
Jing-He Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8121417/publications.pdf Version: 2024-02-01

LING-HE YANG

#	Article	IF	CITATIONS
1	Direct catalytic oxidation of benzene to phenol over metal-free graphene-based catalyst. Energy and Environmental Science, 2013, 6, 793.	30.8	226
2	Preparation of bimetallic Cu-Co nanocatalysts on poly (diallyldimethylammonium chloride) functionalized halloysite nanotubes for hydrolytic dehydrogenation of ammonia borane. Applied Surface Science, 2018, 427, 106-113.	6.1	116
3	Graphene-supported nanoscale zero-valent iron: Removal of phosphorus from aqueous solution and mechanistic study. Journal of Environmental Sciences, 2014, 26, 1751-1762.	6.1	114
4	Cobalt Phthalocyanine–Graphene Oxide Nanocomposite: Complicated Mutual Electronic Interaction. Journal of Physical Chemistry C, 2013, 117, 3785-3788.	3.1	102
5	Iron phthalocyanine-graphene donor-acceptor hybrids for visible-light-assisted degradation of phenol in the presence of H2O2. Applied Catalysis B: Environmental, 2016, 192, 182-192.	20.2	93
6	Iron Carbides: Control Synthesis and Catalytic Applications in CO <i>_x</i> Hydrogenation and Electrochemical HER. Advanced Materials, 2019, 31, e1901796.	21.0	69
7	Graphenol defects induced blue emission enhancement in chemically reduced graphene quantum dots. Physical Chemistry Chemical Physics, 2015, 17, 22361-22366.	2.8	68
8	Polydopamine-coated halloysite nanotubes supported AgPd nanoalloy: An efficient catalyst for hydrolysis of ammonia borane. International Journal of Hydrogen Energy, 2018, 43, 2754-2762.	7.1	65
9	Electro-oxidation of methanol on mesoporous nickel phosphate modified GCE. Electrochemistry Communications, 2012, 23, 13-16.	4.7	62
10	Nickel phosphate-based materials with excellent durability for urea electro-oxidation. Electrochimica Acta, 2017, 251, 284-292.	5.2	60
11	Ruthenium–Cobalt Nanoalloy Embedded within Hollow Carbon Spheres as a Bifunctionally Robust Catalyst for Hydrogen Generation from Water Splitting and Ammonia Borane Hydrolysis. ACS Sustainable Chemistry and Engineering, 2019, 7, 18744-18752.	6.7	60
12	Preparation of ternary Pd/CeO2-nitrogen doped graphene composites as recyclable catalysts for solvent-free aerobic oxidation of benzyl alcohol. Applied Surface Science, 2019, 471, 852-861.	6.1	60
13	Microwave-assisted synthesis graphite-supported Pd nanoparticles for detection of nitrite. Sensors and Actuators B: Chemical, 2015, 220, 652-658.	7.8	54
14	A sensitive and reliable rutin electrochemical sensor based on palladium phthalocyanine-MWCNTs-Nafion nanocomposite. Journal of Solid State Electrochemistry, 2017, 21, 1219-1228.	2.5	54
15	Nickel phosphate materials regulated by doping cobalt for urea and methanol electro-oxidation. International Journal of Hydrogen Energy, 2019, 44, 16305-16314.	7.1	54
16	Encapsulation of Ammonia Borane in Pd/Halloysite Nanotubes for Efficient Thermal Dehydrogenation. ACS Sustainable Chemistry and Engineering, 2020, 8, 2122-2129.	6.7	53
17	Cobalt phthalocyanine-graphene complex for electro-catalytic oxidation of dopamine. Journal of Natural Gas Chemistry, 2012, 21, 265-269.	1.8	46
18	A sensitive and selective electrochemical nitrite sensor based on a glassy carbon electrode modified with cobalt phthalocyanine-supported Pd nanoparticles. Analytical Methods, 2017, 9, 3166-3171.	2.7	43

JING-HE YANG

#	Article	IF	CITATIONS
19	3D nitrogen-doped graphene aerogel nanomesh: Facile synthesis and electrochemical properties as the electrode materials for supercapacitors. Applied Surface Science, 2017, 426, 924-932.	6.1	42
20	The additive effect of graphene in nickel phosphate/graphene composite and enhanced activity for electrochemical oxidation of methanol. Applied Surface Science, 2017, 416, 503-510.	6.1	37
21	Facile synthesis of ultrathin Ni(OH) 2 -Cu 2 S hexagonal nanosheets hybrid for oxygen evolution reaction. Journal of Power Sources, 2017, 359, 52-56.	7.8	37
22	Nickel phosphate as advanced promising electrochemical catalyst for the electro-oxidation of methanol. International Journal of Hydrogen Energy, 2018, 43, 12091-12102.	7.1	33
23	Research progress and applications of nickel-based catalysts for electrooxidation of urea. International Journal of Hydrogen Energy, 2022, 47, 7693-7712.	7.1	33
24	Electrochemical oxidation of methanol on mesoporous nickel phosphates and Si-incorporated mesoporous nickel phosphates. Electrochemistry Communications, 2013, 27, 141-143.	4.7	32
25	Nickel phosphate molecular sieve as electrochemical capacitors material. Journal of Power Sources, 2014, 260, 169-173.	7.8	32
26	Growth mechanism of N-doped graphene materials and their catalytic behavior in the selective oxidation of ethylbenzene. Chinese Journal of Catalysis, 2014, 35, 922-928.	14.0	32
27	A bilayer triangular lattice with crown-like Co ₇ spin cluster SBUs exhibiting high spin frustration. Chemical Communications, 2014, 50, 8558-8560.	4.1	31
28	Cobalt Phosphide-Embedded Reduced Graphene Oxide as a Bifunctional Catalyst for Overall Water Splitting. ACS Omega, 2020, 5, 6516-6522.	3.5	31
29	CuO-Ni(OH)2 nanosheets as effective electro-catalysts for urea oxidation. Applied Surface Science, 2021, 560, 150009.	6.1	31
30	Nickel foam supported cobalt phosphate electrocatalyst for alkaline oxygen evolution reaction. Journal of Power Sources, 2020, 461, 228165.	7.8	29
31	Aqueous phase Fischer–Tropsch synthesis in a continuous flow reactor. Catalysis Today, 2012, 183, 136-142.	4.4	28
32	Morphology-controllable nanocrystal β-Ni(OH)2/NF designed by hydrothermal etching method as high-efficiency electrocatalyst for overall water splitting. Journal of Electroanalytical Chemistry, 2021, 882, 115035.	3.8	28
33	Enhanced cobalt-based catalysts through alloying ruthenium to cobalt lattice matrix as an efficient catalyst for overall water splitting. Electrochimica Acta, 2019, 327, 134958.	5.2	24
34	High-performance supercapacitors based on porous activated carbons from cattail wool. Journal of Materials Science, 2018, 53, 9191-9205.	3.7	23
35	Fixation of N ₂ into Value-Added Organic Chemicals. ACS Catalysis, 2022, 12, 2898-2906.	11.2	20
36	Leaf-veins-inspired nickel phosphate nanotubes-reduced graphene oxide composite membranes for ultrafast organic solvent nanofiltration. Journal of Membrane Science, 2022, 649, 120401.	8.2	20

JING-HE YANG

#	Article	IF	CITATIONS
37	Graphene supported chromium carbide material synthesized from Cr-based MOF/graphene oxide composites. Materials Letters, 2014, 130, 111-114.	2.6	18
38	Graphene quantum dots derived from carbon fibers for oxidation of dopamine. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 1294-1297.	1.0	18
39	New Insights into Layered Graphene Materials as Substrates to Regulate Synthesis of Ni–P Nanomaterials for Electrocatalytic Oxidation of Methanol and Water. ACS Applied Materials & Interfaces, 2019, 11, 45189-45198.	8.0	18
40	Graphene-supported Pd nanoparticles: microwave-assisted synthesis and as microwave-active selective hydrogenation catalysts. RSC Advances, 2013, 3, 10131.	3.6	17
41	AuPd bimetallic nanoparticle-supported carbon nanotubes for selective detection of dopamine in the presence of ascorbic acid. Analytical Methods, 2017, 9, 3191-3199.	2.7	17
42	Bimetallic Pd-M (M = Pt, Ni, Cu, Co) nanoparticles catalysts with strong electrostatic metal-support interaction for hydrogenation of toluene and benzene. Molecular Catalysis, 2020, 492, 110992.	2.0	17
43	Enhancing the matching of acid/metal balance by engineering an extra Si–Al framework outside the Pd/HBeta catalyst towards benzene hydroalkylation. Catalysis Science and Technology, 2020, 10, 1467-1476.	4.1	17
44	Modulating surface segregation of Ni2P-Ru2P/CCG nanoparticles for boosting hydrogen evolution reaction in pH-universal. Chemical Engineering Journal, 2022, 432, 134422.	12.7	17
45	Different dimensional coordination polymers with 4,4׳-oxybis(benzoate): Syntheses, structures and properties. Journal of Solid State Chemistry, 2014, 215, 277-283.	2.9	16
46	Facile synthesis of 3D nitrogen-doped graphene aerogel nanomeshes with hierarchical porous structures for applications in high-performance supercapacitors. New Journal of Chemistry, 2017, 41, 5291-5296.	2.8	14
47	Bimetallic Cu-Ni/MCM-41 catalyst for efficiently selective transfer hydrogenation of furfural into furfural alcohol. Molecular Catalysis, 2022, 517, 112065.	2.0	12
48	Precious metal nanomaterial-modified electrochemical sensors for nitrite detection. Ionics, 2022, 28, 2041-2064.	2.4	12
49	Ruthenium-manganese phosphide nanohybrid supported on graphene for efficient hydrogen evolution reaction in acid and alkaline conditions. International Journal of Hydrogen Energy, 2022, 47, 13876-13886.	7.1	12
50	Syntheses, structures and properties of two new coordination polymers based on d-camphoric acid and 2-phenyl-4,6-diamino-1,3,5-triazine. Journal of Solid State Chemistry, 2015, 225, 135-140.	2.9	10
51	Boron-doped α-Ni(OH)2 nanoflowers with high specific surface area as electrochemical capacitor materials. Materials Letters, 2014, 128, 380-383.	2.6	9
52	The assembly of two isomorphous coordination compounds based on 1,4-cyclohexanedicarboxylic acid and 2,4-diamino-6-phenyl-1,3,5-triazine. Journal of Solid State Chemistry, 2017, 246, 346-350.	2.9	9
53	Gourd-shaped silver nanoparticle–graphene composite for electrochemical oxidation of glucose. Materials Letters, 2013, 97, 133-136.	2.6	6
54	Batch fabrication of mesoporous boron-doped nickel oxide nanoflowers for electrochemical capacitors. Materials Research Bulletin, 2014, 59, 382-386.	5.2	6

JING-HE YANG

#	Article	IF	CITATIONS
55	Liquid-Phase Heterogeneous Catalytic Reactions by Metal-Free Graphene-Based Catalysts. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2016, 32, 75-84.	4.9	6
56	Sensitive Detection of Rifampicin Based on Au-Carbon Nanocomposite. Journal of Nanoscience and Nanotechnology, 2018, 18, 62-67.	0.9	5
57	Selective Hydrogenation of Furfural: Pure Silica Supported Metal Catalysts. ChemistrySelect, 2022, 7, .	1.5	5
58	Graphene-supported Iron Phosphide Nanoparticles for Fischer-Tropsch Synthesis. Acta Chimica Sinica, 2013, 71, 1365.	1.4	4
59	Heterogeneous liquid phase oxidation of ethylbenzene to acetophenone with graphene carbon-based catalyst. Chemical Papers, 2018, 72, 2203-2214.	2.2	3
60	Sensitive Determination of Dopamine and Paracetamol Based on Carbon Nanotubes-Supported Pd Nanoparticles. Journal of Nanoscience and Nanotechnology, 2018, 18, 500-509.	0.9	2
61	Highly dispersed and ultra-small Ru nanoparticles deposited on silica support as highly active and stable catalyst for biphenyl hydrogenation. Molecular Catalysis, 2021, 508, 111577.	2.0	2
62	Advances in facet-dependent photocatalytic properties of BiOCl catalyst for environmental remediation. Reviews in Inorganic Chemistry, 2023, 43, 221-245.	4.1	2
63	Effect of Ru Deposition on the Mechanism of Photocatalytic Water Splitting by GaZnNO Solid Solution. Journal of Physical Chemistry C, 2022, 126, 4000-4007.	3.1	1