility. Applied Physics Letters, 2020, 116, . | 1.5 | 14 | | 24 | Detection and Accurate Classification of Mixed Gases Using Machine Learning with Impedance Data. Advanced Theory and Simulations, 2020, 3, 2000012. | 1.3 | 7 | | 25 | Understanding of the aging pattern in quantum dot light-emitting diodes using low-frequency noise.
Nanoscale, 2020, 12, 15888-15895. | 2.8 | 12 | | 26 | Drain induced barrier increasing in multilayer ReS ₂ . 2D Materials, 2020, 7, 031004. | 2.0 | 13 | | 27 | 50 km-Range Brillouin Optical Correlation Domain Analysis With First-Order Backward Distributed Raman Amplification. Journal of Lightwave Technology, 2020, 38, 5199-5204. | 2.7 | 16 | | 28 | The Shared Subjective Frames of Interdisciplinary Practitioners Involved in Function-Focused Care in a Nursing Home: Q-Methodology. The Journal of Nursing Research: JNR, 2020, 28, e69. | 0.7 | 1 | | 29 | Foldable water-activated reserve battery with diverse voltages. RSC Advances, 2020, 10, 402-410. | 1.7 | 0 | | 30 | Linearly Configured Brillouin Optical Correlation Domain Analysis System Incorporating Time-Domain Data Processing. Journal of Lightwave Technology, 2019, 37, 4728-4733. | 2.7 | 3 | | 31 | Transport-map analysis of ionic liquid-gated ambipolar WSe ₂ field-effect transistors. Semiconductor Science and Technology, 2019, 34, 075022. | 1.0 | 4 | | 32 | Enhanced efficiency and high temperature stability of hybrid quantum dot light-emitting diodes using molybdenum oxide doped hole transport layer. RSC Advances, 2019, 9, 16252-16257. | 1.7 | 14 | | 33 | Anisotropic electrical and thermal characteristics of carbon nanotube-embedded wood. Cellulose, 2019, 26, 5719-5730. | 2.4 | 9 | | 34 | Piezo-impedance response of carbon nanotube/polydimethylsiloxane nanocomposites. APL Materials, 2019, 7 , . | 2.2 | 29 | | 35 | Influence of hydrogen incorporation on conductivity and work function of VO ₂ nanowires. Nanoscale, 2019, 11, 4219-4225. | 2.8 | 9 | | 36 | Simple Method for Determining Channel Doping Concentration of Highly Doped FD-SOI Devices. , 2019, , . | | 0 | | # | Article | IF | CITATIONS | |----|--|------|-----------| | 37 | Series Resistance Effects on the Back-gate Biased Operation of Junctionless Transistors. , 2019, , . | | 1 | | 38 | Transfer of transition-metal dichalcogenide circuits onto arbitrary substrates for flexible device applications. Nanoscale, 2019, 11, 22118-22124. | 2.8 | 9 | | 39 | Web-drive based source measure unit for automated evaluations of ionic liquid-gated MoS2 transistors. Review of Scientific Instruments, 2019, 90, 124708. | 0.6 | 2 | | 40 | Fieldâ€Dependent Electrical and Thermal Transport in Polycrystalline WSe ₂ . Advanced Materials Interfaces, 2018, 5, 1701161. | 1.9 | 17 | | 41 | Soft-type trap-induced degradation of MoS ₂ field effect transistors. Nanotechnology, 2018, 29, 22LT01. | 1.3 | 4 | | 42 | Reconfigurable Si Nanowire Nonvolatile Transistors. Advanced Electronic Materials, 2018, 4, 1700399. | 2.6 | 21 | | 43 | Long Range One-End Accessible BOCDA Adopting Time Domain Data Processing. , 2018, , . | | 0 | | 44 | The Rayleigh and Polarization Fading Elimination in Phase-Extracted OTDR., 2018,,. | | 1 | | 45 | Probing Distinctive Electron Conduction in Multilayer Rhenium Disulfide. Advanced Materials, 2018, 31, 1805860. | 11.1 | 16 | | 46 | Optimized single-layer MoS ₂ field-effect transistors by non-covalent functionalisation. Nanoscale, 2018, 10, 17557-17566. | 2.8 | 26 | | 47 | Extraction of Intrinsic Electrical Parameters in Partially Depleted MoS2 Field-Effect Transistors. IEEE Transactions on Electron Devices, 2018, 65, 3050-3053. | 1.6 | 10 | | 48 | A Simple Method for Estimation of Silicon Film Thickness in Tri-Gate Junctionless Transistors. IEEE Electron Device Letters, 2018, 39, 1282-1285. | 2.2 | 1 | | 49 | Triethanolamine doped multilayer MoS ₂ field effect transistors. Physical Chemistry Chemical Physics, 2017, 19, 13133-13139. | 1.3 | 36 | | 50 | A skin-integrated transparent and stretchable strain sensor with interactive color-changing electrochromic displays. Nanoscale, 2017, 9, 7631-7640. | 2.8 | 160 | | 51 | Brillouin Optical Correlation Domain Analysis Enhanced by Time-Domain Data Processing for Concurrent Interrogation of Multiple Sensing Points. Journal of Lightwave Technology, 2017, 35, 5311-5316. | 2.7 | 30 | | 52 | Controlling charge balance using non-conjugated polymer interlayer in quantum dot light-emitting diodes. Organic Electronics, 2017, 50, 82-86. | 1.4 | 22 | | 53 | Few-Layer WSe ₂ Schottky Junction-Based Photovoltaic Devices through Site-Selective Dual Doping. ACS Applied Materials & Samp; Interfaces, 2017, 9, 42912-42918. | 4.0 | 17 | | 54 | Highâ€Performance Silver Cathode Surface Treated with Scandiaâ€Stabilized Zirconia Nanoparticles for Intermediate Temperature Solid Oxide Fuel Cells. Advanced Energy Materials, 2017, 7, 1601956. | 10.2 | 32 | | # | Article | IF | Citations | |----|---|-----|-----------| | 55 | Conductive multi-walled boron nitride nanotubes by catalytic etching using cobalt oxide. Physical Chemistry Chemical Physics, 2017, 19, 976-985. | 1.3 | 6 | | 56 | A BOCDA system using time-domain data processing for an enlarged measurement range to 10 km. , 2017, , . | | 0 | | 57 | Ultra-Easy and Fast Method for Transferring Graphene Grown on Metal Foil. Nano, 2017, 12, 1750140. | 0.5 | 4 | | 58 | Surface Modulation of Graphene Field Effect Transistors on Periodic Trench Structure. ACS Applied Materials & Samp; Interfaces, 2016, 8, 18513-18518. | 4.0 | 3 | | 59 | Low frequency noise reduction in multilayer WSe2 field effect transistors. , 2015, , . | | 0 | | 60 | Structural Origin of the Band Gap Anomaly of Quaternary Alloy
Cd _{<i>x</i>} Zn _{1–<i>x</i>} S _{<i>y</i>} Se _{1–<i>y</i>} Nanowires, Nanobelts, and Nanosheets in the Visible Spectrum. ACS Nano, 2015, 9, 5486-5499. | 7.3 | 17 | | 61 | Conductive carbon nanotube paper by recycling waste paper. RSC Advances, 2015, 5, 32118-32123. | 1.7 | 10 | | 62 | Evaluation of power generated by thermoelectric modules comprising a p-type and n-type single walled carbon nanotube composite paper. RSC Advances, 2015, 5, 78099-78103. | 1.7 | 17 | | 63 | Experimental and Theoretical Investigation of Magnetoresistance From Linear Regime to Saturation in 14-nm FD-SOI MOS Devices. IEEE Transactions on Electron Devices, 2015, 62, 3-8. | 1.6 | 7 | | 64 | Low-temperature operation of junctionless nanowire transistors: Less surface roughness scattering effects and dominant scattering mechanisms. Applied Physics Letters, 2014, 105, . | 1.5 | 15 | | 65 | Plasma treatment effect on charge carrier concentrations and surface traps in a-InGaZnO thin-film transistors. Journal of Applied Physics, 2014, 115 , . | 1.1 | 46 | | 66 | Resistive switching characteristics of polycrystalline SrTiO3 films. Applied Physics Letters, 2014, 104, . | 1.5 | 15 | | 67 | Effect of Intertube Junctions on the Thermoelectric Power of Monodispersed Single Walled Carbon
Nanotube Networks. Journal of Physical Chemistry C, 2014, 118, 26454-26461. | 1.5 | 43 | | 68 | Nitrogen-plasma treatment of parallel-aligned SnO2-nanowire field-effect transistors. Journal of the Korean Physical Society, 2014, 65, 502-508. | 0.3 | 1 | | 69 | Impedance characterization of nanogap interdigitated electrode arrays fabricated by tilted angle evaporation for electrochemical biosensor applications. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2014, 32, 021803. | 0.6 | 3 | | 70 | Separation of interlayer resistance in multilayer MoS2 field-effect transistors. Applied Physics Letters, 2014, 104, . | 1.5 | 46 | | 71 | Low-frequency noise in multilayer MoS ₂ field-effect transistors: the effect of high-k passivation. Nanoscale, 2014, 6, 433-441. | 2.8 | 146 | | 72 | Low-temperature characterization of hall and effective mobility in junctionless transistors., 2014,,. | | 0 | | # | Article | IF | Citations | |----|--|-----|-----------| | 73 | Thermoelectric properties of single walled carbon nanotube networks in polycarbonate matrix. Physica Status Solidi (B): Basic Research, 2013, 250, 1468-1473. | 0.7 | 20 | | 74 | The electrical characteristics of high density arrays of silicon nanowire field-effect transistors: Dependence on wire spacing. , 2013, , . | | 0 | | 75 | Inductively coupled plasma etching of hafnium-indium-zinc oxide using chlorine based gas mixtures. , 2013, , . | | O | | 76 | Simulation methodology for 2D random network of CNTs field-effect transistors. , 2013, , . | | 3 | | 77 | Influence of chemical treatment on the electrical conductivity and thermopower of expanded graphite foils. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 1183-1187. | 0.8 | 8 | | 78 | Electrical properties of high density arrays of silicon nanowire field effect transistors. Journal of Applied Physics, 2013, 114, 144503. | 1.1 | 8 | | 79 | Electronic properties of light-emitting p-n hetero-junction array consisting of p+-Si and aligned n-ZnO nanowires. Journal of Applied Physics, 2013, 113 , . | 1.1 | 6 | | 80 | Static and low frequency noise characterization of N-type random network of carbon nanotubes thin film transistors. Journal of Applied Physics, 2013, 114 , . | 1.1 | 9 | | 81 | Preparation and characterization of expanded graphite polymer composite films for thermoelectric applications. Physica Status Solidi (B): Basic Research, 2013, 250, 2529-2534. | 0.7 | 34 | | 82 | Channel access resistance effects on charge carrier mobility and low-frequency noise in a polymethyl methacrylate passivated SnO2 nanowire field-effect transistors. Applied Physics Letters, 2013, 102, . | 1.5 | 10 | | 83 | Static and low frequency noise characterization of densely packed CNT-TFTs., 2012,,. | | 3 | | 84 | Short channel mobility analysis of SiGe nanowire p-type field effect transistors: Origins of the strain induced performance improvement. Applied Physics Letters, 2012, 101, 143502. | 1.5 | 8 | | 85 | Effect of chemical treatment on the thermoelectric properties of single walled carbon nanotube networks. Physica Status Solidi (B): Basic Research, 2012, 249, 2353-2356. | 0.7 | 45 | | 86 | Raman investigation of fewâ€layer graphene on different substrate structures. Physica Status Solidi (B): Basic Research, 2012, 249, 2534-2537. | 0.7 | 2 | | 87 | Reduced charge fluctuations in individual SnO2 nanowires by suppressed surface reactions. Journal of Materials Chemistry, 2012, 22, 24012. | 6.7 | 22 | | 88 | Low-frequency noise in junctionless multigate transistors. Applied Physics Letters, 2011, 98, . | 1.5 | 52 | | 89 | Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science, 2011, 331, 568-571. | 6.0 | 6,190 | | 90 | ZnO-SnO <inf>2</inf> core-shell nanowire networks and their gas sensing characteristics., 2011,,. | | 1 | | # | Article | IF | Citations | |-----|--|------|-----------| | 91 | Effects of junctions on carbon nanotube networkâ€based devices. Physica Status Solidi (B): Basic Research, 2011, 248, 2644-2648. | 0.7 | 14 | | 92 | Whiteâ€Light Emitting Diode Array of p ⁺ â€Si/Aligned nâ€SnO ₂ Nanowires Heterojunctions. Advanced Functional Materials, 2011, 21, 119-124. | 7.8 | 43 | | 93 | Array of Singleâ€Walled Carbon Nanotube Intrajunction Devices Fabricated via Type Conversion by Partial Coating with βâ€Nicotinamide Adenine Dinucleotide. Advanced Functional Materials, 2011, 21, 2515-2521. | 7.8 | 8 | | 94 | Electrical Characteristics of Molybdenum Disulfide Flakes Produced by Liquid Exfoliation. Advanced Materials, 2011, 23, 4178-4182. | 11.1 | 224 | | 95 | A dual analyzer for real-time impedance and noise spectroscopy of nanoscale devices. Review of Scientific Instruments, 2011, 82, 034702. | 0.6 | 26 | | 96 | Controlled surface adsorption of fd filamentous phage by tuning of the $\langle i \rangle p \langle j \rangle H$ and the functionalization of the surface. Journal of Applied Physics, 2011, 109, 064701. | 1.1 | 11 | | 97 | Effect of humidity and thermal curing of polymer gate dielectrics on the electrical hysteresis of SnO2 nanowire field effect transistors. Applied Physics Letters, 2011, 98, 102906. | 1.5 | 11 | | 98 | Electron beam tuning of carrier concentrations in oxide nanowires. Journal of Applied Physics, 2011, 110, . | 1.1 | 3 | | 99 | Experimental analysis of surface roughness scattering in FinFET devices. , 2010, , . | | 1 | | 100 | Effect of gate dielectrics on the device performance of SnO2 nanowire field effect transistors. Applied Physics Letters, 2010, 96, . | 1.5 | 8 | | 101 | Low-frequency noise in strained SiGe core-shell nanowire p-channel field effect transistors. Applied Physics Letters, 2010, 97, 073505. | 1.5 | 27 | | 102 | Degradation pattern of SnO ₂ nanowire field effect transistors. Nanotechnology, 2010, 21, 485201. | 1.3 | 8 | | 103 | Analysis of charge sensitivity and low frequency noise limitation in silicon nanowire sensors. Journal of Applied Physics, 2010, 107, 044501. | 1.1 | 22 | | 104 | Efficient characterization and suppression methodology of edge effects for leakage current reduction of sub-40nm DRAM device. , 2010, , . | | 2 | | 105 | Photoconductance of aligned SnO2 nanowire field effect transistors. Applied Physics Letters, 2009, 95, . | 1.5 | 43 | | 106 | Contact barriers in a single ZnO nanowire device. Applied Physics A: Materials Science and Processing, 2009, 94, 253-256. | 1.1 | 10 | | 107 | Degradation of ZnO nanowire devices under the ambient condition. Materials Research Society Symposia Proceedings, 2008, 1080 , 1 . | 0.1 | 0 | | 108 | A direct measurement of the local resistances in a ZnO tetrapod by means of impedance spectroscopy: The role of the junction in the overall resistance. Applied Physics Letters, 2008, 93, 042111. | 1.5 | 19 | | # | Article | IF | Citations | |-----|--|-----|-----------| | 109 | Inhomogeneous spin accumulation in Py/Au/Py spin valve. Physica Status Solidi (B): Basic Research, 2007, 244, 4530-4533. | 0.7 | 2 | | 110 | Simple selective electron beam patterning on a single nanowire. , 2006, , . | | 0 | | 111 | Effect of intervening ferromagnet on spin accumulation in Py/Au/Py spin valve device. , 2006, , . | | 0 | | 112 | Extracting the Device Parameters from Organic Thin Film Transistors. Materials Research Society Symposia Proceedings, 2006, 965, 1. | 0.1 | 0 | | 113 | V2O5 nanowire-based nanoelectronic devices for helium detection. Applied Physics Letters, 2005, 86, 253102. | 1.5 | 62 | | 114 | The characteristics of joints with Indium-silver alloy using diffusion soldering method. Materials Research Society Symposia Proceedings, 2004, 817, 13. | 0.1 | 0 | | 115 | Photoresponse of sol-gel-synthesized ZnO nanorods. Applied Physics Letters, 2004, 84, 5022-5024. | 1.5 | 264 | | 116 | Photocurrent in ZnO nanowires grown from Au electrodes. Applied Physics Letters, 2004, 84, 4376-4378. | 1.5 | 293 | | 117 | Deep Understanding of Electron Beam Effects on 2D Layered Semiconducting Devices Under Bias Applications. Advanced Materials Interfaces, 0, , 2102488. | 1.9 | 1 |