Mitsuhiko Miyazaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8121947/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Infrared Spectroscopic Evidence for Protonated Water Clusters Forming Nanoscale Cages. Science, 2004, 304, 1134-1137.	12.6	493
2	Excited state hydrogen transfer dynamics in substituted phenols and their complexes with ammonia: I€I€â^—-I€Ifâ^— energy gap propensity and ortho-substitution effect. Journal of Chemical Physics, 2010, 133, 124	43 1 3.	123
3	Infrared spectroscopy of hydrated benzene cluster cations, [C6H6-(H2O)n]+ (n = 1–6): Structural changes upon photoionization and proton transfer reactions. Physical Chemistry Chemical Physics, 2003, 5, 1137-1148.	2.8	79
4	A Molecular Cluster Study on Activated CH/Ï€ Interactions:Â Infrared Spectroscopy of Aromatic Moleculeâ^'Acetylene Clusters. Journal of Physical Chemistry A, 2004, 108, 2652-2658.	2.5	67
5	Infrared spectroscopy of the benzene–H2O cluster cation: experimental study on the drastic structural change upon photoionization. Chemical Physics Letters, 2001, 349, 431-436.	2.6	63
6	Watching Water Migration around a Peptide Bond. Angewandte Chemie - International Edition, 2012, 51, 6604-6607.	13.8	63
7	Infrared spectroscopy of the phenol-N2 cluster in S0 and D0: Direct evidence of the in-plane structure of the cluster. Journal of Chemical Physics, 1999, 110, 11125-11128.	3.0	61
8	Infrared Spectroscopy of Size-Selected Benzeneâ^'Water Cluster Cations [C6H6â^'(H2O)n]+ (n = 1â^'23): Hydrogen Bond Network Evolution and Microscopic Hydrophobicity. Journal of Physical Chemistry A, 2004, 108, 10656-10660.	2.5	55
9	Morphology of Protonated Methanol Clusters:  An Infrared Spectroscopic Study of Hydrogen Bond Networks of H+(CH3OH)n (n = 4â~'15). Journal of Physical Chemistry A, 2005, 109, 138-141.	2.5	51
10	High-energy, broadly tunable, narrow-bandwidth mid-infrared optical parametric system pumped by quasi-phase-matched devices. Optics Letters, 2008, 33, 1699.	3.3	42
11	Isomer selective infrared spectroscopy of supersonically cooled cis- and trans-N-phenylamides in the region from the amide band to NH stretching vibration. Physical Chemistry Chemical Physics, 2009, 11, 6098.	2.8	41
12	Evidence for Catechol Ring- Induced Conformational Restriction in Neurotransmitters. Journal of Physical Chemistry Letters, 2010, 1, 1130-1133.	4.6	39
13	Ionization-induced π → H site switching dynamics in phenol–Ar ₃ . Physical Chemistry Chemical Physics, 2011, 13, 2409-2416.	2.8	37
14	Electronic spectroscopy of benzene–water cluster cations, [C6H6–(H2O)n]+ (n=1–4): spectroscopic evidence for phenyl radical formation through size-dependent intracluster proton transfer reactions. Chemical Physics Letters, 2004, 399, 412-416.	2.6	35
15	Binding Energy of the Benzeneâ^'Water Cluster Cation:Â An Ar-Mediated IR Photodissociation Study. Journal of Physical Chemistry A, 2004, 108, 8269-8272.	2.5	35
16	IR spectra of phenol+–Krn cluster cations (n=1,2): Evidence for photoionization-induced π→H isomerization. Chemical Physics Letters, 2007, 443, 227-231.	2.6	34
17	Photoionization-induced large-amplitude pendular motion in phenol ⁺ –Kr. Physical Chemistry Chemical Physics, 2011, 13, 2744-2747.	2.8	32
18	Solvation Dynamics of a Single Water Molecule Probed by Infrared Spectra—Theory Meets Experiment. Angewandte Chemie - International Edition, 2014, 53, 14601-14604.	13.8	31

#	Article	IF	CITATIONS
19	Ground State Proton Transfer in Phenol–(NH ₃) _{<i>n</i>} (<i>n</i> ≤1) Clusters Studied by Mid-IR Spectroscopy in 3–10 μm Range. Journal of Physical Chemistry A, 2013, 117, 1522-1530.	2.5	30
20	Gas-Phase Spectroscopy of Synephrine by Laser Desorption Supersonic Jet Technique. Journal of Physical Chemistry A, 2011, 115, 10363-10369.	2.5	29
21	Microhydrated aromatic cluster cations: Binding motifs of 4-aminobenzonitrile-(H2O)n cluster cations with n ≤4. Journal of Chemical Physics, 2014, 141, 214301.	3.0	29
22	Vibrational Signature of the Conformers in Tyramine Studied by IR Dip and Dispersed Fluorescence Spectroscopies. Journal of Physical Chemistry A, 2008, 112, 13463-13469.	2.5	27
23	Real time observation of the excimer formation dynamics of a gas phase benzene dimer by picosecond pump–probe spectroscopy. Physical Chemistry Chemical Physics, 2015, 17, 25989-25997.	2.8	27
24	Microsolvation of the acetanilide cation (AA ⁺) in a nonpolar solvent: IR spectra of AA ⁺ –L _n clusters (L = He, Ar, N ₂ ; n ≤0). Physical Chemistry Chemical Physics, 2014, 16, 7980-7995.	2.8	26
25	Conformational reduction of DOPA in the gas phase studied by laser desorption supersonic jet laser spectroscopy. Physical Chemistry Chemical Physics, 2011, 13, 7812.	2.8	23
26	IR spectroscopy of monohydrated tryptamine cation: Rearrangement of the intermolecular hydrogen bond induced by photoionization. Journal of Chemical Physics, 2012, 137, 224311.	3.0	23
27	Unusual Behavior in the First Excited State Lifetime of Catechol. Journal of Physical Chemistry Letters, 2013, 4, 3819-3823.	4.6	23
28	Solvent Migration in Microhydrated Aromatic Aggregates: Ionizationâ€Induced Site Switching in the 4â€Aminobenzonitrile–Water Cluster. Chemistry - A European Journal, 2014, 20, 2031-2039.	3.3	21
29	Single water solvation dynamics in the 4-aminobenzonitrile–water cluster cation revealed by picosecond time-resolved infrared spectroscopy. Physical Chemistry Chemical Physics, 2015, 17, 29969-29977.	2.8	20
30	Electron–Proton Decoupling in Excited‣tate Hydrogen Atom Transfer in the Gas Phase. Angewandte Chemie - International Edition, 2015, 54, 15089-15093.	13.8	20
31	A structural study on the excimer state of an isolated benzene dimer using infrared spectroscopy in the skeletal vibration region. Physical Chemistry Chemical Physics, 2017, 19, 22759-22776.	2.8	20
32	Sequential microhydration of cationic 5-hydroxyindole (5HI ⁺): infrared photodissociation spectra of 5HI ⁺ –W _n clusters (W = H ₂ O,) Tj ETQqO	0 02gBT /(Dverbock 10 T
33	Photoionization-induced π ↔ H site switching dynamics in phenol ⁺ –Rg (Rg = Ar, Kr) dimers probed by picosecond time-resolved infrared spectroscopy. Physical Chemistry Chemical Physics, 2016, 18, 24746-24754.	2.8	19
34	IR spectra of resorcinol+–Ar cluster cations (n= 1, 2): Evidence for photoionization-induced π → H isomerization. Chemical Physics Letters, 2009, 474, 7-12.	2.6	18
35	Conformationally resolved spectra of acetaminophen by UV-UV hole burning and IR dip spectroscopy in the gas phase. Physical Chemistry Chemical Physics, 2013, 15, 957-964.	2.8	18
36	Revealing the role of excited state proton transfer (ESPT) in excited state hydrogen transfer (ESHT): systematic study in phenol–(NH ₃) _n clusters. Chemical Science, 2021, 12, 3836-3856.	7.4	18

Μιτςυμικό Μιγαζακι

#	Article	IF	CITATIONS
37	Microsolvation of the 4â€Aminobenzonitrile Cation (ABN +) in a Nonpolar Solvent: IR Spectra of ABN + L n (L=Ar and N 2 , n â‰ #). ChemPhysChem, 2013, 14, 728-740.	2.1	17
38	Effect of alkali ions on optical properties of flavins: vibronic spectra of cryogenic M ⁺ lumiflavin complexes (M = Li–Cs). Faraday Discussions, 2019, 217, 256-275.	3.2	17
39	Isomerization reaction in high-n Rydberg states of phenol–Ar/Kr clusters measured by autoionization detected infrared spectroscopy. Chemical Physics Letters, 2011, 513, 208-211.	2.6	16
40	Real-time observation of the photoionization-induced water rearrangement dynamics in the 5-hydroxyindole–water cluster by time-resolved IR spectroscopy. Physical Chemistry Chemical Physics, 2018, 20, 3079-3091.	2.8	16
41	Effect of alkali ions on optical properties of flavins: vibronic spectra of cryogenic M ⁺ lumichrome ions (M = Li–Cs) in the gas phase. Physical Chemistry Chemical Physics, 2018, 20, 22148-22158.	2.8	15
42	Stepwise microhydration of aromatic amide cations: water solvation networks revealed by the infrared spectra of acetanilide ⁺ –(H ₂ O) _n clusters (<i>n</i> â‰ı). Physical Chemistry Chemical Physics, 2018, 20, 3148-3164.	2.8	15
43	Ionizationâ€Induced Solvent Migration in Acetanilideâ€Methanol Clusters Inferred from Isomerâ€Selective Infrared Spectroscopy. ChemPhysChem, 2012, 13, 3875-3881.	2.1	14
44	Electronic and Infrared Spectroscopy of [Benzeneâ^'(Methanol)n]+(n= 1â^'6). Journal of Physical Chemistry A, 2005, 109, 9471-9480.	2.5	13
45	IR Spectroscopy of the 4â€Aminobenzonitrile–Ar Cluster in the S 0 , S 1 Neutral and D 0 Cationic States. ChemPhysChem, 2013, 14, 741-745.	2.1	13
46	Ionization-induced π → H site-switching in phenol–CH ₄ complexes studied using IR dip spectroscopy. Physical Chemistry Chemical Physics, 2014, 16, 110-116.	2.8	13
47	IR laser manipulation of cis↔trans isomerization of 2-naphthol and its hydrogen-bonded clusters. Journal of Chemical Physics, 2006, 124, 054315.	3.0	12
48	Mass analyzed threshold ionization detected infrared spectroscopy: isomerization activity of the phenol–Ar cluster near the ionization threshold. Physical Chemistry Chemical Physics, 2015, 17, 2494-2503.	2.8	12
49	Deciphering environment effects in peptide bond solvation dynamics by experiment and theory. Physical Chemistry Chemical Physics, 2017, 19, 22564-22572.	2.8	11
50	Holeâ€Burning Spectra of <i>m</i> â€Fluorophenol/Ammonia (1:3) Clusters and Their Excited State Hydrogen Transfer Dynamics. ChemPhysChem, 2011, 12, 1928-1934.	2.1	10
51	Theoretical Study on the Size Dependence of Excited State Proton Transfer in 1-Naphthol–Ammonia Clusters. Journal of Physical Chemistry B, 2015, 119, 2415-2424.	2.6	9
52	Electronâ€Proton Transfer Mechanism of Excited‣tate Hydrogen Transfer in Phenolâ€(NH ₃) _{<i>n</i>} (<i>n=</i> 3 and 5). Chemistry - A European Journal, 2018, 24, 881-890.	3.3	8
53	A theoretical study on the size-dependence of ground-state proton transfer in phenol–ammonia clusters. Physical Chemistry Chemical Physics, 2018, 20, 3265-3276.	2.8	8
54	Real-time observation of photoionization-induced water migration dynamics in 4-methylformanilide–water by picosecond time-resolved infrared spectroscopy and <i>ab initio</i> molecular dynamics simulations. Physical Chemistry Chemical Physics, 2021, 24, 73-85.	2.8	8

Μιτςυμικό Μιγαζακι

#	Article	IF	CITATIONS
55	Isomer selective IR-UV depletion spectroscopy of 4-fluorotoluene-NH3: evidence for ï€-proton-acceptor and linear hydrogen-bonded complexes. Physical Chemistry Chemical Physics, 2011, 13, 15633.	2.8	7
56	Trapped Hydronium Radical Produced by Ultraviolet Excitation of Substituted Aromatic Molecule. Journal of Physical Chemistry A, 2015, 119, 12730-12735.	2.5	6
57	Theoretical Study on the Size Dependence of Ground-State Proton Transfer in 1-Naphthol–Ammonia Clusters. Journal of Physical Chemistry A, 2016, 120, 7167-7174.	2.5	6
58	Electron-proton transfer mechanism of excited-state hydrogen transfer in phenolâ^'(NH3) (n = 5) studied by delayed ionization detected femtosecond time-resolved NIR spectroscopy. Chemical Physics, 2018, 515, 580-585.	1.9	6
59	Structure of 1-naphthol–water clusters in the S1 state studied by UV–IR fluorescence dip spectroscopy and ab initio molecular orbital calculations. Chemical Physics Letters, 2013, 557, 19-25.	2.6	4
60	MODE-specific deactivation of adenine at the singlet excited states. Journal of Chemical Physics, 2013, 139, 124311.	3.0	4
61	The mechanism of excited-state proton transfer in 1-naphthol–piperidine clusters. Physical Chemistry Chemical Physics, 2015, 17, 25393-25402.	2.8	4
62	Excited state hydrogen transfer dynamics in phenol–(NH ₃) ₂ studied by picosecond UV-near IR-UV time-resolved spectroscopy. Physical Chemistry Chemical Physics, 2020, 22, 5740-5748.	2.8	4
63	Infrared Spectroscopic Evidence for Protonated Water Clusters Forming Nanoscale Cages ChemInform, 2004, 35, no.	0.0	3
64	Gas-phase Infrared Spectroscopy of Monopeptides from 10 to 3 µm. Chemistry Letters, 2011, 40, 1157-1158.	1.3	3
65	Ionization-Induced π → H Site Switching in Resorcinol–Ar _{<i>n</i>} (<i>n</i> = 1 and 2) Clusters Probed by Infrared Spectroscopy. Journal of Physical Chemistry A, 2019, 123, 6828-6839.	2.5	2
66	Isomer-Selective Spectroscopy and Dynamics of Phenol–Ar _{<i>n</i>} (<i>n</i> ≤5) Clusters. Journal of Physical Chemistry A, 2021, 125, 9969-9981.	2.5	2
67	Measurement of adiabatic ionization energies of the rotational isomers of n-propylbenzene and m-fluorophenol by direct VUV laser photoionization. Chemical Physics Letters, 2010, 485, 31-35.	2.6	1
68	IR–UV Double Resonance Spectroscopy as Implemented by Polarized Laser Schemes: Probing Orientations of Vibrational Transition Dipole Moments. Chemistry Letters, 2013, 42, 1070-1072.	1.3	0
69	Revealing Single Molecular Solvent Reorientation Dynamics by Complementary Use of Picosecond Time Resolved IR Spectroscopy and MD Simulation. Molecular Science, 2016, 10, A0087.	0.2	0