Odile Filhol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8121629/publications.pdf

Version: 2024-02-01

218677 161849 3,142 66 26 54 citations h-index g-index papers 69 69 69 4159 times ranked citing authors all docs docs citations

#	Article	IF	CITATIONS
1	Regulation of sclerostin by the SIRT1 stabilization pathway in osteocytes. Cell Death and Differentiation, 2022, 29, 1625-1638.	11.2	12
2	Extracellular endosulfatase Sulf-2 harbors a chondroitin/dermatan sulfate chain that modulates its enzyme activity. Cell Reports, 2022, 38, 110516.	6.4	15
3	Cooperative Blockade of CK2 and ATM Kinases Drives Apoptosis in VHL-Deficient Renal Carcinoma Cells through ROS Overproduction. Cancers, 2021, 13, 576.	3.7	19
4	NLRP7 Promotes Choriocarcinoma Growth and Progression through the Establishment of an Immunosuppressive Microenvironment. Cancers, 2021, 13, 2999.	3.7	16
5	Protein kinase CK2 contributes to placental development: physiological and pathological implications. Journal of Molecular Medicine, 2020, 98, 123-133.	3.9	10
6	Deletion of <i>Ck2β</i> gene causes germ cell development arrest and azoospermia in male mice. Cell Proliferation, 2020, 53, e12726.	5. 3	5
7	A RUNX2 stabilization pathway mediates physiologic and pathologic bone formation. Nature Communications, 2020, 11 , 2289.	12.8	48
8	CIGB-300 anticancer peptide regulates the protein kinase CK2-dependent phosphoproteome. Molecular and Cellular Biochemistry, 2020, 470, 63-75.	3.1	28
9	Ex-Vivo Treatment of Tumor Tissue Slices as a Predictive Preclinical Method to Evaluate Targeted Therapies for Patients with Renal Carcinoma. Cancers, 2020, 12, 232.	3.7	40
10	Discovery of holoenzyme-disrupting chemicals as substrate-selective CK2 inhibitors. Scientific Reports, 2019, 9, 15893.	3.3	18
11	2-Aminothiazole Derivatives as Selective Allosteric Modulators of the Protein Kinase CK2. 2. Structure-Based Optimization and Investigation of Effects Specific to the Allosteric Mode of Action. Journal of Medicinal Chemistry, 2019, 62, 1817-1836.	6.4	17
12	Targeting AU-rich element-mediated mRNA decay with a truncated active form of the zinc-finger protein TIS11b/BRF1 impairs major hallmarks of mammary tumorigenesis. Oncogene, 2019, 38, 5174-5190.	5.9	12
13	The tyrosine-kinase inhibitor sunitinib targets vascular endothelial (VE)-cadherin: a marker of response to antitumoural treatment in metastatic renal cell carcinoma. British Journal of Cancer, 2018, 118, 1179-1188.	6.4	23
14	Combined inhibition of PI3K and Src kinases demonstrates synergistic therapeutic efficacy in clear-cell renal carcinoma. Oncotarget, 2018, 9, 30066-30078.	1.8	10
15	3D polyelectrolyte scaffolds to mimic exocrine glands: a step towards a prostate-on-chip platform. The EuroBiotech Journal, 2018, 2, 180-191.	1.0	1
16	Polarity Reversal by Centrosome Repositioning Primes Cell Scattering during Epithelial-to-Mesenchymal Transition. Developmental Cell, 2017, 40, 168-184.	7.0	89
17	Protein kinase CK2 controls T-cell polarization through dendritic cell activation in response to contact sensitizers. Journal of Leukocyte Biology, 2017, 101, 703-715.	3.3	20
18	In Search of Small Molecule Inhibitors Targeting the Flexible CK2 Subunit Interface. Pharmaceuticals, 2017, 10, 16.	3.8	14

#	Article	IF	Citations
19	Stem Cell-Like Properties of CK2β-down Regulated Mammary Cells. Cancers, 2017, 9, 114.	3.7	6
20	Hematopoietic-Specific CSNK2B Loss in Mice Causes Impaired Erythropoiesis. Blood, 2017, 130, 82-82.	1.4	1
21	Protein kinase CK2 enables regulatory T cells to suppress excessive TH2 responses in vivo. Nature Immunology, 2015, 16, 267-275.	14.5	102
22	Protein kinase CK2 in breast cancer: the CK2 \hat{l}^2 regulatory subunit takes center stage in epithelial plasticity. Cellular and Molecular Life Sciences, 2015, 72, 3305-3322.	5.4	39
23	FRET-based screening assay using small-molecule photoluminescent probes in lysate of cells overexpressing RFP-fused protein kinases. Analytical Biochemistry, 2015, 481, 10-17.	2.4	12
24	Dysregulated Expression of Protein Kinase CK2 in Renal Cancer. , 2015, , 241-257.		5
25	Csnk2β Knockout during Hematopoiesis Results in Lethality at Mid/Late Gestation Mostly Due to Impaired Fetal Erythropoiesis. Blood, 2014, 124, 4329-4329.	1.4	1
26	Csnk2β, the Regulatory Subunit of Protein Kinase CK2, modulates Peripheral B Cell Development Repressing Notch2 Signaling and Promoting a Proper B-Cell Receptor Signal Transmission. Blood, 2014, 124, 566-566.	1.4	0
27	Spatial organization of the extracellular matrix regulates cell–cell junction positioning. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1506-1511.	7.1	502
28	DSIR: Assessing the Design of Highly Potent siRNA by Testing a Set of Cancer-Relevant Target Genes. PLoS ONE, 2012, 7, e48057.	2.5	18
29	Pharmacological Inhibition of LIM Kinase Stabilizes Microtubules and Inhibits Neoplastic Growth. Cancer Research, 2012, 72, 4429-4439.	0.9	67
30	A new micropatterning method of soft substrates reveals that different tumorigenic signals can promote or reduce cell contraction levels. Lab on A Chip, 2011, 11, 2231.	6.0	217
31	Regulation of epithelial to mesenchymal transition: $CK2\hat{l}^2$ on stage. Molecular and Cellular Biochemistry, 2011, 356, 11-20.	3.1	20
32	Structure–function analysis of the beta regulatory subunit of protein kinase CK2 by targeting embryonic stem cell. Molecular and Cellular Biochemistry, 2011, 356, 75-81.	3.1	5
33	Protein Kinases Curb Cell Death. Science Signaling, 2011, 4, pe26.	3.6	8
34	In Vitro and In Vivo Assays of Protein Kinase CK2 Activity. Methods in Enzymology, 2010, 485, 597-610.	1.0	3
35	Antitumor Activity of Pyridocarbazole and Benzopyridoindole Derivatives that Inhibit Protein Kinase CK2. Cancer Research, 2010, 70, 9865-9874.	0.9	74
36	Identification of chemical inhibitors of protein-kinase CK2 subunit interaction. Molecular and Cellular Biochemistry, 2008, 316, 63-69.	3.1	59

#	Article	IF	Citations
37	Protein kinase CK2 and cell polarity. Molecular and Cellular Biochemistry, 2008, 316, 107-113.	3.1	15
38	A phosphatase cascade by which rewarding stimuli control nucleosomal response. Nature, 2008, 453, 879-884.	27.8	219
39	Protein Kinase CK2 Phosphorylation of EB2 Regulates Its Function in the Production of Epstein-Barr Virus Infectious Viral Particles. Journal of Virology, 2007, 81, 11850-11860.	3.4	30
40	HIRIP3 is a nuclear phosphoprotein interacting with and phosphorylated by the serine-threonine kinase CK2. Biological Chemistry, 2007, 388, 391-8.	2.5	11
41	Structure-based design of small peptide inhibitors of protein kinase CK2 subunit interaction. Biochemical Journal, 2007, 408, 363-373.	3.7	91
42	A "DropChip" Cell Array for DNA and siRNA Transfection Combined with Drug Screening. Nanobiotechnology, 2005, 1, 183-190.	1.2	11
43	Highlighting protein kinase CK2 movement in living cells. Molecular and Cellular Biochemistry, 2005, 274, 15-22.	3.1	16
44	Protein kinase CK2: a new view of an old molecular complex. EMBO Reports, 2004, 5, 351-355.	4.5	108
45	The Antiapoptotic Protein ICBP90 Is a Target for Protein Kinase 2. Annals of the New York Academy of Sciences, 2004, 1030, 355-360.	3.8	11
46	Protein kinase CK2 regulates CDC25B phosphatase activity. Oncogene, 2003, 22, 220-232.	5.9	73
47	Live-Cell Fluorescence Imaging Reveals the Dynamics of Protein Kinase CK2 Individual Subunits. Molecular and Cellular Biology, 2003, 23, 975-987.	2.3	132
48	Adenovirus infection targets the cellular protein kinase CK2 and RNA-activated protein kinase (PKR) into viral inclusions of the cell nucleus. Microscopy Research and Technique, 2002, 56, 465-478.	2.2	24
49	Dynamic Localization/Association of Protein Kinase CK2 Subunits in Living Cells. Annals of the New York Academy of Sciences, 2002, 973, 272-277.	3.8	34
50	Mitotic Phosphorylation of DNA Topoisomerase II \hat{l}_{\pm} by Protein Kinase CK2 Creates the MPM-2 Phosphoepitope on Ser-1469. Journal of Biological Chemistry, 2000, 275, 34710-34718.	3.4	72
51	The Disruption of Adherens Junctions Is Associated with a Decrease of E-Cadherin Phosphorylation by Protein Kinase CK2. Experimental Cell Research, 2000, 257, 255-264.	2.6	64
52	The Multifunctional Herpes Simplex Virus IE63 Protein Interacts with Heterogeneous Ribonucleoprotein K and with Casein Kinase 2. Journal of Biological Chemistry, 1999, 274, 28991-28998.	3.4	76
53	Crystallization and preliminary X-ray diffraction analysis of the regulatory subunit of human protein kinase CK2. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 895-897.	2.5	5
54	Dissecting subdomains involved in multiple functions of the $CK2\hat{I}^2$ subunit. Molecular and Cellular Biochemistry, 1999, 191, 43-50.	3.1	15

#	Article	IF	CITATIONS
55	Interaction of elongation factor eEF-2 with ribosomal P proteins. FEBS Journal, 1999, 262, 606-611.	0.2	76
56	Binding of Polyamines to an Autonomous Domain of the Regulatory Subunit of Protein Kinase CK2 Induces a Conformational Change in the Holoenzyme. Journal of Biological Chemistry, 1997, 272, 20820-20827.	3.4	98
57	Making Hybrids of Two-Hybrid Systems. BioTechniques, 1997, 22, 916-922.	1.8	12
58	Identification of a cryptic protein kinase CK2 phosphorylation site in human complement protease C1r, and its use to probe intramolecular interaction. FEBS Letters, 1996, 386, 15-20.	2.8	5
59	Fibroblast Growth Factor-2 Binds to the Regulatory \hat{l}^2 Subunit of CK2 and Directly Stimulates CK2 Activity toward Nucleolin. Journal of Biological Chemistry, 1996, 271, 24781-24787.	3.4	136
60	Quaternary Structure of Casein Kinase 2. Journal of Biological Chemistry, 1995, 270, 8345-8352.	3.4	104
61	Direct Identification of a Polyamine Binding Domain on the Regulatory Subunit of the Protein Kinase Casein Kinase 2 by Photoaffinity Labeling. Journal of Biological Chemistry, 1995, 270, 17400-17406.	3.4	49
62	Baculovirus-directed expression of human prostatic steroid 5α-reductase 1 in an active form. Journal of Steroid Biochemistry and Molecular Biology, 1993, 46, 177-182.	2.5	17
63	Casein kinase II and polyamines may interact in the response of adrenocortical cells to their trophic hormone. Biochemical and Biophysical Research Communications, 1991, 180, 623-630.	2.1	21
64	Polyamine binding activity of casein kinase II. Biochemical and Biophysical Research Communications, 1991, 180, 945-952.	2.1	50
65	DNA binding activity of casein kinase II. Biochemical and Biophysical Research Communications, 1990, 173, 862-871.	2.1	19
66	$\text{CK2}\hat{\text{I}}^2$ Is a Gatekeeper of Focal Adhesions Regulating Cell Spreading. Frontiers in Molecular Biosciences, 0, 9, .	3.5	1