Gregory A Taylor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8122250/publications.pdf

Version: 2024-02-01

39 papers 14,262 citations

201385 27 h-index 301761 39 g-index

40 all docs

40 docs citations

times ranked

40

25171 citing authors

#	Article	IF	CITATIONS
1	Enterocyte–innate lymphoid cell crosstalk drives early IFN-γ-mediated control of Cryptosporidium. Mucosal Immunology, 2022, 15, 362-372.	2.7	26
2	Irgm1 regulates metabolism and function in T cell subsets. Scientific Reports, 2022, 12, 850.	1.6	8
3	IRGM1 links mitochondrial quality control to autoimmunity. Nature Immunology, 2021, 22, 312-321.	7.0	67
4	Th17 Immunity in the Colon Is Controlled by Two Novel Subsets of Colon-Specific Mononuclear Phagocytes. Frontiers in Immunology, 2021, 12, 661290.	2.2	3
5	NaÃ ⁻ ve CD8 T cell IFNî ³ responses to a vacuolar antigen are regulated by an inflammasome-independent NLRP3 pathway and Toxoplasma gondii ROP5. PLoS Pathogens, 2020, 16, e1008327.	2.1	16
6	Irgm1-deficiency leads to myeloid dysfunction in colon lamina propria and susceptibility to the intestinal pathogen Citrobacter rodentium. PLoS Pathogens, 2020, 16, e1008553.	2.1	14
7	Dynaminâ€related Irgm proteins modulate LPSâ€induced caspaseâ€11 activation and septic shock. EMBO Reports, 2020, 21, e50830.	2.0	41
8	Toxoplasma gondii Parasitophorous Vacuole Membrane-Associated Dense Granule Proteins Orchestrate Chronic Infection and GRA12 Underpins Resistance to Host Gamma Interferon. MBio, 2019, 10, .	1.8	81
9	Rhoptry and Dense Granule Secreted Effectors Regulate CD8+ T Cell Recognition of Toxoplasma gondii Infected Host Cells. Frontiers in Immunology, 2019, 10, 2104.	2.2	24
10	The Crohn's Disease Risk Factor IRGM Limits NLRP3 Inflammasome Activation by Impeding Its Assembly and by Mediating Its Selective Autophagy. Molecular Cell, 2019, 73, 429-445.e7.	4.5	145
11	Environmental factors regulate Paneth cell phenotype and host susceptibility to intestinal inflammation in Irgm1-deficient mice. DMM Disease Models and Mechanisms, 2018, 11, .	1.2	22
12	Partners in anti-crime: how interferon-inducible GTPases and autophagy proteins team up in cell-intrinsic host defense. Current Opinion in Immunology, 2018, 54, 93-101.	2.4	29
13	Metabolic Alterations Contribute to Enhanced Inflammatory Cytokine Production in Irgm1-deficient Macrophages. Journal of Biological Chemistry, 2017, 292, 4651-4662.	1.6	22
14	Viral Replication Complexes Are Targeted by LC3-Guided Interferon-Inducible GTPases. Cell Host and Microbe, 2017, 22, 74-85.e7.	5.1	90
15	Interferon-Inducible GTPases in Host Resistance, Inflammation and Disease. Journal of Molecular Biology, 2016, 428, 3495-3513.	2.0	183
16	Akkermansia muciniphila mediates negative effects of IFN \hat{I}^3 on glucose metabolism. Nature Communications, 2016, 7, 13329.	5.8	232
17	mTOR is critical for intestinal T-cell homeostasis and resistance to Citrobacter rodentium. Scientific Reports, 2016, 6, 34939.	1.6	4
18	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701

#	Article	IF	CITATIONS
19	IFN- \hat{I}^3 -induced macrophage antileishmanial mechanisms in mice: A role for immunity-related GTPases, lrgm1 and lrgm3, in Leishmania donovani infection in the liver. Experimental Parasitology, 2015, 157, 103-109.	0.5	12
20	IRGM3 Contributes to Immunopathology and Is Required for Differentiation of Antigen-Specific Effector CD8 ⁺ T Cells in Experimental Cerebral Malaria. Infection and Immunity, 2015, 83, 1406-1417.	1.0	8
21	Palmitoylation of the Immunity Related GTPase, Irgm1: Impact on Membrane Localization and Ability to Promote Mitochondrial Fission. PLoS ONE, 2014, 9, e95021.	1.1	29
22	Irgm1-deficient mice exhibit Paneth cell abnormalities and increased susceptibility to acute intestinal inflammation. American Journal of Physiology - Renal Physiology, 2013, 305, G573-G584.	1.6	115
23	IRG and GBP Host Resistance Factors Target Aberrant, "Non-self―Vacuoles Characterized by the Missing of "Self―IRGM Proteins. PLoS Pathogens, 2013, 9, e1003414.	2.1	163
24	The Polymorphic Pseudokinase ROP5 Controls Virulence in Toxoplasma gondii by Regulating the Active Kinase ROP18. PLoS Pathogens, 2012, 8, e1002992.	2.1	153
25	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
26	Immunity-related GTPase M (IRGM) Proteins Influence the Localization of Guanylate-binding Protein 2 (GBP2) by Modulating Macroautophagy. Journal of Biological Chemistry, 2011, 286, 30471-30480.	1.6	71
27	Phosphorylation of Immunity-Related GTPases by a Toxoplasma gondii-Secreted Kinase Promotes Macrophage Survival and Virulence. Cell Host and Microbe, 2010, 8, 484-495.	5.1	286
28	Balance of Irgm protein activities determines IFN-Î ³ -induced host defense. Journal of Leukocyte Biology, 2009, 85, 877-885.	1.5	91
29	Behavioral characterization of P311 knockout mice. Genes, Brain and Behavior, 2008, 7, 786-795.	1.1	44
30	The p47 GTPase Lrg-47 (Irgm1) Links Host Defense and Hematopoietic Stem Cell Proliferation. Cell Stem Cell, 2008, 2, 83-89.	5.2	124
31	Impaired Macrophage Function Underscores Susceptibility toSalmonellain Mice Lacking Irgm1 (LRG-47). Journal of Immunology, 2007, 179, 6963-6972.	0.4	69
32	IRG proteins: key mediators of interferon-regulated host resistance to intracellular pathogens. Cellular Microbiology, 2007, 9, 1099-1107.	1.1	124
33	Control of IFN-Î ³ -mediated host resistance to intracellular pathogens by immunity-related GTPases (p47) Tj ETQq1	1.0.7843	14 ₄ gBT/Ov
34	Human IRGM Induces Autophagy to Eliminate Intracellular Mycobacteria. Science, 2006, 313, 1438-1441.	6.0	831
35	p47 GTPases: regulators of immunity to intracellular pathogens. Nature Reviews Immunology, 2004, 4, 100-109.	10.6	247
36	Autophagy Is a Defense Mechanism Inhibiting BCG and Mycobacterium tuberculosis Survival in Infected Macrophages. Cell, 2004, 119, 753-766.	13.5	1,996

#	Article	IF	CITATIONS
37	Immune Control of Tuberculosis by IFN-Â-Inducible LRG-47. Science, 2003, 302, 654-659.	6.0	629
38	Inactivation of Lrg-47 and Irg-47 Reveals a Family of Interferon γ–Inducible Genes with Essential, Pathogen-Specific Roles in Resistance to Infection. Journal of Experimental Medicine, 2001, 194, 181-188.	4.2	311
39	Zinc inhibits turnover of labile mRNAs in intact cells. Journal of Cellular Physiology, 1995, 162, 378-387.	2.0	34