Niels Galjart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8121436/publications.pdf

Version: 2024-02-01

		34100	40976
96	11,217	52	93
papers	citations	h-index	g-index
100	100	100	12486
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	CLASP2 safeguards hematopoietic stem cell properties during mouse and fish development. Cell Reports, 2022, 39, 110957.	6.4	2
2	Novel <i>TUBA4A</i> Variant Associated With Familial Frontotemporal Dementia. Neurology: Genetics, 2021, 7, e596.	1.9	18
3	Targeting the Microtubule EB1-CLASP2 Complex Modulates Na _V 1.5 at Intercalated Discs. Circulation Research, 2021, 129, 349-365.	4.5	23
4	CTCF chromatin residence time controls three-dimensional genome organization, gene expression and DNA methylation in pluripotent cells. Nature Cell Biology, 2021, 23, 881-893.	10.3	30
5	The +TIP Navigator-1 is an actin–microtubule crosslinker that regulates axonal growth cone motility. Journal of Cell Biology, 2020, 219, .	5.2	25
6	Purification of Mammalian Tubulins and Tubulin-Associated Proteins Using a P2A-Based Expression System. Methods in Molecular Biology, 2020, 2101, 1-17.	0.9	2
7	Facilitating Data Association In Particle Tracking Using Autoencoding And Score Matching. , 2019, , .		5
8	Distinct Functions for Mammalian CLASP1 and -2 During Neurite and Axon Elongation. Frontiers in Cellular Neuroscience, 2019, 13, 5.	3.7	15
9	The transcriptional regulator CCCTC-binding factor limits oxidative stress in endothelial cells. Journal of Biological Chemistry, 2018, 293, 8449-8461.	3.4	18
10	Remote Memory and Cortical Synaptic Plasticity Require Neuronal CCCTC-Binding Factor (CTCF). Journal of Neuroscience, 2018, 38, 5042-5052.	3.6	39
11	Accurate estimation of intracellular dynamics and underlying spatial structures using hierarchical trajectory smoothing. , 2018, , .		1
12	TAPping into the treasures of tubulin using novel protein production methods. Essays in Biochemistry, 2018, 62, 781-792.	4.7	4
13	Choice of binding sites for CTCFL compared to CTCF is driven by chromatin and by sequence preference. Nucleic Acids Research, 2018, 46, 7097-7107.	14.5	20
14	Inducible podocyte-specific deletion of CTCF drives progressive kidney disease and bone abnormalities. JCI Insight, 2018, 3, .	5.0	14
15	Mitotic progression, arrest, exit or death relies on centromere structural integrity, rather than de novo transcription. ELife, 2018, 7, .	6.0	18
16	Ninein is essential for apico-basal microtubule formation and CLIP-170 facilitates its redeployment to non-centrosomal microtubule organizing centres. Open Biology, 2017, 7, 160274.	3.6	45
17	Cohesin is positioned in mammalian genomes by transcription, CTCF and Wapl. Nature, 2017, 544, 503-507.	27.8	385
18	Purification of Biotinylated Proteins Using Single Walled Carbon Nanotube-Streptavidin Complexes. Journal of Nanoscience and Nanotechnology, 2017, 17, 926-931.	0.9	0

#	Article	IF	CITATIONS
19	Gaussian processes for trajectory analysis in microtubule tracking applications. , 2017, , .		3
20	CTCF orchestrates the germinal centre transcriptional program and prevents premature plasma cell differentiation. Nature Communications, 2017, 8, 16067.	12.8	22
21	CTCF counter-regulates cardiomyocyte development and maturation programs in the embryonic heart. PLoS Genetics, 2017, 13, e1006985.	3.5	54
22	<i>ACTG2</i> variants impair actin polymerization in sporadic Megacystis Microcolon Intestinal Hypoperistalsis Syndrome. Human Molecular Genetics, 2016, 25, 571-583.	2.9	56
23	CTCF contributes in a critical way to spermatogenesis and male fertility. Scientific Reports, 2016, 6, 28355.	3.3	28
24	Isolation of Functional Tubulin Dimers and of Tubulin-Associated Proteins from Mammalian Cells. Current Biology, 2016, 26, 1728-1736.	3.9	66
25	CLASP2-dependent microtubule capture at the neuromuscular junction membrane requires LL5 \hat{I}^2 and actin for focal delivery of acetylcholine receptor vesicles. Molecular Biology of the Cell, 2015, 26, 938-951.	2.1	31
26	A defect in the CLIP1 gene (CLIP-170) can cause autosomal recessive intellectual disability. European Journal of Human Genetics, 2015, 23, 331-336.	2.8	22
27	The DNA-binding factor Ctcf critically controls gene expression in macrophages. Cellular and Molecular Immunology, 2014, 11, 58-70.	10.5	34
28	Severe presentation of <i>WDR62</i> mutation: Is there a role for modifying genetic factors?. American Journal of Medical Genetics, Part A, 2014, 164, 2161-2171.	1.2	30
29	Dual Effect of CTCF Loss on Neuroprogenitor Differentiation and Survival. Journal of Neuroscience, 2014, 34, 2860-2870.	3.6	71
30	CTCF induces histone variant incorporation, erases the H3K27me3 histone mark and opens chromatin. Nucleic Acids Research, 2014, 42, 11941-11951.	14.5	41
31	Acetylcholine Receptor (AChR) Clustering Is Regulated Both by Glycogen Synthase Kinase 3β (GSK3β)-dependent Phosphorylation and the Level of CLIP-associated Protein 2 (CLASP2) Mediating the Capture of Microtubule Plus-ends. Journal of Biological Chemistry, 2014, 289, 30857-30867.	3.4	19
32	Dynamic Microtubules Catalyze Formation of Navigator-TRIO Complexes to Regulate Neurite Extension. Current Biology, 2014, 24, 1778-1785.	3.9	73
33	Going Solo. Methods in Cell Biology, 2013, 115, 109-124.	1.1	5
34	MAP1B regulates microtubule dynamics by sequestering EB1/3 in the cytosol of developing neuronal cells. EMBO Journal, 2013, 32, 1293-1306.	7.8	80
35	Protein 4.1R binds to CLASP2 and regulates dynamics, organization and attachment of microtubules to the cell cortex. Journal of Cell Science, 2013, 126, 4589-601.	2.0	31
36	Host microtubule plus-end binding protein CLASP1 influences sequential steps in the Trypanosoma cruziin fection process. Cellular Microbiology, 2013, 15, 571-584.	2.1	12

#	Article	IF	CITATIONS
37	Agrin regulates CLASP2-mediated capture of microtubules at the neuromuscular junction synaptic membrane. Journal of Cell Biology, 2012, 198, 421-437.	5.2	57
38	<i>Tcra</i> gene recombination is supported by a <i>Tcra</i> enhancer- and CTCF-dependent chromatin hub. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3493-502.	7.1	79
39	CTCF Is Required for Neural Development and Stochastic Expression of Clustered Pcdh Genes in Neurons. Cell Reports, 2012, 2, 345-357.	6.4	154
40	The Microtubule Plus-End Tracking Protein CLASP2 Is Required for Hematopoiesis and Hematopoietic Stem Cell Maintenance. Cell Reports, 2012, 2, 781-788.	6.4	35
41	The male germ cell gene regulator CTCFL is functionally different from CTCF and binds CTCF-like consensus sites in a nucleosome composition-dependent manner. Epigenetics and Chromatin, 2012, 5, 8.	3.9	80
42	The DNA-Binding Protein CTCF Limits Proximal \hat{V}^{Ω} Recombination and Restricts \hat{I}^{Ω} Enhancer Interactions to the Immunoglobulin \hat{I}^{Ω} Light Chain Locus. Immunity, 2011, 35, 501-513.	14.3	114
43	History-Dependent Catastrophes Regulate Axonal Microtubule Behavior. Current Biology, 2010, 20, 1023-1028.	3.9	64
44	Plus-End-Tracking Proteins and Their Interactions at Microtubule Ends. Current Biology, 2010, 20, R528-R537.	3.9	194
45	CTCF regulates the local epigenetic state of ribosomal DNA repeats. Epigenetics and Chromatin, 2010, 3, 19.	3.9	80
46	In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature, 2010, 464, 116-120.	27.8	792
47	Phosphorylation Controls Autoinhibition of Cytoplasmic Linker Protein-170. Molecular Biology of the Cell, 2010, 21, 2661-2673.	2.1	40
48	Functional Analysis of CTCF During Mammalian Limb Development. Developmental Cell, 2010, 19, 819-830.	7.0	136
49	Nicotinamide adenine dinucleotide (NAD)–regulated DNA methylation alters CCCTC-binding factor (CTCF)/cohesin binding and transcription at the BDNF locus. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21836-21841.	7.1	58
50	Critical Role for the Transcription Regulator CCCTC-Binding Factor in the Control of Th2 Cytokine Expression. Journal of Immunology, 2009, 182, 999-1010.	0.8	56
51	Phosphorylation of CLASP2 by GSK-3 \hat{l}^2 regulates its interaction with IQGAP1, EB1 and microtubules. Journal of Cell Science, 2009, 122, 2969-2979.	2.0	132
52	Motor-Independent Targeting of CLASPs to Kinetochores by CENP-E Promotes Microtubule Turnover and Poleward Flux. Current Biology, 2009, 19, 1566-1572.	3.9	120
53	Mammalian Navigators are microtubule plusâ€end tracking proteins that can reorganize the cytoskeleton to induce neuriteâ€like extensions. Cytoskeleton, 2009, 66, 824-838.	4.4	49
54	CTCF regulates cell cycle progression of $\hat{l}\pm\hat{l}^2$ T cells in the thymus. EMBO Journal, 2008, 27, 2839-2850.	7.8	155

#	Article	IF	Citations
55	Dynein, Lis1 and CLIP-170 counteract Eg5-dependent centrosome separation during bipolar spindle assembly. EMBO Journal, 2008, 27, 3235-3245.	7.8	144
56	Particle Filtering for Multiple Object Tracking in Dynamic Fluorescence Microscopy Images: Application to Microtubule Growth Analysis. IEEE Transactions on Medical Imaging, 2008, 27, 789-804.	8.9	157
57	Cryo electron tomography of vitrified fibroblasts: Microtubule plus ends in situ. Journal of Structural Biology, 2008, 161, 459-468.	2.8	58
58	Plasma membrane recruitment of dephosphorylated \hat{l}^2 -catenin upon activation of the Wnt pathway. Journal of Cell Science, 2008, 121, 1793-1802.	2.0	75
59	Microtubule Plus-End Conformations and Dynamics in the Periphery of Interphase Mouse Fibroblasts. Molecular Biology of the Cell, 2008, 19, 3138-3146.	2.1	28
60	Dynamic behavior of GFP–CLIP-170 reveals fast protein turnover on microtubule plus ends. Journal of Cell Biology, 2008, 180, 729-737.	5.2	107
61	Visualization of microtubule growth in living platelets reveals a dynamic marginal band with multiple microtubules. Blood, 2008, 111, 4605-4616.	1.4	130
62	Asymmetric CLASP-Dependent Nucleation of Noncentrosomal Microtubules at the trans-Golgi Network. Developmental Cell, 2007, 12, 917-930.	7.0	481
63	Microtubule-binding proteins CLASP1 and CLASP2 interact with actin filaments. Cytoskeleton, 2007, 64, 519-530.	4.4	93
64	Rao-Blackwellized Marginal Particle Filtering for Multiple Object Tracking in Molecular Bioimaging. Lecture Notes in Computer Science, 2007, 20, 110-121.	1.3	15
65	CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus. Genes and Development, 2006, 20, 2349-2354.	5.9	643
66	CLASPs Attach Microtubule Plus Ends to the Cell Cortex through a Complex with LL5 \hat{i}^2 . Developmental Cell, 2006, 11, 21-32.	7.0	288
67	CLIP-170 facilitates the formation of kinetochore–microtubule attachments. EMBO Journal, 2006, 25, 45-57.	7.8	72
68	Role of CLASP2 in Microtubule Stabilization and the Regulation of Persistent Motility. Current Biology, 2006, 16, 2259-2264.	3.9	159
69	Differential effects of matrix and growth factors on endothelial and fibroblast motility: Application of a modified cell migration assay. Journal of Cellular Biochemistry, 2006, 99, 1536-1552.	2.6	55
70	Tubulin tyrosination is a major factor affecting the recruitment of CAP-Gly proteins at microtubule plus ends. Journal of Cell Biology, 2006, 174, 839-849.	5.2	271
71	Mammalian CLASP1 and CLASP2 Cooperate to Ensure Mitotic Fidelity by Regulating Spindle and Kinetochore Function. Molecular Biology of the Cell, 2006, 17, 4526-4542.	2.1	116
72	Differential Contributions of Mammalian Rad54 Paralogs to Recombination, DNA Damage Repair, and Meiosis. Molecular and Cellular Biology, 2006, 26, 976-989.	2.3	134

#	Article	IF	CITATIONS
73	Differential roles of microtubule assembly and sliding in proplatelet formation by megakaryocytes. Blood, 2005, 106, 4076-4085.	1.4	184
74	CLIPs and CLASPs and cellular dynamics. Nature Reviews Molecular Cell Biology, 2005, 6, 487-498.	37.0	188
7 5	CTCF binding and higher order chromatin structure of the H19 locus are maintained in mitotic chromatin. EMBO Journal, 2005, 24, 3291-3300.	7.8	123
76	The microtubule plus-end-tracking protein CLIP-170 associates with the spermatid manchette and is essential for spermatogenesis. Genes and Development, 2005, 19, 2501-2515.	5.9	101
77	EB1 and EB3 Control CLIP Dissociation from the Ends of Growing Microtubules. Molecular Biology of the Cell, 2005, 16, 5334-5345.	2.1	182
78	CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex. Journal of Cell Biology, 2005, 168, 141-153.	5.2	409
79	The Marginal Microtubule Coil in the Resting Blood Platelet Is a Dynamic Bipolar Array Blood, 2005, 106, 1653-1653.	1.4	1
80	Conformational changes in CLIP-170 regulate its binding to microtubules and dynactin localization. Journal of Cell Biology, 2004, 166, 1003-1014.	5.2	159
81	LIMK1 and CLIP-115: linking cytoskeletal defects to Williams syndrome. BioEssays, 2004, 26, 141-150.	2,5	83
82	Gain and Phase Control of Compensatory Eye Movements by the Flocculus of the Vestibulocerebellum. Springer Handbook of Auditory Research, 2004, , 375-422.	0.7	7
83	A plus-end raft to control microtubule dynamics and function. Current Opinion in Cell Biology, 2003, 15, 48-53.	5.4	91
84	Bicaudal D induces selective dynein-mediated microtubule minus end-directed transport. EMBO Journal, 2003, 22, 6004-6015.	7.8	196
85	Visualization of Microtubule Growth in Cultured Neurons via the Use of EB3-GFP (End-Binding Protein) Tj ETQq $1\ 1$	0.784314 3.6	rgBT /Ovel
86	Cytoplasmic linker proteins promote microtubule rescue in vivo. Journal of Cell Biology, 2002, 159, 589-599.	5.2	224
87	LIS1, CLIP-170's Key to the Dynein/Dynactin Pathway. Molecular and Cellular Biology, 2002, 22, 3089-3102.	2.3	222
88	Bicaudal-D regulates COPI-independent Golgi–ER transport by recruiting the dynein–dynactin motor complex. Nature Cell Biology, 2002, 4, 986-992.	10.3	357
89	Targeted mutation of Cyln2 in the Williams syndrome critical region links CLIP-115 haploinsufficiency to neurodevelopmental abnormalities in mice. Nature Genetics, 2002, 32, 116-127.	21.4	163
90	CLASPs Are CLIP-115 and -170 Associating Proteins Involved in the Regional Regulation of Microtubule Dynamics in Motile Fibroblasts. Cell, 2001, 104, 923-935.	28.9	462

#	Article	IF	CITATION
91	Identification of a Novel Peroxisome Proliferator Responsive cDNA Isolated from Rat Hepatocytes as the Zinc-Finger Protein ZFP-37. Toxicology and Applied Pharmacology, 1998, 152, 107-118.	2.8	12
92	Microcircuitry and function of the inferior olive. Trends in Neurosciences, 1998, 21, 391-400.	8.6	404
93	The MurineCYLN2Gene: Genomic Organization, Chromosome Localization, and Comparison to the Human Gene That Is Located within the 7q11.23 Williams Syndrome Critical Region. Genomics, 1998, 53, 348-358.	2.9	52
94	The Centromeric/Nucleolar Chromatin Protein ZFP-37 May Function to Specify Neuronal Nuclear Domains. Journal of Biological Chemistry, 1998, 273, 9099-9109.	3.4	38
95	CLIP-115, a Novel Brain-Specific Cytoplasmic Linker Protein, Mediates the Localization of Dendritic Lamellar Bodies. Neuron, 1997, 19, 1187-1199.	8.1	97
96	Gain adaptation and phase dynamics of compensatory eye movements in mice. Genes and Function, 1997, 1, 175-190.	2.8	64