Jun Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8122060/publications.pdf

Version: 2024-02-01

257101 329751 1,469 44 24 37 h-index citations g-index papers 44 44 44 1614 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Anaerobic Arsenite Oxidation by an Autotrophic Arsenite-Oxidizing Bacterium from an Arsenic-Contaminated Paddy Soil. Environmental Science & Environme	4.6	121
2	Nitrate Stimulates Anaerobic Microbial Arsenite Oxidation in Paddy Soils. Environmental Science & Envi	4.6	95
3	Biodegradation of Chloroacetamide Herbicides by Paracoccus sp. FLY-8 in Vitro. Journal of Agricultural and Food Chemistry, 2011, 59, 4614-4621.	2.4	92
4	Efficient Arsenic Methylation and Volatilization Mediated by a Novel Bacterium from an Arsenic-Contaminated Paddy Soil. Environmental Science & Enviro	4.6	86
5	Arsenic Methylation and Volatilization by Arsenite <i>S</i> -Adenosylmethionine Methyltransferase in Pseudomonas alcaligenes NBRC14159. Applied and Environmental Microbiology, 2015, 81, 2852-2860.	1.4	84
6	Adsorption and degradation of triazophos, chlorpyrifos and their main hydrolytic metabolites in paddy soil from Chaohu Lake, China. Journal of Environmental Management, 2011, 92, 2229-2234.	3.8	62
7	Soil organic matter amount determines the behavior of iron and arsenic in paddy soil with microbial fuel cells. Chemosphere, 2019, 237, 124459.	4.2	48
8	Cloning of a Novel Arylamidase Gene from Paracoccus sp. Strain FLN-7 That Hydrolyzes Amide Pesticides. Applied and Environmental Microbiology, 2012, 78, 4848-4855.	1.4	46
9	Catellibacterium nanjingense sp. nov., a propanil-degrading bacterium isolated from activated sludge, and emended description of the genus Catellibacterium. International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 495-499.	0.8	43
10	Thauera humireducens sp. nov., a humus-reducing bacterium isolated from a microbial fuel cell. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 873-878.	0.8	43
11	Paracoccus huijuniae sp. nov., an amide pesticide-degrading bacterium isolated from activated sludge of a wastewater biotreatment system. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 1132-1137.	0.8	38
12	Horizontal transfer of dehalogenase genes involved in the catalysis of chlorinated compounds: evidence and ecological role. Critical Reviews in Microbiology, 2012, 38, 95-110.	2.7	37
13	Sphingobacterium wenxiniae sp. nov., a cypermethrin-degrading species from activated sludge. International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 683-687.	0.8	34
14	Nitrite Accumulation Is Required for Microbial Anaerobic Iron Oxidation, but Not for Arsenite Oxidation, in Two Heterotrophic Denitrifiers. Environmental Science & Environmental Science, 2020, 54, 4036-4045.	4.6	33
15	Description of Catellibacterium caeni sp. nov., reclassification of Rhodobacter changlensis Anil Kumar et al. 2007 as Catellibacterium changlense comb. nov. and emended description of the genus Catellibacterium. International Journal of Systematic and Evolutionary Microbiology, 2011, 61, 1921-1926.	0.8	31
16	Microbial Degradation of Fomesafen by a Newly Isolated Strain Pseudomonas zeshuii BY-1 and the Biochemical Degradation Pathway. Journal of Agricultural and Food Chemistry, 2012, 60, 7104-7110.	2.4	31
17	Degradation of the chloroacetamide herbicide butachlor by Catellibacterium caeni sp. nov DCA-1T. International Biodeterioration and Biodegradation, 2012, 73, 16-22.	1.9	31
18	Sphingobacterium caeni sp. nov., isolated from activated sludge. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 2260-2264.	0.8	31

#	Article	IF	CITATIONS
19	Novosphingobium chloroacetimidivorans sp. nov., a chloroacetamide herbicide–degrading bacterium isolated from activated sludge. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 2573-2578.	0.8	29
20	Flavobacterium haoranii sp. nov., a cypermethrin-degrading bacterium isolated from a wastewater treatment system. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 2882-2886.	0.8	28
21	Comamonas guangdongensis sp. nov., isolated from subterranean forest sediment, and emended description of the genus Comamonas. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 809-814.	0.8	28
22	Nocardioides soli sp. nov., a carbendazim-degrading bacterium isolated from soil under the long-term application of carbendazim. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 2047-2052.	0.8	28
23	Roseomonas rhizosphaerae sp. nov., a triazophos-degrading bacterium isolated from soil. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 1127-1133.	0.8	27
24	Rhizobium flavum sp. nov., a triazophos-degrading bacterium isolated from soil under the long-term application of triazophos. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 2017-2022.	0.8	27
25	Role of ArsEFG in Roxarsone and Nitarsone Detoxification and Resistance. Environmental Science & Envir	4.6	27
26	Oxidation of organoarsenicals and antimonite by a novel flavin monooxygenase widely present in soil bacteria. Environmental Microbiology, 2022, 24, 752-761.	1.8	26
27	Dokdonella kunshanensis sp. nov., isolated from activated sludge, and emended description of the genus Dokdonella. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 1519-1523.	0.8	25
28	Comamonas jiangduensis sp. nov., a biosurfactant-producing bacterium isolated from agricultural soil. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 2168-2173.	0.8	25
29	Fluviicola hefeinensis sp. nov., isolated from the wastewater of a chemical factory. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 700-704.	0.8	24
30	Sphingobium jiangsuense sp. nov., a 3-phenoxybenzoic acid-degrading bacterium isolated from a wastewater treatment system. International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 800-805.	0.8	24
31	Fontibacter ferrireducens sp. nov., an Fe(III)-reducing bacterium isolated from a microbial fuel cell. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 925-929.	0.8	22
32	Pseudomonas zeshuii sp. nov., isolated from herbicide-contaminated soil. International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 2608-2612.	0.8	17
33	Rhodanobacter xiangquanii sp. nov., a Novel Anilofos-Degrading Bacterium Isolated from a Wastewater Treating System. Current Microbiology, 2011, 62, 645-649.	1.0	16
34	Taonella mepensis gen. nov., sp. nov., a member of the family Rhodospirillaceae isolated from activated sludge. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 2472-2476.	0.8	15
35	Sphingobacterium changzhouense sp. nov., a bacterium isolated from a rice field. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 4515-4518.	0.8	13
36	Anaerobic As(III) Oxidation Coupled with Nitrate Reduction and Attenuation of Dissolved Arsenic by <i>Noviherbaspirillum</i> Species. ACS Earth and Space Chemistry, 2021, 5, 2115-2123.	1.2	13

#	Article	IF	CITATIONS
37	Chryseomicrobium aureum sp. nov., a bacterium isolated from activated sludge. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 2682-2687.	0.8	11
38	<scp>ArsV and <scp>ArsW provide synergistic resistance to the antibiotic methylarsenite. Environmental Microbiology, 2021, 23, 7550-7562.</scp></scp>	1.8	11
39	Flavobacterium yanchengense sp. nov., isolated from soil. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 2848-2852.	0.8	10
40	Xenophilus arseniciresistens sp. nov., an arsenite-resistant bacterium isolated from soil. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 1926-1931.	0.8	10
41	Organoarsenical tolerance in <i>Sphingobacterium wenxiniae</i> , a bacterium isolated from activated sludge. Environmental Microbiology, 2022, 24, 762-771.	1.8	10
42	Functional characterization of the methylarseniteâ€inducible arsRM operon from Noviherbaspirillum denitrificans   HC18. Environmental Microbiology, 2022, , .	1.8	6
43	<scp>ArsZ</scp> from <i>Ensifer adhaerens</i> <scp>ST2</scp> is a novel methylarsenite oxidase. Environmental Microbiology, 2022, 24, 3013-3021.	1.8	6
44	Expression, Characterization, and Site-Directed Mutation of a Multiple Herbicide-Resistant Acetohydroxyacid Synthase (rAHAS) from Pseudomonas sp. Lm10. Current Microbiology, 2011, 63, 145-150.	1.0	5