
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8121381/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Intrinsic dependencies of <scp>CT</scp> radiomic features on voxel size and number of gray levels.<br>Medical Physics, 2017, 44, 1050-1062.                                                                                                                                                                                       | 1.6 | 428       |
| 2  | A genome-based model for adjusting radiotherapy dose (GARD): a retrospective, cohort-based study.<br>Lancet Oncology, The, 2017, 18, 202-211.                                                                                                                                                                                     | 5.1 | 377       |
| 3  | Non-invasive estimation of hyperthermia temperatures with ultrasound. International Journal of Hyperthermia, 2005, 21, 589-600.                                                                                                                                                                                                   | 1.1 | 189       |
| 4  | The future of personalised radiotherapy for head and neck cancer. Lancet Oncology, The, 2017, 18, e266-e273.                                                                                                                                                                                                                      | 5.1 | 168       |
| 5  | Voxel size and gray level normalization of CT radiomic features in lung cancer. Scientific Reports, 2018, 8, 10545.                                                                                                                                                                                                               | 1.6 | 150       |
| 6  | The 2019 mathematical oncology roadmap. Physical Biology, 2019, 16, 041005.                                                                                                                                                                                                                                                       | 0.8 | 147       |
| 7  | Phase III study of interstitial thermoradiotherapy compared with interstitial radiotherapy alone in the treatment of recurrent or persistent human tumors: A prospectively controlled randomized study by the radiation therapy oncology group. International Journal of Radiation Oncology Biology Physics, 1996, 34, 1097-1104. | 0.4 | 138       |
| 8  | Variability of Image Features Computed from Conventional and Respiratory-Gated PET/CT Images of Lung Cancer. Translational Oncology, 2015, 8, 524-534.                                                                                                                                                                            | 1.7 | 110       |
| 9  | Abscopal Benefits of Localized Radiotherapy Depend on Activated T-cell Trafficking and Distribution between Metastatic Lesions. Cancer Research, 2016, 76, 1009-1018.                                                                                                                                                             | 0.4 | 103       |
| 10 | Measurement of DNA Damage after Exposure to Electromagnetic Radiation in the Cellular Phone<br>Communication Frequency Band (835.62 and 847.74 MHz). Radiation Research, 1997, 148, 618.                                                                                                                                          | 0.7 | 102       |
| 11 | VMAT QA: Measurement-guided 4D dose reconstruction on a patient. Medical Physics, 2012, 39, 4228-4238.                                                                                                                                                                                                                            | 1.6 | 96        |
| 12 | Measurement of DNA Damage and Apoptosis in Molt-4 Cells afterIn VitroExposure to Radiofrequency<br>Radiation. Radiation Research, 2004, 161, 193-200.                                                                                                                                                                             | 0.7 | 93        |
| 13 | A proliferation saturation index to predict radiation response and personalize radiotherapy fractionation. Radiation Oncology, 2015, 10, 159.                                                                                                                                                                                     | 1.2 | 93        |
| 14 | Noninvasive temperature estimation based on the energy of backscattered ultrasound. Medical<br>Physics, 2003, 30, 1021-1029.                                                                                                                                                                                                      | 1.6 | 91        |
| 15 | Reproducibility of F18â€FDG PET radiomic features for different cervical tumor segmentation methods,<br>grayâ€level discretization, and reconstruction algorithms. Journal of Applied Clinical Medical Physics,<br>2017, 18, 32-48.                                                                                               | 0.8 | 85        |
| 16 | Measurement of DNA Damage after Exposure to 2450 MHz Electromagnetic Radiation. Radiation Research, 1997, 148, 608.                                                                                                                                                                                                               | 0.7 | 84        |
| 17 | Development of Targeted Alpha Particle Therapy for Solid Tumors. Molecules, 2019, 24, 4314.                                                                                                                                                                                                                                       | 1.7 | 82        |
| 18 | Chromosome Damage and Micronucleus Formation in Human Blood Lymphocytes ExposedIn Vitroto<br>Radiofrequency Radiation at a Cellular Telephone Frequency (847.74 MHz, CDMA). Radiation Research,<br>2001, 156, 430-432.                                                                                                            | 0.7 | 81        |

| #  | Article                                                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Cytogenetic Studies in Human Blood Lymphocytes ExposedIn Vitroto Radiofrequency Radiation at a<br>Cellular Telephone Frequency (835.62 MHz, FDMA). Radiation Research, 2001, 155, 113-121.                                                                                                                     | 0.7 | 78        |
| 20 | Evaluation of Spatially Fractionated Radiotherapy (GRID) and Definitive Chemoradiotherapy With<br>Curative Intent for Locally Advanced Squamous Cell Carcinoma of the Head and Neck: Initial Response<br>Rates and Toxicity. International Journal of Radiation Oncology Biology Physics, 2010, 76, 1369-1375. | 0.4 | 78        |
| 21 | Experimentally studied dynamic dose interplay does not meaningfully affect target dose in VMAT SBRT<br>lung treatments. Medical Physics, 2013, 40, 091710.                                                                                                                                                     | 1.6 | 74        |
| 22 | Initial evaluation of automated treatment planning software. Journal of Applied Clinical Medical Physics, 2016, 17, 331-346.                                                                                                                                                                                   | 0.8 | 66        |
| 23 | Proto-Oncogene mRNA Levels and Activities of Multiple Transcription Factors in C3H 10T 1/2 Murine<br>Embryonic Fibroblasts Exposed to 835.62 and 847.74 MHz Cellular Phone Communication Frequency<br>Radiation. Radiation Research, 1999, 151, 300.                                                           | 0.7 | 64        |
| 24 | Spatially Fractionated Radiation Induces Cytotoxicity and Changes in Gene Expression in Bystander and Radiation Adjacent Murine Carcinoma Cells. Radiation Research, 2012, 177, 751-765.                                                                                                                       | 0.7 | 64        |
| 25 | CT imaging features associated with recurrence in non-small cell lung cancer patients after stereotactic body radiotherapy. Radiation Oncology, 2017, 12, 158.                                                                                                                                                 | 1.2 | 63        |
| 26 | Clinical feasibility of TBI with helical tomotherapy. Bone Marrow Transplantation, 2011, 46, 929-935.                                                                                                                                                                                                          | 1.3 | 61        |
| 27 | Study of 201 Non-Small Cell Lung Cancer Patients Given Stereotactic Ablative Radiation Therapy Shows<br>Local Control Dependence on Dose Calculation Algorithm. International Journal of Radiation<br>Oncology Biology Physics, 2014, 88, 1108-1113.                                                           | 0.4 | 61        |
| 28 | Simultaneous superficial hyperthermia and external radiotherapy: report of thermal dosimetry and tolerance to treatment. International Journal of Hyperthermia, 1999, 15, 251-266.                                                                                                                             | 1.1 | 59        |
| 29 | The Effect of 835.62 MHz FDMA or 847.74 MHz CDMA Modulated Radiofrequency Radiation on the Induction of Micronuclei in C3H 10T½ Cells. Radiation Research, 2002, 157, 506-515.                                                                                                                                 | 0.7 | 59        |
| 30 | Pediatric Craniospinal Axis Irradiation With Helical Tomotherapy: Patient Outcome and Lack of Acute<br>Pulmonary Toxicity. International Journal of Radiation Oncology Biology Physics, 2009, 75, 1155-1161.                                                                                                   | 0.4 | 58        |
| 31 | Modeling of carbon fiber couch attenuation properties with a commercial treatment planning system.<br>Medical Physics, 2008, 35, 4982-4988.                                                                                                                                                                    | 1.6 | 57        |
| 32 | The Effect of Chronic Exposure to 835.62 MHz FDMA or 847.74 MHz CDMA Radiofrequency Radiation on the Incidence of Spontaneous Tumors in Rats. Radiation Research, 2003, 160, 143-151.                                                                                                                          | 0.7 | 54        |
| 33 | Microbeam Radiation Therapy Alters Vascular Architecture and Tumor Oxygenation and is Enhanced by a Galectin-1 Targeted Anti-Angiogenic Peptide. Radiation Research, 2012, 177, 804-812.                                                                                                                       | 0.7 | 54        |
| 34 | Imaging features from pretreatment <scp>CT</scp> scans are associated with clinical outcomes in nonsmallâ€cell lung cancer patients treated with stereotactic body radiotherapy. Medical Physics, 2017, 44, 4341-4349.                                                                                         | 1.6 | 53        |
| 35 | Measurement of DNA Damage in Mammalian Cells ExposedIn Vitroto Radiofrequency Fields at SARs of<br>3–5 W/kg. Radiation Research, 2001, 156, 328-332.                                                                                                                                                           | 0.7 | 52        |
| 36 | Temperature dependence of ultrasonic backscattered energy in motion compensated images. IEEE<br>Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52, 1644-1652.                                                                                                                       | 1.7 | 52        |

| #  | Article                                                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The radial transmission line as a broad-band shielded exposure system for microwave irradiation of large numbers of culture flasks. Bioelectromagnetics, 1999, 20, 65-80.                                                                                                                                | 0.9 | 51        |
| 38 | Precision of quantitative computed tomography texture analysis using image filtering. Medicine<br>(United States), 2017, 96, e6993.                                                                                                                                                                      | 0.4 | 49        |
| 39 | Measurement of DNA damage after acute exposure to pulsedâ€wave 2450 MHz microwaves in rat brain cells by two alkaline comet assay methods. International Journal of Radiation Biology, 2004, 80, 11-20.                                                                                                  | 1.0 | 48        |
| 40 | Radiation-Induced Alterations in Mitochondria of the Rat Heart. Radiation Research, 2014, 181, 324.                                                                                                                                                                                                      | 0.7 | 48        |
| 41 | A method for <i>a priori</i> estimation of best feasible <scp>DVH</scp> for organsâ€atâ€risk: Validation<br>for head and neck <scp>VMAT</scp> planning. Medical Physics, 2017, 44, 5486-5497.                                                                                                            | 1.6 | 48        |
| 42 | Evaluation of Parameters of Oxidative Stress afterIn VitroExposure to FMCW- and CDMA-Modulated Radiofrequency Radiation Fields. Radiation Research, 2004, 162, 497-504.                                                                                                                                  | 0.7 | 45        |
| 43 | The Evolution of Tumour Composition During Fractionated Radiotherapy: Implications for Outcome.<br>Bulletin of Mathematical Biology, 2018, 80, 1207-1235.                                                                                                                                                | 0.9 | 45        |
| 44 | Integrating Mathematical Modeling into the Roadmap for Personalized Adaptive Radiation Therapy.<br>Trends in Cancer, 2019, 5, 467-474.                                                                                                                                                                   | 3.8 | 43        |
| 45 | Nonthermal Effects of Radiofrequency-Field Exposure on Calcium Dynamics in Stem Cell-Derived Neuronal Cells: Elucidation of Calcium Pathways. Radiation Research, 2008, 169, 319-329.                                                                                                                    | 0.7 | 40        |
| 46 | Head and Neck Tumor Control Probability: Radiation Dose–Volume Effects in Stereotactic Body<br>Radiation Therapy for Locally Recurrent Previously-Irradiated Head and Neck Cancer: Report of the<br>AAPM Working Group. International Journal of Radiation Oncology Biology Physics, 2021, 110, 137-146. | 0.4 | 37        |
| 47 | Micronuclei in the peripheral blood and bone marrow cells of rats exposed to 2450 MHz radiofrequency radiation. International Journal of Radiation Biology, 2001, 77, 1109-1115.                                                                                                                         | 1.0 | 36        |
| 48 | Radiosensitization of heat resistant human tumour cells by 1 hour at 41.1°C and its effect on DNA repair. International Journal of Hyperthermia, 2002, 18, 385-403.                                                                                                                                      | 1.1 | 36        |
| 49 | 3-D in vitro estimation of temperature using the change in backscattered ultrasonic energy. IEEE<br>Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57, 1724-1733.                                                                                                             | 1.7 | 36        |
| 50 | Modelling millimetre wave propagation and absorption in a high resolution skin model: the effect of sweat glands. Physics in Medicine and Biology, 2011, 56, 1329-1339.                                                                                                                                  | 1.6 | 36        |
| 51 | Simultaneous delivery of electron beam therapy and ultrasound hyperthermia using scanning<br>reflectors: a feasibility study. International Journal of Radiation Oncology Biology Physics, 1995, 31,<br>893-904.                                                                                         | 0.4 | 35        |
| 52 | Radiofrequency Electromagnetic Fields Have No Effect on the In Vivo Proliferation of the 9L Brain<br>Tumor. Radiation Research, 1999, 152, 665.                                                                                                                                                          | 0.7 | 35        |
| 53 | 37, 2351-2358.                                                                                                                                                                                                                                                                                           | 1.6 | 35        |
| 54 | Comprehensive evaluation of the highâ€resolution diode array for SRS dosimetry. Journal of Applied Clinical Medical Physics, 2019, 20, 13-23.                                                                                                                                                            | 0.8 | 35        |

| #  | Article                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Radiofrequency Electromagnetic Fields do not Alter the Cell Cycle Progression of C3H 10T and U87MG<br>Cells. Radiation Research, 2001, 156, 786-795.                                                                                                                     | 0.7 | 34        |
| 56 | Gene Expression does not Change Significantly in C3H 10T½ Cells after Exposure to 847.74 CDMA or 835.62 FDMA Radiofrequency Radiation. Radiation Research, 2006, 165, 626-635.                                                                                           | 0.7 | 34        |
| 57 | <b><i>In vivo</i></b> change in ultrasonic backscattered energy with temperature in motion-compensated images. International Journal of Hyperthermia, 2008, 24, 389-398.                                                                                                 | 1.1 | 34        |
| 58 | Investigating multi-radiomic models for enhancing prediction power of cervical cancer treatment outcomes. Physica Medica, 2018, 46, 180-188.                                                                                                                             | 0.4 | 34        |
| 59 | Immune interconnectivity of anatomically distant tumors as a potential mediator of systemic responses to local therapy. Scientific Reports, 2018, 8, 9474.                                                                                                               | 1.6 | 34        |
| 60 | Present and future technology for simultaneous superficial thermoradiotherapy of breast cancer.<br>International Journal of Hyperthermia, 2010, 26, 699-709.                                                                                                             | 1.1 | 33        |
| 61 | Transfection of human tumour cells with Mre11 siRNA and the increase in radiation sensitivity and the reduction in heat-induced radiosensitization. International Journal of Hyperthermia, 2004, 20, 157-162.                                                            | 1.1 | 32        |
| 62 | Modelling heat-induced radiosensitization: clinical implications. International Journal of<br>Hyperthermia, 2004, 20, 201-212.                                                                                                                                           | 1.1 | 31        |
| 63 | The Heat-Shock Factor is not Activated in Mammalian Cells Exposed to Cellular Phone Frequency<br>Microwaves. Radiation Research, 2005, 164, 163-172.                                                                                                                     | 0.7 | 31        |
| 64 | Melanocortin 1 Receptor–Targeted α-Particle Therapy for Metastatic Uveal Melanoma. Journal of<br>Nuclear Medicine, 2019, 60, 1124-1133.                                                                                                                                  | 2.8 | 31        |
| 65 | Forecasting Individual Patient Response to Radiation Therapy in Head and Neck Cancer With a Dynamic<br>Carrying Capacity Model. International Journal of Radiation Oncology Biology Physics, 2021, 111,<br>693-704.                                                      | 0.4 | 31        |
| 66 | Experimental and numerical determination of SAR distributions within culture flasks in a dielectric loaded radial transmission line. IEEE Transactions on Biomedical Engineering, 2000, 47, 202-208.                                                                     | 2.5 | 30        |
| 67 | Measurements of Alkali-Labile DNA Damage and Protein–DNA Crosslinks after 2450 MHz Microwave<br>and Low-Dose Gamma IrradiationIn Vitro. Radiation Research, 2004, 161, 201-214.                                                                                          | 0.7 | 30        |
| 68 | A Simulation Model for Ultrasonic Temperature Imaging Using Change in Backscattered Energy.<br>Ultrasound in Medicine and Biology, 2008, 34, 289-298.                                                                                                                    | 0.7 | 30        |
| 69 | Cardiac Inflammation after Local Irradiation Is Influenced by the Kallikrein-Kinin System. Cancer<br>Research, 2012, 72, 4984-4992.                                                                                                                                      | 0.4 | 30        |
| 70 | Simultaneous radiotherapy and superficial hyperthermia for high-risk breast carcinoma: A randomised<br>comparison of treatment sequelae in heated versus non-heated sectors of the chest wall<br>hyperthermia. International Journal of Hyperthermia, 2012, 28, 583-590. | 1.1 | 29        |
| 71 | Effects of Late Administration of Pentoxifylline and Tocotrienols in an Image-Guided Rat Model of<br>Localized Heart Irradiation. PLoS ONE, 2013, 8, e68762.                                                                                                             | 1.1 | 29        |
| 72 | Monte Carlo comparison of superficial dose between flattening filter free and flattened beams.<br>Physica Medica, 2014, 30, 503-508.                                                                                                                                     | 0.4 | 28        |

| #  | Article                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | A Tocotrienol-Enriched Formulation Protects against Radiation-Induced Changes in Cardiac<br>Mitochondria without Modifying Late Cardiac Function or Structure. Radiation Research, 2015, 183,<br>357. | 0.7 | 28        |
| 74 | Predicting Patient-Specific Radiotherapy Protocols Based on Mathematical Model Choice for Proliferation Saturation Index. Bulletin of Mathematical Biology, 2018, 80, 1195-1206.                      | 0.9 | 28        |
| 75 | A compact shielded exposure system for the simultaneous long-term UHF irradiation of forty small mammals: I. Electromagnetic and environmental design. Bioelectromagnetics, 1998, 19, 459-468.        | 0.9 | 27        |
| 76 | Dead or alive? Autofluorescence distinguishes heat-fixed from viable cells. International Journal of Hyperthermia, 2009, 25, 355-363.                                                                 | 1.1 | 27        |
| 77 | Effects of local irradiation combined with sunitinib on early remodeling, mitochondria, and oxidative stress in the rat heart. Radiotherapy and Oncology, 2016, 119, 259-264.                         | 0.3 | 27        |
| 78 | Energy deposition processes in biological tissue: Nonthermal biohazards seem unlikely in the ultra-high frequency range. Bioelectromagnetics, 2001, 22, 97-105.                                       | 0.9 | 26        |
| 79 | Components of a hyperthermia clinic: Recommendations for staffing, equipment, and treatment monitoring. International Journal of Hyperthermia, 2014, 30, 1-5.                                         | 1.1 | 26        |
| 80 | SURLAS: A new clinical grade ultrasound system for sequential or concomitant thermoradiotherapy of superficial tumors: Applicator description. Medical Physics, 2005, 32, 230-240.                    | 1.6 | 25        |
| 81 | Retrospective Evaluation of Pediatric Cranio-Spinal Axis Irradiation Plans with the Hi-ART<br>Tomotherapy System. Technology in Cancer Research and Treatment, 2007, 6, 355-360.                      | 0.8 | 25        |
| 82 | A dosimetric comparison of volumetric modulated arc therapy with step-and-shoot intensity modulated radiation therapy for prostate cancer. Practical Radiation Oncology, 2015, 5, 11-15.              | 1.1 | 24        |
| 83 | Proliferation saturation index in an adaptive Bayesian approach to predict patient-specific radiotherapy responses. International Journal of Radiation Biology, 2019, 95, 1421-1426.                  | 1.0 | 24        |
| 84 | Accounting for reconstruction kernel-induced variability in CT radiomic features using noise power spectra. Journal of Medical Imaging, 2017, 5, 1.                                                   | 0.8 | 24        |
| 85 | Monte Carlo Study of Radiation Dose Enhancement by Gadolinium in Megavoltage and High Dose Rate<br>Radiotherapy. PLoS ONE, 2014, 9, e109389.                                                          | 1.1 | 24        |
| 86 | Altered Calcium Dynamics Mediates P19-Derived Neuron-Like Cell Responses to Millimeter-Wave Radiation. Radiation Research, 2009, 172, 725-736.                                                        | 0.7 | 23        |
| 87 | Advanced Small Animal Conformal Radiation Therapy Device. Technology in Cancer Research and Treatment, 2017, 16, 45-56.                                                                               | 0.8 | 23        |
| 88 | A comparison of theoretical and experimental ultrasound field distributions in canine muscle tissue in vivo. Ultrasound in Medicine and Biology, 1992, 18, 81-95.                                     | 0.7 | 22        |
| 89 | Ultrasound power deposition model for the chest wall. Ultrasound in Medicine and Biology, 1999, 25, 1275-1287.                                                                                        | 0.7 | 22        |
| 90 | On the Assumption of Negligible Heat Diffusion during the Thermal Measurement of a Nonuniform Specific Absorption Rate. Radiation Research, 1999, 152, 312.                                           | 0.7 | 22        |

| #   | Article                                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Pretreatment CT and <sup>18</sup> Fâ€FDG PETâ€based radiomic model predicting pathological complete<br>response and locoâ€regional control following neoadjuvant chemoradiation in oesophageal cancer.<br>Journal of Medical Imaging and Radiation Oncology, 2021, 65, 102-111. | 0.9 | 22        |
| 92  | An ultrasound system for simultaneous ultrasound hyperthermia and photon beam irradiation.<br>International Journal of Radiation Oncology Biology Physics, 1996, 36, 1189-1200.                                                                                                 | 0.4 | 21        |
| 93  | Expression of the Proto-oncogeneFosafter Exposure to Radiofrequency Radiation Relevant to<br>Wireless Communications. Radiation Research, 2005, 164, 420-430.                                                                                                                   | 0.7 | 21        |
| 94  | The effects of 41ŰC hyperthermia on the DNA repair protein, MRE11, correlate with radiosensitization in four human tumor cell lines. International Journal of Hyperthermia, 2007, 23, 343-351.                                                                                  | 1.1 | 21        |
| 95  | Effects of radiation on the epidermal growth factor receptor pathway in the heart. International<br>Journal of Radiation Biology, 2013, 89, 539-547.                                                                                                                            | 1.0 | 21        |
| 96  | Sensitivity of Image Features to Noise in Conventional and Respiratory-Gated PET/CT Images of Lung<br>Cancer: Uncorrelated Noise Effects. Technology in Cancer Research and Treatment, 2017, 16, 595-608.                                                                       | 0.8 | 21        |
| 97  | Simplified model and measurement of specific absorption rate distribution in a culture flask within a transverse electromagnetic mode exposure system. Bioelectromagnetics, 1999, 20, 183-193.                                                                                  | 0.9 | 20        |
| 98  | Practical quantification of image registration accuracy following the <scp>AAPM TG</scp> â€132 report framework. Journal of Applied Clinical Medical Physics, 2018, 19, 125-133.                                                                                                | 0.8 | 20        |
| 99  | CTâ€based radiomic features to predict pathological response in rectal cancer: A retrospective cohort study. Journal of Medical Imaging and Radiation Oncology, 2020, 64, 444-449.                                                                                              | 0.9 | 20        |
| 100 | Thermal contribution of compact bone to intervening tissue-like media exposed to planar ultrasound.<br>Physics in Medicine and Biology, 2004, 49, 869-886.                                                                                                                      | 1.6 | 19        |
| 101 | Monitoring the effect of mild hyperthermia on tumour hypoxia by Cu-ATSM PET scanning.<br>International Journal of Hyperthermia, 2006, 22, 93-115.                                                                                                                               | 1.1 | 19        |
| 102 | Conductive interstitial thermal therapy device for surgical margin ablation: <b><i>In<br/>vivo</i></b> verification of a theoretical model. International Journal of Hyperthermia, 2007, 23,<br>477-492.                                                                        | 1.1 | 19        |
| 103 | The number of genes changing expression after chronic exposure to Code Division Multiple Access or<br>Frequency DMA radiofrequency radiation does not exceed the false-positive rate. Proteomics, 2006, 6,<br>4739-4744.                                                        | 1.3 | 18        |
| 104 | Thermoradiotherapy is underutilized for the treatment of cancer. Medical Physics, 2006, 34, 1-4.                                                                                                                                                                                | 1.6 | 18        |
| 105 | Potential for power deposition conformability using reflected-scanned planar ultrasound.<br>International Journal of Hyperthermia, 1996, 12, 723-736.                                                                                                                           | 1.1 | 17        |
| 106 | MicroPET-compatible, small animal hyperthermia ultrasound system (SAHUS) for sustainable,<br>collimated and controlled hyperthermia of subcutaneously implanted tumours. International Journal<br>of Hyperthermia, 2004, 20, 32-44.                                             | 1.1 | 17        |
| 107 | Cross-validation of two commercial methods for volumetric high-resolution dose reconstruction on a phantom for non-coplanar VMAT beams. Radiotherapy and Oncology, 2014, 110, 558-561.                                                                                          | 0.3 | 17        |
| 108 | Roles of Sensory Nerves in the Regulation of Radiation-Induced Structural and Functional Changes in the Heart. International Journal of Radiation Oncology Biology Physics, 2014, 88, 167-174.                                                                                  | 0.4 | 17        |

| #   | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | The importance of dead material within a tumour on the dynamics in response to radiotherapy. Physics in Medicine and Biology, 2020, 65, 015007.                                                                     | 1.6 | 17        |
| 110 | An investigation of penetration depth control using parallel opposed ultrasound arrays and a scanning reflector. Journal of the Acoustical Society of America, 1997, 101, 1734-1741.                                | 0.5 | 16        |
| 111 | Acoustic field prediction for a single planar continuous-wave source using an equivalent phased array method. Journal of the Acoustical Society of America, 1997, 102, 2734-2741.                                   | 0.5 | 16        |
| 112 | Experimental assessment of power and temperature penetration depth control with a dual frequency ultrasonic system. Medical Physics, 1999, 26, 810-817.                                                             | 1.6 | 16        |
| 113 | Magnetic resonance biomarkers in radiation oncology: The report of AAPM Task Group 294. Medical Physics, 2021, 48, e697-e732.                                                                                       | 1.6 | 16        |
| 114 | Dynamics-Adapted Radiotherapy Dose (DARD) for Head and Neck Cancer Radiotherapy Dose<br>Personalization. Journal of Personalized Medicine, 2021, 11, 1124.                                                          | 1.1 | 16        |
| 115 | Aperture size to therapeutic volume relation for a multielement ultrasound system: Determination of applicator adequacy for superficial hyperthermia. Medical Physics, 1993, 20, 1399-1409.                         | 1.6 | 15        |
| 116 | Numerical and <i>in vitro</i> evaluation of temperature fluctuations during reflected-scanned planar<br>ultrasound hyperthermia. International Journal of Hyperthermia, 1998, 14, 367-382.                          | 1.1 | 15        |
| 117 | Compact shielded exposure system for the simultaneous long-term UHF irradiation of forty small mammals II. Dosimetry. Bioelectromagnetics, 1999, 20, 81-93.                                                         | 0.9 | 15        |
| 118 | In regard to Vasanathan et al. (Int J Radiat Oncol Biol Phys 2005;61:145–153). International Journal of<br>Radiation Oncology Biology Physics, 2005, 63, 644.                                                       | 0.4 | 15        |
| 119 | Quantification of the skin sparing effect achievable with high-energy photon beams when carbon fiber tables are used. Radiotherapy and Oncology, 2009, 93, 147-152.                                                 | 0.3 | 15        |
| 120 | Severe, short-duration (0–3 min) heat shocks (50–52°C) inhibit the repair of DNA damage. International<br>Journal of Hyperthermia, 2010, 26, 67-78.                                                                 | 1.1 | 15        |
| 121 | Effects of quantum noise in 4D-CT on deformable image registration and derived ventilation data.<br>Physics in Medicine and Biology, 2013, 58, 7661-7672.                                                           | 1.6 | 15        |
| 122 | A three phase model to investigate the effects of dead material on the growth of avascular tumours.<br>Mathematical Modelling of Natural Phenomena, 2020, 15, 22.                                                   | 0.9 | 15        |
| 123 | A Method to Determine the Coincidence of MRI-Guided Linac Radiation and Magnetic Isocenters.<br>Technology in Cancer Research and Treatment, 2019, 18, 153303381987798.                                             | 0.8 | 14        |
| 124 | A reflected-scanned ultrasound system for external simultaneous thermoradiotherapy. IEEE<br>Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1996, 43, 441-449.                                  | 1.7 | 13        |
| 125 | A Novel Technique for Image-Guided Local Heart Irradiation in the Rat. TCRT Express, 2014, 13, 593-603.                                                                                                             | 1.5 | 13        |
| 126 | Development and testing of a database of NIH research funding of AAPM members: A report from the<br>AAPM Working Group for the Development of a Research Database (WGDRD). Medical Physics, 2017, 44,<br>1590-1601. | 1.6 | 13        |

| #   | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | The impact of ultrasonic parameters on chest wall hyperthermia. International Journal of<br>Hyperthermia, 2000, 16, 523-538.                                                                                | 1.1 | 12        |
| 128 | Experience with a small animal hyperthermia ultrasound system (SAHUS): report on 83 tumours.<br>Physics in Medicine and Biology, 2005, 50, 5127-5139.                                                       | 1.6 | 12        |
| 129 | Conductive Interstitial Thermal Therapy (CITT) Device Evaluation in VX2 Rabbit Model. Technology in<br>Cancer Research and Treatment, 2007, 6, 235-245.                                                     | 0.8 | 12        |
| 130 | Dosimetric Comparison of Helical Tomotherapy and Linac-IMRT Treatment Plans for Head and Neck<br>Cancer Patients. Medical Dosimetry, 2010, 35, 264-268.                                                     | 0.4 | 12        |
| 131 | Impact of dose on lung ventilation change calculated from 4D-CT using deformable image registration in lung cancer patients treated with SBRT. Journal of Radiation Oncology, 2015, 4, 265-270.             | 0.7 | 12        |
| 132 | Validation of a <scp>GPU</scp> â€Based 3D dose calculator for modulated beams. Journal of Applied Clinical Medical Physics, 2017, 18, 73-82.                                                                | 0.8 | 12        |
| 133 | A hybrid volumetric dose verification method for singleâ€isocenter multipleâ€target cranial SRS. Journal of Applied Clinical Medical Physics, 2018, 19, 651-658.                                            | 0.8 | 12        |
| 134 | Biological Optimization in Volumetric Modulated Arc Radiotherapy for Prostate Carcinoma.<br>International Journal of Radiation Oncology Biology Physics, 2012, 82, 1292-1298.                               | 0.4 | 11        |
| 135 | Evaluation of the ΔV 4D CT ventilation calculation method using <i>in vivo</i> xenon CT ventilation data and comparison to other methods. Journal of Applied Clinical Medical Physics, 2016, 17, 550-560.   | 0.8 | 11        |
| 136 | Doppler signals observed during high temperature thermal ablation are the result of boiling.<br>International Journal of Hyperthermia, 2010, 26, 586-593.                                                   | 1.1 | 10        |
| 137 | Voxel-Based Dose Reconstruction for Total Body Irradiation With Helical TomoTherapy. International<br>Journal of Radiation Oncology Biology Physics, 2012, 82, 1575-1583.                                   | 0.4 | 10        |
| 138 | A Monte Carlo Method for Determining the Response Relationship between Two Commonly Used<br>Detectors to Indirectly Measure Alpha Particle Radiation Activity. Molecules, 2019, 24, 3397.                   | 1.7 | 10        |
| 139 | Localized versus regional hyperthermia: Comparison of xenotransplants treated with a small animal ultrasound system and waterbath limb immersion. International Journal of Hyperthermia, 2005, 21, 271-281. | 1.1 | 9         |
| 140 | HSP27 phosphorylation increases after 45°C or 41°C heat shocks but not after non-thermal TDMA or<br>GSM exposures. International Journal of Hyperthermia, 2006, 22, 507-519.                                | 1.1 | 9         |
| 141 | Conductive interstitial thermal therapy (CITT) inhibits recurrence and metastasis in rabbit VX2 carcinoma model. International Journal of Hyperthermia, 2009, 25, 446-454.                                  | 1.1 | 9         |
| 142 | Pretreatment CT and PET Radiomics Predicting Rectal Cancer Patients in Response to Neoadjuvant<br>Chemoradiotherapy. Reports of Practical Oncology and Radiotherapy, 2021, 26, 29-34.                       | 0.3 | 9         |
| 143 | AAPM Task Group 241: A medical physicist's guide to MRIâ€guided focused ultrasound body systems.<br>Medical Physics, 2021, 48, e772-e806.                                                                   | 1.6 | 9         |
| 144 | Treatment delivery software for a new clinical grade ultrasound system for thermoradiotherapy.<br>Medical Physics, 2005, 32, 3246-3256.                                                                     | 1.6 | 8         |

| #   | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Feasibility of concurrent treatment with the scanning ultrasound reflector linear array system<br>(SURLAS) and the helical tomotherapy system. International Journal of Hyperthermia, 2008, 24, 377-388.      | 1.1 | 8         |
| 146 | PET imaging of heat-inducible suicide gene expression in mice bearing head and neck squamous cell carcinoma xenografts. Cancer Gene Therapy, 2009, 16, 161-170.                                               | 2.2 | 8         |
| 147 | Validation of an improved helical diode array and dose reconstruction software using TGâ€244 datasets and stringent dose comparison criteria. Journal of Applied Clinical Medical Physics, 2016, 17, 163-178. | 0.8 | 8         |
| 148 | Heat-induced SIRT1-mediated H4K16ac deacetylation impairs resection and SMARCAD1 recruitment to double strand breaks. IScience, 2022, 25, 104142.                                                             | 1.9 | 8         |
| 149 | Ultrasound field estimation method using a secondary source-array numerically constructed from a limited number of pressure measurements. Journal of the Acoustical Society of America, 2000, 107, 3259-3265. | 0.5 | 7         |
| 150 | Is wax equivalent to tissue in electron conformal therapy planning? A Monte Carlo study of material approximation introduced dose difference. Journal of Applied Clinical Medical Physics, 2013, 14, 92-101.  | 0.8 | 7         |
| 151 | Normalization of Ventilation Data from 4D-CT to Facilitate Comparison between Datasets Acquired at<br>Different Times. PLoS ONE, 2013, 8, e84083.                                                             | 1.1 | 7         |
| 152 | A robust power deposition scheme for tumors with large counter-current blood vessels during hyperthermia treatment. Applied Thermal Engineering, 2015, 89, 897-907.                                           | 3.0 | 7         |
| 153 | Lipophilicity Determines Routes of Uptake and Clearance, and Toxicity of an Alpha-Particle-Emitting<br>Peptide Receptor Radiotherapy. ACS Pharmacology and Translational Science, 2021, 4, 953-965.           | 2.5 | 7         |
| 154 | Measuring temporal stability of positron emission tomography standardized uptake value bias using<br>long-lived sources in a multicenter network. Journal of Medical Imaging, 2018, 5, 1.                     | 0.8 | 7         |
| 155 | Spatially fractionated (GRID) therapy for large and bulky tumors. The Journal of the Arkansas Medical Society, 2009, 105, 263-5.                                                                              | 0.1 | 7         |
| 156 | Lung Dose for Minimally Moving Thoracic Lesions Treated With Respiration Gating. International<br>Journal of Radiation Oncology Biology Physics, 2010, 77, 285-291.                                           | 0.4 | 6         |
| 157 | An alternating focused ultrasound system for thermal therapy studies in small animals. Medical Physics, 2011, 38, 1877-1887.                                                                                  | 1.6 | 6         |
| 158 | SonoKnife: Feasibility of a lineâ€focused ultrasound device for thermal ablation therapy. Medical<br>Physics, 2011, 38, 4372-4385.                                                                            | 1.6 | 6         |
| 159 | Measurementâ€guided volumetric dose reconstruction for helical tomotherapy. Journal of Applied<br>Clinical Medical Physics, 2015, 16, 302-321.                                                                | 0.8 | 6         |
| 160 | Deep Feature Stability Analysis Using CT Images of a Physical Phantom across Scanner Manufacturers,<br>Cartridges, Pixel Sizes, and Slice Thickness. Tomography, 2020, 6, 250-260.                            | 0.8 | 6         |
| 161 | A concentric-ring equivalent phased array method to model fields of large axisymmetric ultrasound transducers. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1999, 46, 830-841.    | 1.7 | 5         |
| 162 | Influence of the SURLAS applicator on radiation dose distributions during simultaneous<br>thermoradiotherapy with helical tomotherapy. Physics in Medicine and Biology, 2008, 53, 2509-2522.                  | 1.6 | 5         |

EDUARDO G MOROS

| #   | Article                                                                                                                                                                                                                                                              | IF         | CITATIONS          |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------|
| 163 | Fiducial markers coupled with 3D PET/CT offer more accurate radiation treatment delivery for locally advanced esophageal cancer. Endoscopy International Open, 2017, 05, E496-E504.                                                                                  | 0.9        | 5                  |
| 164 | Analysis of the 2017 American Society for Radiation Oncology (ASTRO) Research Portfolio.<br>International Journal of Radiation Oncology Biology Physics, 2019, 103, 297-304.                                                                                         | 0.4        | 5                  |
| 165 | Unlocking a closed system: dosimetric commissioning of a ring gantry linear accelerator in a multivendor environment. Journal of Applied Clinical Medical Physics, 2021, 22, 21-34.                                                                                  | 0.8        | 5                  |
| 166 | Maintaining dosimetric quality when switching to a Monte Carlo dose engine for head and neck<br>volumetricâ€modulated arc therapy planning. Journal of Applied Clinical Medical Physics, 2022, 23,<br>e13572.                                                        | 0.8        | 5                  |
| 167 | High dose-rate induced temperature artifacts: Thermometry considerations for simultaneous<br>interstitial thermoradiotherapy. International Journal of Radiation Oncology Biology Physics, 1994,<br>30, 399-403.                                                     | 0.4        | 4                  |
| 168 | A two-parameter method for the estimation of ultrasound-induced temperature artifacts.<br>International Journal of Hyperthermia, 1999, 15, 187-202.                                                                                                                  | 1.1        | 4                  |
| 169 | Proliferation Saturation Index Predicts Oropharyngeal Squamous Cell Cancer Gross Tumor Volume<br>Reduction to Prospectively Identify Patients for Adaptive Radiation Therapy. International Journal of<br>Radiation Oncology Biology Physics, 2016, 94, 903.         | 0.4        | 4                  |
| 170 | Study of Image Qualities From 6D Robot–Based CBCT Imaging System of Small Animal Irradiator.<br>Technology in Cancer Research and Treatment, 2017, 16, 811-818.                                                                                                      | 0.8        | 4                  |
| 171 | Biodistribution and Multicompartment Pharmacokinetic Analysis of a Targeted α Particle Therapy.<br>Molecular Pharmaceutics, 2020, 17, 4180-4188.                                                                                                                     | 2.3        | 4                  |
| 172 | Responses to the 2018 and 2019 "One Big Discovery―Question: ASTRO Membership's Opinions on the<br>Most Important Research Question Facing Radiation Oncology…Where Are We Headed?. International<br>Journal of Radiation Oncology Biology Physics, 2021, 109, 38-40. | 0.4        | 4                  |
| 173 | Electromagnetic and thermal characterization of an UHF-applicator for concurrent irradiation and high resolution non-perturbing optical microscopy of cells. Bioelectromagnetics, 2006, 27, 593-601.                                                                 | 0.9        | 3                  |
| 174 | Electromagnetic and thermal evaluation of an applicator specialized to permit highâ€resolution<br>nonâ€perturbing optical evaluation of cells being irradiated in the Wâ€band. Bioelectromagnetics, 2010,<br>31, 140-149.                                            | 0.9        | 3                  |
| 175 | Fiducial-based image-guided radiotherapy for whole breast irradiation. Journal of Radiation<br>Oncology, 2013, 2, 185-190.                                                                                                                                           | 0.7        | 3                  |
| 176 | Dose-mass inverse optimization for minimally moving thoracic lesions. Physics in Medicine and Biology, 2015, 60, 3927-3937.                                                                                                                                          | 1.6        | 3                  |
| 177 | A multi-user networked database for analysis of clinical and temperature data from patients treated<br>with simultaneous radiation and ultrasound hyperthermia. International Journal of Hyperthermia,<br>1999, 15, 419-426.                                         | 1.1        | 2                  |
| 178 | Intensity-Modulated Radiotherapy for Craniospinal Irradiation: Target Volume Considerations, Dose<br>Constraints and Competing Risks: In Regard to Parker etÂal. (Int J Radiat Oncol Biol Phys) Tj ETQq0 0 0 rgBT /Over                                              | lock 10 Ti | <b>5</b> 20 137 Td |
| 179 | Static jaw collimation settings to minimize radiation dose to normal brain tissue during stereotactic radiosurgery. Medical Dosimetry, 2012, 37, 391-395.                                                                                                            | 0.4        | 2                  |

180Assessment of intact cervix motion using implanted fiducials in patients treated with helical<br/>tomotherapy with daily MVCT positioning. Journal of Radiation Oncology, 2013, 2, 323-329.0.72

| #   | Article                                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Mathematical Formulation of DMH-Based Inverse Optimization. Frontiers in Oncology, 2014, 4, 331.                                                                                                                                                       | 1.3 | 2         |
| 182 | Motion as perturbation. II. Development of the method for dosimetric analysis of motion effects with fixed-gantry IMRT. Medical Physics, 2014, 41, 061704.                                                                                             | 1.6 | 2         |
| 183 | Technical Note: Motionâ€perturbation method applied to dosimetry of dynamic MLC target tracking—A<br>proofâ€ofâ€concept. Medical Physics, 2015, 42, 6147-6151.                                                                                         | 1.6 | 2         |
| 184 | Role of the bradykinin B2 receptor in a rat model of local heart irradiation. International Journal of Radiation Biology, 2015, 91, 634-642.                                                                                                           | 1.0 | 2         |
| 185 | Open access journals benefit authors from more affluent institutions. Medical Physics, 2016, 43, 5265-5267.                                                                                                                                            | 1.6 | 2         |
| 186 | Integral dose based inverse optimization objective function promises lower toxicity in head-and-neck.<br>Physica Medica, 2018, 54, 77-83.                                                                                                              | 0.4 | 2         |
| 187 | Radiomic assessment of the progression of acoustic neuroma after gamma knife stereotactic radiosurgery. Journal of Solid Tumors, 2019, 9, 1.                                                                                                           | 0.1 | 2         |
| 188 | SU-C-BRB-01: Spatially Fractionated Radiation Therapy (GRID) Using a TomoTherapy Unit. Medical Physics, 2011, 38, 3369-3369.                                                                                                                           | 1.6 | 2         |
| 189 | <title>Use of A-scan for penetration control during dual-frequency ultrasound thermal therapy of superficial tissues overlaying bone and lung</title> . , 1999, , .                                                                                    |     | 1         |
| 190 | Ventilation Series Similarity: A Study for Ventilation Calculation Using Deformable Image Registration and 4DCT to Avoid Motion Artifacts. Contrast Media and Molecular Imaging, 2017, 2017, 1-7.                                                      | 0.4 | 1         |
| 191 | Responses to the 2017 "1 Million Gray Question†ASTRO Membership's Opinions on the Most Important<br>Research Question Facing Radiation Oncology. International Journal of Radiation Oncology Biology<br>Physics, 2018, 102, 249-250.                   | 0.4 | 1         |
| 192 | Composite Pretreatment CT and 18F-FDG PET Radiomic-Based Prediction of Pathological Response of<br>Rectal Cancer Patients Treated with Neoadjuvant Chemoradiotherapy. International Journal of<br>Radiation Oncology Biology Physics, 2019, 105, E177. | 0.4 | 1         |
| 193 | The ASTRO Research Portfolio: Where Do We Go From Here?. International Journal of Radiation Oncology Biology Physics, 2019, 103, 308-309.                                                                                                              | 0.4 | 1         |
| 194 | SU-FF-T-403: Target Failure and Beam-On Load in Helical Tomotherapy. Medical Physics, 2006, 33, 2138-2138.                                                                                                                                             | 1.6 | 1         |
| 195 | SU-FF-J-160: Spatially Fractionated Radiation Therapy (GRID) On Implanted Tumors Using a Small Animal<br>Conformal Radiation Therapy System. Medical Physics, 2009, 36, 2514-2514.                                                                     | 1.6 | 1         |
| 196 | SU-FF-T-609: Dose Summation Technology for Radiation Therapy Facilities Equipped with Heterogeneous<br>Planning and Delivery Systems. Medical Physics, 2009, 36, 2664-2665.                                                                            | 1.6 | 1         |
| 197 | TU-C-BRD-03: An Integrated Robotic-Based Irradiation System for Small Animal Research. Medical Physics, 2009, 36, 2720-2720.                                                                                                                           | 1.6 | 1         |
| 198 | WE-E-220-04: Focused Ultrasound Ablation of Tumour Hypoxic Tissue of Small Animals under PET and<br>MRI Guidance. Medical Physics, 2011, 38, 3824-3824.                                                                                                | 1.6 | 1         |

| #   | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | SU-E-J-187: Evaluation of the Effects of Dose on 4DCT-Calculated Lung Ventilation. Medical Physics, 2012, 39, 3695-3696.                                                                                         | 1.6 | 1         |
| 200 | SUâ€Eâ€Tâ€479: Skin Dose from Flattening Filter Free Beams: A Monte Carlo Investigation. Medical Physics, 2012, 39, 3815-3815.                                                                                   | 1.6 | 1         |
| 201 | Fiducial markers vs. PET/CT for esophageal cancer GTV delineation for radiotherapy treatment planning using a standard SUV threshold and background uptake method Journal of Clinical Oncology, 2016, 34, 70-70. | 0.8 | 1         |
| 202 | Multicenter survey of PET/CT protocol parameters that affect standardized uptake values. Journal of Medical Imaging, 2017, 5, 1.                                                                                 | 0.8 | 1         |
| 203 | Stability of deep features across CT scanners and field of view using a physical phantom. , 2018, , .                                                                                                            |     | 1         |
| 204 | Superficial and peripheral dose in compensator-based FFF beam IMRT. Journal of Applied Clinical Medical Physics, 2017, 18, 151-156.                                                                              | 0.8 | 1         |
| 205 | Superficial and peripheral dose in compensatorâ€based FFF beam IMRT. Journal of Applied Clinical<br>Medical Physics, 2017, 18, 151-156.                                                                          | 0.8 | 1         |
| 206 | Multi-Angle Switched HIFU: A New Ultrasound Device for Controlled Non-Invasive Induction of Small Spherical Ablation Zones—Simulation and Ex-Vivo Results. , 2009, , .                                           |     | 0         |
| 207 | Thermal treatment planning for SonoKnife focused-ultrasound thermal treatment of head and neck cancers. Proceedings of SPIE, 2011, , .                                                                           | 0.8 | 0         |
| 208 | Dual thermal ablation modality of solid tumors in a mouse model. , 2011, , .                                                                                                                                     |     | 0         |
| 209 | Experimental characterization of a SonoKnife applicator. , 2011, , .                                                                                                                                             |     | 0         |
| 210 | Computed effects of sweat gland ducts on the propagation of 94 GHz waves in skin. Proceedings of SPIE, 2011, , .                                                                                                 | 0.8 | 0         |
| 211 | SonoKnife for ablation of neck tissue: In vivo verification of a computer layered medium model.<br>International Journal of Hyperthermia, 2012, 28, 698-705.                                                     | 1.1 | 0         |
| 212 | X-RAY COLLIMATOR DESIGN USING MONTE CARLO SIMULATIONS. Biomedical Engineering - Applications, Basis and Communications, 2013, 25, 1350054.                                                                       | 0.3 | 0         |
| 213 | On the dose to a moving target in stereotactic ablative body radiotherapy to lung tumors. Journal of Physics: Conference Series, 2017, 777, 012027.                                                              | 0.3 | 0         |
| 214 | SU-FF-T-320: Simple Acoustic Beam Model for Thermoradiotherapy Implemented in An Open Source<br>Treatment Planning Research System. Medical Physics, 2005, 32, 2024-2024.                                        | 1.6 | 0         |
| 215 | SU-FF-T-317: Options for SURLAS Design Modification Due to the Impact of Ultrasound Nonlinear Propagation. Medical Physics, 2005, 32, 2023-2023.                                                                 | 1.6 | 0         |
| 216 | WE-D-224C-07: A Comprehensive Patient-Specific IMRT Quality Assurance Procedure On Hi-Art<br>Tomotherapy® Unit. Medical Physics, 2006, 33, 2250-2250.                                                            | 1.6 | 0         |

| #   | Article                                                                                                                                                                                     | IF                | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|
| 217 | SU-FF-T-336: Patient-Specific QA in MLC-Based GRID Therapy. Medical Physics, 2007, 34, 2479-2479.                                                                                           | 1.6               | 0         |
| 218 | WEâ€Câ€M100Fâ€09: Dosimetric Comparison of Linacâ€IMRT and Helical Tomotherapy (HT) for Head and Neck<br>Cancer. Medical Physics, 2007, 34, 2593-2593.                                      | 1.6               | 0         |
| 219 | SU-GG-J-170: Small Animal Conformal Radiation Therapy Device. Medical Physics, 2008, 35, 2718-2718.                                                                                         | 1.6               | 0         |
| 220 | SUâ€GCâ€Tâ€539: Carbon Fiber Couch Effect On Skin Doses as a Function of Photon Energy. Medical Physics, 2008, 35, 2848-2849.                                                               | 1.6               | 0         |
| 221 | SUâ€GCâ€Jâ€151: Potential Lung Dose Reduction for Minimallyâ€Moving Lung Lesions. Medical Physics, 2008, 35<br>2714-2714.                                                                   | <sup>5</sup> ,1.6 | 0         |
| 222 | SUâ€GCâ€Jâ€160: Radiation Enclosure Shielding Calculations for a Laboratoryâ€Based Small Animal Conformal<br>Radiation Therapy Device. Medical Physics, 2008, 35, 2716-2716.                | 1.6               | 0         |
| 223 | TH-C-304A-03: MVCT Auto-Contouring for Adpative Radiation Therapy. Medical Physics, 2009, 36, 2803-2803.                                                                                    | 1.6               | Ο         |
| 224 | SU-FF-T-152: Comparison Between Fixed Gantry Angle Intensity Modulated Radiotherapy and Intensity<br>Modulated Arc Therapy for Head-And-Neck Cancers. Medical Physics, 2009, 36, 2555-2555. | 1.6               | 0         |
| 225 | TH-C-BRC-08: Integration of Cone Beam CT Imaging and a Small Animal Conformal RT Device Using a 6DOF Robotic Arm. Medical Physics, 2009, 36, 2799-2799.                                     | 1.6               | 0         |
| 226 | SU-FF-T-208: Dose Verification for Total Marrow Irradiation Using HELICAL TOMOTHERAPY Planned Adaptive. Medical Physics, 2009, 36, 2568-2568.                                               | 1.6               | 0         |
| 227 | SU-FF-J-124: When Do We Need to Consider Motion Management During Treatment of Mobile Lesions?.<br>Medical Physics, 2009, 36, 2505-2505.                                                    | 1.6               | Ο         |
| 228 | SU-FF-T-248: Quality Assurance for Total Marrow Irradiation (TMI) Using Helical Tomotherapy. Medical Physics, 2009, 36, 2577-2578.                                                          | 1.6               | 0         |
| 229 | SU-GG-I-178: Numerical Simulations of the SonoKnife's Acoustic Edge. Medical Physics, 2010, 37, 3142-3142.                                                                                  | 1.6               | 0         |
| 230 | SUâ€GGâ€Tâ€294: Quality Assurance for Small SRS Photon Field Using LUCY Phantom on BrainLab Iplan.<br>Medical Physics, 2010, 37, 3253-3253.                                                 | 1.6               | 0         |
| 231 | WEâ€Dâ€201Câ€04: SonoKnife — Feasibility of Lineâ€Focused Ultrasound for Thermal Ablation. Medical Physic 2010, 37, 3432-3432.                                                              | <sup>S,</sup> 1.6 | 0         |
| 232 | SUâ€GGâ€Tâ€534: The Impact of Linac Static Jaw Setting on Dose Output from Small Field SRS/SRT Using an<br>Addâ€On Microâ€Multileaf Collimator. Medical Physics, 2010, 37, 3310-3310.       | 1.6               | 0         |
| 233 | SUâ€GGâ€Tâ€⊋99: A Digital QA Solution Using 2D Ion Chamber Array. Medical Physics, 2010, 37, 3254-3254.                                                                                     | 1.6               | 0         |
| 234 | SU-GG-T-10: Deformable Model Based Dose Reconstruction for Total Body Irradiation with Helical<br>TomoTherapy. Medical Physics, 2010, 37, 3185-3185.                                        | 1.6               | 0         |

| #   | Article                                                                                                                                                                                        | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | SU-GC-I-105: Ultrafast Deformable Image Registration for Potential Adaptive Total Body Irradiation Therapy Using Helical TomoTherapy. Medical Physics, 2010, 37, 3125-3125.                    | 1.6 | 0         |
| 236 | Abstract 1570: Thermal ablation improves oxygenation in remaining viable tumor. , 2011, , .                                                                                                    |     | 0         |
| 237 | SU-E-T-537: A Dosimetric Study of Gafchromic EBT2 Film for Small Field Size Stereotactic Radiosurgery QA. Medical Physics, 2011, 38, 3612-3612.                                                | 1.6 | 0         |
| 238 | SU-E-T-318: Using Monte Carlo in the Design of Small Animal Irradiator Collimators. Medical Physics, 2011, 38, 3560-3561.                                                                      | 1.6 | 0         |
| 239 | WE-E-220-03: SonoKnife: Development, Testing and Treatment Planning. Medical Physics, 2011, 38, 3824-3824.                                                                                     | 1.6 | 0         |
| 240 | SU-E-I-15: CBCT Using a Robotic-Arm Based Small Animal Irradiation System. Medical Physics, 2011, 38, 3398-3399.                                                                               | 1.6 | 0         |
| 241 | SU-E-T-802: Dosimetric Examination and Verification of Megavoltage Computed Tomography (MVCT)<br>Based IMRT Treatment Planning with Helical TomoTherapy. Medical Physics, 2011, 38, 3675-3675. | 1.6 | 0         |
| 242 | SU-E-T-848: Dose Mass - Based IMRT Inverse Planning for Radiotherapy of Thoracic Cancer. Medical Physics, 2011, 38, 3686-3686.                                                                 | 1.6 | 0         |
| 243 | SU-E-T-312: Development of a Rat Model of Radiation-Induced Heart Disease Using SACRTD. Medical Physics, 2011, 38, 3559-3559.                                                                  | 1.6 | 0         |
| 244 | SU-E-T-572: Dose Mass Histogram (DMH) versus Dose Volume Histogram (DVH) for SBRT and Craniospinal Patients: What Can We Learn?. Medical Physics, 2011, 38, 3621-3621.                         | 1.6 | 0         |
| 245 | SU-E-J-167: Optimal Number of Respiratory Phases in 4D PET for Radiotherapy Planning:<br>Motion-Simulated Phantom Study. Medical Physics, 2012, 39, 3691-3691.                                 | 1.6 | 0         |
| 246 | SU-E-T-553: Dose-Mass Vs. Dose-Volume Optimization: A Phantom Study. Medical Physics, 2012, 39, 3832-3833.                                                                                     | 1.6 | 0         |
| 247 | TH-C-137-12: Comparison of Dose-Volume and Dose-Mass Inverse Optimization in NSCLC. Medical Physics, 2013, 40, 535-535.                                                                        | 1.6 | 0         |
| 248 | SU-E-T-239: Implementation of QA Procedures and Their Effect On the Radiation Treatment Delivery<br>Error Rate Over a 12 Year Period. Medical Physics, 2013, 40, 259-259.                      | 1.6 | 0         |
| 249 | SU-E-J-69: Normalization of Ventilation Data From 4D-CT for Comparison Before and After Treatment.<br>Medical Physics, 2013, 40, 165-165.                                                      | 1.6 | 0         |
| 250 | SU-E-J-203: Texture Analysis of 3D and 4D PET/CT Images of Lung Cancer. Medical Physics, 2013, 40, 198-198.                                                                                    | 1.6 | 0         |
| 251 | TH-A-137-07: Local Control Differences for SBRT Lung Patients Planned with Pencil Beam Vs. Collapsed Cone Convolution Algorithms. Medical Physics, 2013, 40, 518-518.                          | 1.6 | Ο         |
| 252 | SU-E-J-66: Effects of Noise in 4D-CT On Deformable Image Registration and Derived Ventilation Data.<br>Medical Physics, 2013, 40, 165-165.                                                     | 1.6 | 0         |

| #   | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Equivalent phased array methods to predict acoustic fields of planar and focused ultrasound transducers. Journal of the Acoustical Society of America, 1997, 102, 3086-3086.                                       | 0.5 | 0         |
| 254 | Abstract A18: A systems biology approach to predict immunotherapy augmented abscopal effects. , 2015, , .                                                                                                          |     | 0         |
| 255 | Abstract A19: Systems biology approach predicts the diagnostic value of T effector: T regulatory cell ratio in clinical response to combined radiation/immunotherapy of high-risk soft tissue sarcoma. , 2015, , . |     | 0         |
| 256 | WE-FG-BRA-10: Radiodosimetry of a Novel Alpha Particle Therapy Targeted to Uveal Melanoma: Absorbed Dose to Organs in Mice. Medical Physics, 2016, 43, 3825-3826.                                                  | 1.6 | 0         |
| 257 | 4DCT-Derived Ventilation Distribution Reproducibility Over Time. Communications in Computer and Information Science, 2017, , 56-66.                                                                                | 0.4 | 0         |
| 258 | Big Data Approaches to Improve Stereotactic Body Radiation Therapy (SBRT) Outcomes. Advances in<br>Medical Diagnosis, Treatment, and Care, 2018, , 94-113.                                                         | 0.1 | 0         |
| 259 | Temperature Feedback Control for Hyperthermia of Chest Wall Volumes With Dual-Frequency<br>Ultrasound. , 1999, , .                                                                                                 |     | 0         |
| 260 | Model for Ultrasonic Heating of Chest Wall Recurrences. , 1998, , .                                                                                                                                                |     | 0         |