
## Ayyalusamy Ramamoorthy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8121355/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                          | IF                 | CITATIONS           |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|
| 1  | Molecular Music: A Modern Accompaniment to NMR Pedagogy. Journal of Chemical Education, 2022, 99, 810-818.                                                                                                                                       | 2.3                | 1                   |
| 2  | Conformational Tuning of Amylin by Charged Styrene-Maleic-Acid Copolymers. Journal of Molecular<br>Biology, 2022, 434, 167385.                                                                                                                   | 4.2                | 6                   |
| 3  | Detergent-free isolation of CYP450-reductase's FMN-binding domain in <i>E. coli</i> lipid-nanodiscs using a charge-free polymer. Chemical Communications, 2022, , .                                                                              | 4.1                | 8                   |
| 4  | Saponins Form Nonionic Lipid Nanodiscs for Protein Structural Studies by Nuclear Magnetic<br>Resonance Spectroscopy. Journal of Physical Chemistry Letters, 2022, 13, 1705-1712.                                                                 | 4.6                | 11                  |
| 5  | Measurement of Residual Dipolar Couplings Using Magnetically Aligned and Flipped Nanodiscs.<br>Langmuir, 2022, 38, 244-252.                                                                                                                      | 3.5                | 7                   |
| 6  | Biophysical processes underlying cross-seeding in amyloid aggregation and implications in amyloid pathology. Biophysical Chemistry, 2021, 269, 106507.                                                                                           | 2.8                | 101                 |
| 7  | Nanodisc reconstitution of flavin mononucleotide binding domain of cytochrome-P450-reductase enables high-resolution NMR probing. Chemical Communications, 2021, 57, 4819-4822.                                                                  | 4.1                | 5                   |
| 8  | Proteostasis of Islet Amyloid Polypeptide: A Molecular Perspective of Risk Factors and Protective<br>Strategies for Type II Diabetes. Chemical Reviews, 2021, 121, 1845-1893.                                                                    | 47.7               | 129                 |
| 9  | Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer's Disease,<br>Parkinson's Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Chemical Reviews, 2021, 121,<br>2545-2647.                                | 47.7               | 406                 |
| 10 | Benchmarks of SMA-Copolymer Derivatives and Nanodisc Integrity. Langmuir, 2021, 37, 3113-3121.                                                                                                                                                   | 3.5                | 11                  |
| 11 | Solid-state packing dictates the unexpected solubility of aromatic peptides. Cell Reports Physical Science, 2021, 2, 100391.                                                                                                                     | 5.6                | 10                  |
| 12 | Solid-State NMR Study to Probe the Effects of Divalent Metal Ions (Ca <sup>2+</sup> and) Tj ETQq0 0 0 rgBT /C                                                                                                                                    | Overlock 10<br>3.5 | ) Tf 50 307 To<br>4 |
| 13 | Synthesis, Characterization, and Nanodisc Formation of Nonâ€ionic Polymers**. Angewandte Chemie -<br>International Edition, 2021, 60, 16885-16888.                                                                                               | 13.8               | 29                  |
| 14 | Synthesis, Characterization, and Nanodisc Formation of Nonâ€ionic Polymers**. Angewandte Chemie,<br>2021, 133, 17022-17025.                                                                                                                      | 2.0                | 5                   |
| 15 | Degradation of Alzheimer's Amyloid-β by a Catalytically Inactive Insulin-Degrading Enzyme. Journal of<br>Molecular Biology, 2021, 433, 166993.                                                                                                   | 4.2                | 27                  |
| 16 | Investigation of the effects of two major secretory granules components, insulin and zinc, on<br>human-IAPP amyloid aggregation and membrane damage. Chemistry and Physics of Lipids, 2021, 237,<br>105083.                                      | 3.2                | 24                  |
| 17 | Lipids on the pathomechanisms of amyloid diseases. Chemistry and Physics of Lipids, 2021, 239, 105122.                                                                                                                                           | 3.2                | 0                   |
| 18 | Aggregation and the Intrinsic Structural Disorder of Dipeptide Repeat Peptides of C9orf72-Related<br>Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Characterized by NMR. Journal of<br>Physical Chemistry B, 2021, 125, 12446-12456. | 2.6                | 2                   |

| #  | Article                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Structural Interaction of Apolipoprotein A-I Mimetic Peptide with Amyloid-Î <sup>2</sup> Generates Toxic<br>Hetero-oligomers. Journal of Molecular Biology, 2020, 432, 1020-1034.                 | 4.2  | 25        |
| 20 | Lipid-Chaperone Hypothesis: A Common Molecular Mechanism of Membrane Disruption by Intrinsically<br>Disordered Proteins. ACS Chemical Neuroscience, 2020, 11, 4336-4350.                          | 3.5  | 101       |
| 21 | Natural-abundance <sup>17</sup> O NMR spectroscopy of magnetically aligned lipid nanodiscs.<br>Chemical Communications, 2020, 56, 9998-10001.                                                     | 4.1  | 10        |
| 22 | Small molecule induced toxic human-IAPP species characterized by NMR. Chemical Communications, 2020, 56, 13129-13132.                                                                             | 4.1  | 21        |
| 23 | High-Throughput Screening at the Membrane Interface Reveals Inhibitors of Amyloid-Î <sup>2</sup> . Biochemistry, 2020, 59, 2249-2258.                                                             | 2.5  | 40        |
| 24 | Detergent-free extraction, reconstitution and characterization of membrane-anchored cytochrome-b5 in native lipids. Chemical Communications, 2020, 56, 6511-6514.                                 | 4.1  | 26        |
| 25 | Lipid-nanodiscs formed by paramagnetic metal chelated polymer for fast NMR data acquisition.<br>Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183332.                                 | 2.6  | 9         |
| 26 | High-Speed Atomic Force Microscopy Reveals the Structural Dynamics of the Amyloid-Î <sup>2</sup> and Amylin<br>Aggregation Pathways. International Journal of Molecular Sciences, 2020, 21, 4287. | 4.1  | 27        |
| 27 | High-resolution proton-detected MAS experiments on self-assembled diphenylalanine nanotubes<br>enabled by fast MAS and high magnetic field. Journal of Magnetic Resonance, 2020, 313, 106717.     | 2.1  | 11        |
| 28 | Symmetry-breaking transitions in the early steps of protein self-assembly. European Biophysics Journal, 2020, 49, 175-191.                                                                        | 2.2  | 28        |
| 29 | Amylin and beta amyloid proteins interact to form amorphous heterocomplexes with enhanced toxicity in neuronal cells. Scientific Reports, 2020, 10, 10356.                                        | 3.3  | 44        |
| 30 | Magnetic Alignment of Polymer Nanodiscs Probed by Solid-State NMR Spectroscopy. Langmuir, 2020, 36, 1258-1265.                                                                                    | 3.5  | 21        |
| 31 | Unusual Two‧tep Assembly of a Minimalistic Dipeptideâ€Based Functional Hypergelator. Advanced<br>Materials, 2020, 32, e1906043.                                                                   | 21.0 | 73        |
| 32 | Expression, purification, and functional reconstitution of 19F-labeled cytochrome b5 in peptide<br>nanodiscs for NMR studies. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183194.   | 2.6  | 13        |
| 33 | High-resolution probing of early events in amyloid-β aggregation related to Alzheimer's disease.<br>Chemical Communications, 2020, 56, 4627-4639.                                                 | 4.1  | 71        |
| 34 | Diverse Structural Conversion and Aggregation Pathways of Alzheimer's Amyloid-β (1–40). ACS Nano,<br>2019, 13, 8766-8783.                                                                         | 14.6 | 33        |
| 35 | Magnetic Alignment of Polymer Macroâ€Nanodiscs Enables Residualâ€Dipolarâ€Couplingâ€Based<br>Highâ€Resolution Structural Studies by NMR Spectroscopy. Angewandte Chemie, 2019, 131, 15067-15070.  | 2.0  | 7         |
| 36 | Use of paramagnetic systems to speed-up NMR data acquisition and for structural and dynamic studies.<br>Solid State Nuclear Magnetic Resonance, 2019, 102, 36-46.                                 | 2.3  | 20        |

| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Magnetic Alignment of Polymer Macroâ€Nanodiscs Enables Residualâ€Dipolarâ€Couplingâ€Based<br>Highâ€Resolution Structural Studies by NMR Spectroscopy. Angewandte Chemie - International Edition,<br>2019, 58, 14925-14928.      | 13.8 | 27        |
| 38 | Exploiting heterogeneous time scale of dynamics to enhance 2D HETCOR solid-state NMR sensitivity.<br>Journal of Magnetic Resonance, 2019, 309, 106615.                                                                          | 2.1  | 15        |
| 39 | Berichtigung: Bioinspired, Sizeâ€Tunable Selfâ€Assembly of Polymer—Lipid Bilayer Nanodiscs. Angewandte<br>Chemie, 2019, 131, 13318-13318.                                                                                       | 2.0  | 2         |
| 40 | Metal helated Polymer Nanodiscs for NMR Studies. Angewandte Chemie, 2019, 131, 17406-17410.                                                                                                                                     | 2.0  | 2         |
| 41 | Metalâ€Chelated Polymer Nanodiscs for NMR Studies. Angewandte Chemie - International Edition, 2019,<br>58, 17246-17250.                                                                                                         | 13.8 | 16        |
| 42 | Berichtigung: Formation of pHâ€Resistant Monodispersed Polymer—Lipid Bilayer Nanodiscs. Angewandte<br>Chemie, 2019, 131, 13319-13319.                                                                                           | 2.0  | 2         |
| 43 | Polymer nanodiscs: Advantages and limitations. Chemistry and Physics of Lipids, 2019, 219, 45-49.                                                                                                                               | 3.2  | 77        |
| 44 | Hydrophobic Functionalization of Polyacrylic Acid as a Versatile Platform for the Development of<br>Polymer Lipid Nanodisks. Small, 2019, 15, e1804813.                                                                         | 10.0 | 43        |
| 45 | NMR-Based Metabolomic Profiling of Urine: Evaluation for Application in Prostate Cancer Detection.<br>Natural Product Communications, 2019, 14, 1934578X1984997.                                                                | 0.5  | 7         |
| 46 | Self-Assembly of Polymer-Encased Lipid Nanodiscs and Membrane Protein Reconstitution. Journal of Physical Chemistry B, 2019, 123, 4562-4570.                                                                                    | 2.6  | 22        |
| 47 | Probing membrane enhanced protein–protein interactions in a minimal redox complex of cytochrome-P450 and P450-reductase. Chemical Communications, 2019, 55, 5777-5780.                                                          | 4.1  | 15        |
| 48 | Probing transient non-native states in amyloid beta fiber elongation by NMR. Chemical Communications, 2019, 55, 4483-4486.                                                                                                      | 4.1  | 46        |
| 49 | A cationic polymethacrylate-copolymer acts as an agonist for β-amyloid and an antagonist for amylin<br>fibrillation. Chemical Science, 2019, 10, 3976-3986.                                                                     | 7.4  | 52        |
| 50 | Probing protein–protein and protein–substrate interactions in the dynamic membrane-associated<br>ternary complex of cytochromes P450, <i>b</i> <sub>5</sub> , and reductase. Chemical<br>Communications, 2019, 55, 13422-13425. | 4.1  | 17        |
| 51 | Proton-detected 3D 1H anisotropic/14N/1H isotropic chemical shifts correlation NMR under fast magic<br>angle spinning on solid samples withoutÂisotopic enrichment. Solid State Nuclear Magnetic<br>Resonance, 2019, 97, 40-45. | 2.3  | 9         |
| 52 | Zinc boosts EGCG's hIAPP amyloid Inhibition both in solution and membrane. Biochimica Et Biophysica<br>Acta - Proteins and Proteomics, 2019, 1867, 529-536.                                                                     | 2.3  | 32        |
| 53 | Semenâ€derived amyloidogenic peptides—Key players of HIV infection. Protein Science, 2018, 27, 1151-1165.                                                                                                                       | 7.6  | 15        |
| 54 | Cytochromeâ€P450â€Induced Ordering of Microsomal Membranes Modulates Affinity for Drugs.<br>Angewandte Chemie, 2018, 130, 3449-3453.                                                                                            | 2.0  | 5         |

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Cytochromeâ€P450â€Induced Ordering of Microsomal Membranes Modulates Affinity for Drugs.<br>Angewandte Chemie - International Edition, 2018, 57, 3391-3395.                                                              | 13.8 | 44        |
| 56 | Real-time monitoring of the aggregation of Alzheimer's amyloid-β <i>via</i> <sup>1</sup> H magic angle spinning NMR spectroscopy. Chemical Communications, 2018, 54, 2000-2003.                                          | 4.1  | 28        |
| 57 | Unusual multiscale mechanics of biomimetic nanoparticle hydrogels. Nature Communications, 2018, 9, 181.                                                                                                                  | 12.8 | 28        |
| 58 | A Minimal Functional Complex of Cytochrome P450 and FBD of Cytochrome P450 Reductase in<br>Nanodiscs. Angewandte Chemie - International Edition, 2018, 57, 8458-8462.                                                    | 13.8 | 36        |
| 59 | Impact of membrane curvature on amyloid aggregation. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1741-1764.                                                                                                | 2.6  | 88        |
| 60 | Real-Time Monitoring of Lipid Exchange via Fusion of Peptide Based Lipid-Nanodiscs. Chemistry of<br>Materials, 2018, 30, 3204-3207.                                                                                      | 6.7  | 23        |
| 61 | Engineering <scp>l</scp> -asparaginase for spontaneous formation of calcium phosphate bioinspired microreactors. Physical Chemistry Chemical Physics, 2018, 20, 12719-12726.                                             | 2.8  | 9         |
| 62 | hIAPP forms toxic oligomers in plasma. Chemical Communications, 2018, 54, 5426-5429.                                                                                                                                     | 4.1  | 28        |
| 63 | A blend of two resveratrol derivatives abolishes hIAPP amyloid growth and membrane damage.<br>Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1793-1802.                                                       | 2.6  | 36        |
| 64 | Dynamic membrane interactions of antibacterial and antifungal biomolecules, and amyloid peptides,<br>revealed by solid-state NMR spectroscopy. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862,<br>307-323. | 2.4  | 37        |
| 65 | Formation of pHâ€Resistant Monodispersed Polymer–Lipid Nanodiscs. Angewandte Chemie -<br>International Edition, 2018, 57, 1342-1345.                                                                                     | 13.8 | 106       |
| 66 | Formation of pHâ€Resistant Monodispersed Polymer–Lipid Nanodiscs. Angewandte Chemie, 2018, 130,<br>1356-1359.                                                                                                            | 2.0  | 7         |
| 67 | Alzheimer's amyloid-beta intermediates generated using polymer-nanodiscs. Chemical Communications, 2018, 54, 12883-12886.                                                                                                | 4.1  | 69        |
| 68 | Cytochrome P450 Prefers to be in Liquid-Ordered Domains in the Endoplasmic Reticulum. Biophysical<br>Journal, 2018, 114, 71a.                                                                                            | 0.5  | 0         |
| 69 | Styrene maleic acid derivates to enhance the applications of bio-inspired polymer based lipid-nanodiscs. European Polymer Journal, 2018, 108, 597-602.                                                                   | 5.4  | 22        |
| 70 | Nanodisc-Forming Scaffold Protein Promoted Retardation of Amyloid-Beta Aggregation. Journal of<br>Molecular Biology, 2018, 430, 4230-4244.                                                                               | 4.2  | 49        |
| 71 | The Influence of Chemical Modification on Linker Rotational Dynamics in Metal–Organic Frameworks.<br>Angewandte Chemie - International Edition, 2018, 57, 8678-8681.                                                     | 13.8 | 33        |
| 72 | The Influence of Chemical Modification on Linker Rotational Dynamics in Metal–Organic Frameworks.<br>Angewandte Chemie, 2018, 130, 8814-8817.                                                                            | 2.0  | 11        |

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Lipid-exchange in nanodiscs discloses membrane boundaries of cytochrome-P450 reductase. Chemical<br>Communications, 2018, 54, 6336-6339.                                                                                 | 4.1  | 15        |
| 74 | High-Resolution Proton NMR Spectroscopy of Polymers and Biological Solids. , 2018, , 521-536.                                                                                                                            |      | 2         |
| 75 | Effect of polymer charge on functional reconstitution of membrane proteins in polymer nanodiscs.<br>Chemical Communications, 2018, 54, 9615-9618.                                                                        | 4.1  | 52        |
| 76 | Picturing the Membraneâ€assisted Choreography of Cytochrome P450 with Lipid Nanodiscs.<br>ChemPhysChem, 2018, 19, 2603-2613.                                                                                             | 2.1  | 28        |
| 77 | Substrate mediated redox partner selectivity of cytochrome P450. Chemical Communications, 2018, 54, 5780-5783.                                                                                                           | 4.1  | 11        |
| 78 | Preparation of Stable Amyloid-Î <sup>2</sup> Oligomers Without Perturbative Methods. Methods in Molecular<br>Biology, 2018, 1777, 331-338.                                                                               | 0.9  | 6         |
| 79 | A Minimal Functional Complex of Cytochrome P450 and FBD of Cytochrome P450 Reductase in<br>Nanodiscs. Angewandte Chemie, 2018, 130, 8594-8598.                                                                           | 2.0  | 6         |
| 80 | Reduced Lipid Bilayer Thickness Regulates the Aggregation and Cytotoxicity of Amyloid-β. Journal of<br>Biological Chemistry, 2017, 292, 4638-4650.                                                                       | 3.4  | 145       |
| 81 | Conformations and Intermolecular Interactions in Cellulose/Silk Fibroin Blend Films: A Solid-State<br>NMR Perspective. Journal of Physical Chemistry B, 2017, 121, 6108-6116.                                            | 2.6  | 47        |
| 82 | 3D Double-Quantum/Double-Quantum Exchange Spectroscopy of Protons under 100 kHz Magic Angle<br>Spinning. Journal of Physical Chemistry B, 2017, 121, 5944-5952.                                                          | 2.6  | 16        |
| 83 | Model membrane size-dependent amyloidogenesis of Alzheimer's amyloid-β peptides. Physical Chemistry<br>Chemical Physics, 2017, 19, 16257-16266.                                                                          | 2.8  | 42        |
| 84 | Proton-Based Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy. Accounts of Chemical Research, 2017, 50, 1105-1113.                                                                                            | 15.6 | 111       |
| 85 | Structural and Mechanistic Insights into Development of Chemical Tools to Control Individual and<br>Interâ€Related Pathological Features in Alzheimer's Disease. Chemistry - A European Journal, 2017, 23,<br>2706-2715. | 3.3  | 25        |
| 86 | Electrostatic Constraints Assessed by <sup>1</sup> H MAS NMR Illuminate Differences in Crystalline<br>Polymorphs. Journal of Physical Chemistry Letters, 2017, 8, 4253-4257.                                             | 4.6  | 15        |
| 87 | pH Tunable and Divalent Metal Ion Tolerant Polymer Lipid Nanodiscs. Langmuir, 2017, 33, 10655-10662.                                                                                                                     | 3.5  | 75        |
| 88 | Kinetic and Structural Characterization of the Effects of Membrane on the Complex of Cytochrome b<br>5 and Cytochrome c. Scientific Reports, 2017, 7, 7793.                                                              | 3.3  | 15        |
| 89 | Bioinspired, Sizeâ€Tunable Selfâ€Assembly of Polymer–Lipid Bilayer Nanodiscs. Angewandte Chemie, 2017,<br>129, 11624-11628.                                                                                              | 2.0  | 25        |
| 90 | Bioinspired, Sizeâ€Tunable Selfâ€Assembly of Polymer–Lipid Bilayer Nanodiscs. Angewandte Chemie -<br>International Edition, 2017, 56, 11466-11470.                                                                       | 13.8 | 120       |

| #   | Article                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Growth-incompetent monomers of human calcitonin lead to a noncanonical direct relationship<br>between peptide concentration and aggregation lag time. Journal of Biological Chemistry, 2017, 292,<br>14963-14976.                                        | 3.4  | 16        |
| 92  | Role of Anomalous Water Constraints in the Efficacy of Pharmaceuticals Probed by 1 H Solidâ€State<br>NMR. ChemistrySelect, 2017, 2, 6797-6800.                                                                                                           | 1.5  | 12        |
| 93  | Spontaneous Lipid Nanodisc Fomation by Amphiphilic Polymethacrylate Copolymers. Journal of the<br>American Chemical Society, 2017, 139, 18657-18663.                                                                                                     | 13.7 | 101       |
| 94  | Membrane environment drives cytochrome P450's spin transition and its interaction with cytochrome <i>b</i> <sub>5</sub> . Chemical Communications, 2017, 53, 12798-12801.                                                                                | 4.1  | 40        |
| 95  | Solid-State NMR Spectroscopy: The Magic Wand to View Bone at Nanoscopic Resolution. Annual<br>Reports on NMR Spectroscopy, 2017, 92, 365-413.                                                                                                            | 1.5  | 17        |
| 96  | Minor Structural Variations of Small Molecules Tune Regulatory Activities toward Pathological<br>Factors in Alzheimer's Disease. ChemMedChem, 2017, 12, 1828-1838.                                                                                       | 3.2  | 13        |
| 97  | Transmembrane Interactions of Full-length Mammalian Bitopic Cytochrome-P450-Cytochrome-b5<br>Complex in Lipid Bilayers Revealed by Sensitivity-Enhanced Dynamic Nuclear Polarization Solid-state<br>NMR Spectroscopy. Scientific Reports, 2017, 7, 4116. | 3.3  | 32        |
| 98  | Accelerated molecular dynamics simulation analysis of MSI-594 in a lipid bilayer. Physical Chemistry<br>Chemical Physics, 2017, 19, 19289-19299.                                                                                                         | 2.8  | 46        |
| 99  | Structural Biology of Calcitonin: From Aqueous Therapeutic Properties to Amyloid Aggregation.<br>Israel Journal of Chemistry, 2017, 57, 634-650.                                                                                                         | 2.3  | 15        |
| 100 | An Iridium(III) Complex as a Photoactivatable Tool for Oxidation of Amyloidogenic Peptides with<br>Subsequent Modulation of Peptide Aggregation. Chemistry - A European Journal, 2017, 23, 1645-1653.                                                    | 3.3  | 33        |
| 101 | Stabilization and structural analysis of a membrane-associated hIAPP aggregation intermediate. ELife, 2017, 6, .                                                                                                                                         | 6.0  | 61        |
| 102 | Multi-target-directed phenol–triazole ligands as therapeutic agents for Alzheimer's disease. Chemical<br>Science, 2017, 8, 5636-5643.                                                                                                                    | 7.4  | 79        |
| 103 | The catalytic function of cytochrome P450 is entwined with its membrane-bound nature.<br>F1000Research, 2017, 6, 662.                                                                                                                                    | 1.6  | 51        |
| 104 | High-Resolution Proton NMR Spectroscopy of Polymers and Biological Solids. , 2017, , 1-16.                                                                                                                                                               |      | 0         |
| 105 | Inhibition of IAPP Aggregation and Toxicity by Natural Products and Derivatives. Journal of Diabetes Research, 2016, 2016, 1-12.                                                                                                                         | 2.3  | 109       |
| 106 | The Role of Cholesterol in Driving IAPP-Membrane Interactions. Biophysical Journal, 2016, 111, 140-151.                                                                                                                                                  | 0.5  | 74        |
| 107 | Enhancing NMR Sensitivity of Naturalâ€Abundance Lowâ€Î³ Nuclei by Ultrafast Magicâ€Angleâ€5pinning<br>Solidâ€State NMR Spectroscopy. ChemPhysChem, 2016, 17, 2962-2966.                                                                                  | 2.1  | 30        |
| 108 | Constant-time 2D and 3D through-bond correlation NMR spectroscopy of solids under 60 kHz MAS.<br>Journal of Chemical Physics, 2016, 144, 034202.                                                                                                         | 3.0  | 11        |

| #   | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Proton-detected 3D 15N/1H/1H isotropic/anisotropic/isotropic chemical shift correlation solid-state<br>NMR at 70kHz MAS. Solid State Nuclear Magnetic Resonance, 2016, 76-77, 1-6.                                                          | 2.3  | 16        |
| 110 | Multifunctional quinoline-triazole derivatives as potential modulators of amyloid-β peptide aggregation. Journal of Inorganic Biochemistry, 2016, 158, 131-138.                                                                             | 3.5  | 25        |
| 111 | Hybridizing cross-polarization with NOE or refocused-INEPT enhances the sensitivity of MAS NMR spectroscopy. Journal of Magnetic Resonance, 2016, 266, 59-66.                                                                               | 2.1  | 33        |
| 112 | Importance of the Dimethylamino Functionality on a Multifunctional Framework for Regulating<br>Metals, Amyloid-β, and Oxidative Stress in Alzheimer's Disease. Inorganic Chemistry, 2016, 55, 5000-5013.                                    | 4.0  | 19        |
| 113 | Spontaneous structural transition and crystal formation in minimal supramolecular polymer model.<br>Science Advances, 2016, 2, e1500827.                                                                                                    | 10.3 | 62        |
| 114 | Mode of Action of a Designed Antimicrobial Peptide: High Potency against Cryptococcus neoformans.<br>Biophysical Journal, 2016, 111, 1724-1737.                                                                                             | 0.5  | 37        |
| 115 | Selective detection and complete identification of triglycerides in cortical bone by high-resolution <sup>1</sup> H MAS NMR spectroscopy. Physical Chemistry Chemical Physics, 2016, 18, 18687-18691.                                       | 2.8  | 22        |
| 116 | Reconstitution of the Cyt <i>b</i> <sub>5</sub> –CytP450 Complex in Nanodiscs for Structural Studies<br>using NMR Spectroscopy. Angewandte Chemie, 2016, 128, 4573-4575.                                                                    | 2.0  | 13        |
| 117 | Biophysical insights into the membrane interaction of the core amyloid-forming<br>Aβ <sub>40</sub> fragment K16–K28 and its role in the pathogenesis of Alzheimer's disease. Physical<br>Chemistry Chemical Physics, 2016, 18, 16890-16901. | 2.8  | 16        |
| 118 | Reconstitution of the Cytb5-CytP450 Complex in Nanodiscs for Structural Studies using NMR<br>Spectroscopy. Angewandte Chemie - International Edition, 2016, 55, 4497-4499.                                                                  | 13.8 | 80        |
| 119 | Effects of hydroxyl group variations on a flavonoid backbone toward modulation of metal-free and metal-induced amyloid-l <sup>2</sup> aggregation. Inorganic Chemistry Frontiers, 2016, 3, 381-392.                                         | 6.0  | 28        |
| 120 | Amyloid-Î <sup>2</sup> adopts a conserved, partially folded structure upon binding to zwitterionic lipid bilayers prior to amyloid formation. Chemical Communications, 2016, 52, 882-885.                                                   | 4.1  | 66        |
| 121 | Influence of a curcumin derivative on hIAPP aggregation in the absence and presence of lipid membranes. Chemical Communications, 2016, 52, 942-945.                                                                                         | 4.1  | 63        |
| 122 | Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy.<br>Journal of Chemical Physics, 2015, 143, 144201.                                                                                            | 3.0  | 28        |
| 123 | Reactivity of Metal-Free and Metal-Associated Amyloid-Î <sup>2</sup> with Glycosylated Polyphenols and Their Esterified Derivatives. Scientific Reports, 2015, 5, 17842.                                                                    | 3.3  | 44        |
| 124 | Proton-detected 3D 1H/13C/1H correlation experiment for structural analysis in rigid solids under ultrafast-MAS above 60 kHz. Journal of Chemical Physics, 2015, 143, 164201.                                                               | 3.0  | 16        |
| 125 | Effects of Membrane Mimetics on Cytochrome P450-Cytochrome b5 Interactions Characterized by NMR Spectroscopy. Journal of Biological Chemistry, 2015, 290, 12705-12718.                                                                      | 3.4  | 30        |
| 126 | Insights into the Role of Substrates on the Interaction between Cytochrome b5 and Cytochrome P450<br>2B4 by NMR. Scientific Reports, 2015, 5, 8392.                                                                                         | 3.3  | 24        |

| #   | Article                                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Probing the Sources of the Apparent Irreproducibility of Amyloid Formation: Drastic Changes in<br>Kinetics and a Switch in Mechanism Due to Micellelike Oligomer Formation at Critical Concentrations<br>of IAPP. Journal of Physical Chemistry B, 2015, 119, 2886-2896. | 2.6  | 85        |
| 128 | Phase cycling schemes for finite-pulse-RFDR MAS solid state NMR experiments. Journal of Magnetic Resonance, 2015, 252, 55-66.                                                                                                                                            | 2.1  | 43        |
| 129 | Temperature-Resistant Bicelles for Structural Studies by Solid-State NMR Spectroscopy. Langmuir, 2015, 31, 1496-1504.                                                                                                                                                    | 3.5  | 16        |
| 130 | Investigating Albendazole Desmotropes by Solid-State NMR Spectroscopy. Molecular Pharmaceutics, 2015, 12, 731-741.                                                                                                                                                       | 4.6  | 42        |
| 131 | Membrane interaction of antimicrobial peptides using E. coli lipid extract as model bacterial cell membranes and SFG spectroscopy. Chemistry and Physics of Lipids, 2015, 187, 20-33.                                                                                    | 3.2  | 28        |
| 132 | Bioanalytical methods for metabolomic profiling: Detection of head and neck cancer, including oral cancer. Chinese Chemical Letters, 2015, 26, 407-415.                                                                                                                  | 9.0  | 24        |
| 133 | Antimicrobial Peptides: Insights into Membrane Permeabilization, Lipopolysaccharide Fragmentation and Application in Plant Disease Control. Scientific Reports, 2015, 5, 11951.                                                                                          | 3.3  | 70        |
| 134 | Proton-Detected Solid-State NMR Spectroscopy of Bone with Ultrafast Magic Angle Spinning.<br>Scientific Reports, 2015, 5, 11991.                                                                                                                                         | 3.3  | 81        |
| 135 | A Novel High-Resolution and Sensitivity-Enhanced Three-Dimensional Solid-State NMR Experiment<br>Under Ultrafast Magic Angle Spinning Conditions. Scientific Reports, 2015, 5, 11810.                                                                                    | 3.3  | 44        |
| 136 | High-resolution NMR characterization of low abundance oligomers of amyloid-β without purification.<br>Scientific Reports, 2015, 5, 11811.                                                                                                                                | 3.3  | 101       |
| 137 | Self-Assembly of a Nine-Residue Amyloid-Forming Peptide Fragment of SARS Corona Virus E-Protein:<br>Mechanism of Self Aggregation and Amyloid-Inhibition of hIAPP. Biochemistry, 2015, 54, 2249-2261.                                                                    | 2.5  | 50        |
| 138 | Detergent-Type Membrane Fragmentation by MSI-78, MSI-367, MSI-594, and MSI-843 Antimicrobial Peptides<br>and Inhibition by Cholesterol: A Solid-State Nuclear Magnetic Resonance Study. Biochemistry, 2015, 54,<br>1897-1907.                                            | 2.5  | 55        |
| 139 | 1020 MHz single-channel proton fast magic angle spinning solid-state NMR spectroscopy. Journal of<br>Magnetic Resonance, 2015, 261, 1-5.                                                                                                                                 | 2.1  | 38        |
| 140 | Dynamics-based selective 2D 1H/1H chemical shift correlation spectroscopy under ultrafast MAS conditions. Journal of Chemical Physics, 2015, 142, 204201.                                                                                                                | 3.0  | 16        |
| 141 | Selective excitation enables assignment of proton resonances and 1H-1H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy. Journal of Chemical Physics, 2015, 143, 034201.                                                              | 3.0  | 21        |
| 142 | A Redox-Active, Compact Molecule for Cross-Linking Amyloidogenic Peptides into Nontoxic,<br>Off-Pathway Aggregates: In Vitro and In Vivo Efficacy and Molecular Mechanisms. Journal of the<br>American Chemical Society, 2015, 137, 14785-14797.                         | 13.7 | 65        |
| 143 | Kinetic and Structural Characterization of the Interaction between the FMN Binding Domain of<br>Cytochrome P450 Reductase and Cytochrome c. Journal of Biological Chemistry, 2015, 290, 4843-4855.                                                                       | 3.4  | 20        |
| 144 | A cross-polarization based rotating-frame separated-local-field NMR experiment under ultrafast MAS conditions. Journal of Magnetic Resonance, 2015, 250, 37-44.                                                                                                          | 2.1  | 32        |

| #   | Article                                                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Composite-180° pulse-based symmetry sequences to recouple proton chemical shift anisotropy tensors<br>under ultrafast MAS solid-state NMR spectroscopy. Journal of Magnetic Resonance, 2015, 250, 45-54.                                         | 2.1  | 53        |
| 146 | Membrane disruptive antimicrobial activities of human β-defensin-3 analogs. European Journal of<br>Medicinal Chemistry, 2015, 91, 91-99.                                                                                                         | 5.5  | 44        |
| 147 | Cellular solid-state NMR investigation of a membrane protein using dynamic nuclear polarization.<br>Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 342-349.                                                                           | 2.6  | 72        |
| 148 | Nisin ZP, a Bacteriocin and Food Preservative, Inhibits Head and Neck Cancer Tumorigenesis and Prolongs Survival. PLoS ONE, 2015, 10, e0131008.                                                                                                  | 2.5  | 143       |
| 149 | Modulation of raft domains in a lipid bilayer by boundary-active curcumin. Chemical Communications, 2014, 50, 3427.                                                                                                                              | 4.1  | 44        |
| 150 | 1H, 13C and 15N resonance assignments for the full-length mammalian cytochrome b5 in a membrane environment. Biomolecular NMR Assignments, 2014, 8, 409-413.                                                                                     | 0.8  | 6         |
| 151 | Potent Î <sup>3</sup> -secretase inhibitors/modulators interact with amyloid-Î <sup>2</sup> fibrils but do not inhibit fibrillation:<br>A high-resolution NMR study. Biochemical and Biophysical Research Communications, 2014, 447,<br>590-595. | 2.1  | 17        |
| 152 | Acceleration of natural-abundance solid-state MAS NMR measurements on bone by paramagnetic relaxation from gadolinium-DTPA. Journal of Magnetic Resonance, 2014, 244, 90-97.                                                                     | 2.1  | 21        |
| 153 | A small molecule that displays marked reactivity toward copper– versus zinc–amyloid-β implicated in<br>Alzheimer's disease. Chemical Communications, 2014, 50, 5301-5303.                                                                        | 4.1  | 49        |
| 154 | Differences between amyloid-β aggregation in solution and on the membrane: insights into elucidation of the mechanistic details of Alzheimer's disease. Chemical Society Reviews, 2014, 43, 6692-6700.                                           | 38.1 | 341       |
| 155 | Rational Design of a Structural Framework with Potential Use to Develop Chemical Reagents That<br>Target and Modulate Multiple Facets of Alzheimer's Disease. Journal of the American Chemical Society,<br>2014, 136, 299-310.                   | 13.7 | 166       |
| 156 | Interaction and reactivity of synthetic aminoisoflavones with metal-free and metal-associated amyloid-l². Chemical Science, 2014, 5, 4851-4862.                                                                                                  | 7.4  | 50        |
| 157 | Non-selective ion channel activity of polymorphic human islet amyloid polypeptide (amylin) double channels. Physical Chemistry Chemical Physics, 2014, 16, 2368-2377.                                                                            | 2.8  | 36        |
| 158 | Insights into Atomic-Level Interaction between Mefenamic Acid and Eudragit EPO in a Supersaturated<br>Solution by High-Resolution Magic-Angle Spinning NMR Spectroscopy. Molecular Pharmaceutics, 2014,<br>11, 351-357.                          | 4.6  | 48        |
| 159 | Finite-pulse radio frequency driven recoupling with phase cycling for 2D 1H/1H correlation at ultrafast MAS frequencies. Journal of Magnetic Resonance, 2014, 243, 25-32.                                                                        | 2.1  | 53        |
| 160 | Bicelles Exhibiting Magnetic Alignment for a Broader Range of Temperatures: A Solid-State NMR Study.<br>Langmuir, 2014, 30, 1622-1629.                                                                                                           | 3.5  | 22        |
| 161 | In Search of Aggregation Pathways of IAPP and Other Amyloidogenic Proteins: Finding Answers through NMR Spectroscopy. Journal of Physical Chemistry Letters, 2014, 5, 1864-1870.                                                                 | 4.6  | 77        |
| 162 | Proton-detected 2D radio frequency driven recoupling solid-state NMR studies on micelle-associated cytochrome-b5. Journal of Magnetic Resonance, 2014, 242, 169-179.                                                                             | 2.1  | 20        |

| #   | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | 3D 15N/15N/1H chemical shift correlation experiment utilizing an RFDR-based 1H/1H mixing period at 100kHz MAS. Journal of Magnetic Resonance, 2014, 244, 1-5.                                                             | 2.1 | 56        |
| 164 | Probing the Transmembrane Structure and Dynamics of Microsomal NADPH-cytochrome P450 oxidoreductase by Solid-State NMR. Biophysical Journal, 2014, 106, 2126-2133.                                                        | 0.5 | 38        |
| 165 | Performance of RINEPT is amplified by dipolar couplings under ultrafast MAS conditions. Journal of<br>Magnetic Resonance, 2014, 243, 85-92.                                                                               | 2.1 | 17        |
| 166 | Comparative Analysis of Full-Length Cytochromes P450 in Complexes with Cytochrome B5 in<br>Membrane. Biophysical Journal, 2014, 106, 266a.                                                                                | 0.5 | 0         |
| 167 | HR-MAS NMR Tissue Metabolomic Signatures Cross-validated by Mass Spectrometry Distinguish<br>Bladder Cancer from Benign Disease. Journal of Proteome Research, 2013, 12, 3519-3528.                                       | 3.7 | 54        |
| 168 | On the Role of NMR Spectroscopy for Characterization of Antimicrobial Peptides. Methods in Molecular Biology, 2013, 1063, 159-180.                                                                                        | 0.9 | 34        |
| 169 | Physiologically-Relevant Modes of Membrane Interactions by the Human Antimicrobial Peptide, LL-37,<br>Revealed by SFG Experiments. Scientific Reports, 2013, 3, 1854.                                                     | 3.3 | 51        |
| 170 | Dynamic Interaction Between Membrane-Bound Full-Length Cytochrome P450 and Cytochrome b5<br>Observed by Solid-State NMR Spectroscopy. Scientific Reports, 2013, 3, 2538.                                                  | 3.3 | 55        |
| 171 | Insights into Novel Supramolecular Complexes of Two Solid Forms of Norfloxacin and β-Cyclodextrin.<br>Journal of Pharmaceutical Sciences, 2013, 102, 3717-3724.                                                           | 3.3 | 30        |
| 172 | Probing the Transmembrane Structure and Topology of Microsomal Cytochrome-P450 by Solid-State<br>NMR on Temperature-Resistant Bicelles. Scientific Reports, 2013, 3, 2556.                                                | 3.3 | 53        |
| 173 | Gangliosides Mediate a Two-Step Mechanism of Membrane Disruption byÂBeta-Amyloid: Initial Pore<br>Formation Followed by Membrane Fragmentation. Biophysical Journal, 2013, 104, 217a.                                     | 0.5 | 2         |
| 174 | Shortening spin–lattice relaxation using a copper-chelated lipid at low-temperatures – A magic angle<br>spinning solid-state NMR study on a membrane-bound protein. Journal of Magnetic Resonance, 2013,<br>237, 175-181. | 2.1 | 13        |
| 175 | Cytochrome-P450–Cytochrome- <i>b</i> <sub>5</sub> Interaction in a Membrane Environment Changes<br><sup>15</sup> N Chemical Shift Anisotropy Tensors. Journal of Physical Chemistry B, 2013, 117,<br>13851-13860.         | 2.6 | 15        |
| 176 | A Model of the Membrane-bound Cytochrome b5-Cytochrome P450 Complex from NMR and Mutagenesis<br>Data. Journal of Biological Chemistry, 2013, 288, 22080-22095.                                                            | 3.4 | 105       |
| 177 | Membrane disordering is not sufficient for membrane permeabilization by islet amyloid polypeptide:<br>studies of IAPP(20–29) fragments. Physical Chemistry Chemical Physics, 2013, 15, 8908.                              | 2.8 | 60        |
| 178 | Structural Characterization and Inhibition of Toxic Amyloid-β Oligomeric Intermediates. Biophysical<br>Journal, 2013, 105, 287-288.                                                                                       | 0.5 | 36        |
| 179 | Zinc stabilization of prefibrillar oligomers of human islet amyloid polypeptide. Chemical<br>Communications, 2013, 49, 3339.                                                                                              | 4.1 | 72        |
| 180 | Insights into protein misfolding and amyloidogenesis. Physical Chemistry Chemical Physics, 2013, 15, 8867.                                                                                                                | 2.8 | 11        |

| #   | Article                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Quantum Chemical Calculations of Amide-15N Chemical Shift Anisotropy Tensors for a<br>Membrane-Bound Cytochrome-b5. Journal of Physical Chemistry B, 2013, 117, 859-867.                                                                                     | 2.6 | 9         |
| 182 | Crystallinity and compositional changes in carbonated apatites: Evidence from 31P solid-state NMR,<br>Raman, and AFM analysis. Journal of Solid State Chemistry, 2013, 206, 192-198.                                                                         | 2.9 | 74        |
| 183 | Resolution of Oligomeric Species during the Aggregation of Al̂² <sub>1–40</sub> Using <sup>19</sup> F<br>NMR. Biochemistry, 2013, 52, 1903-1912.                                                                                                             | 2.5 | 97        |
| 184 | Insights into antiamyloidogenic properties of the green tea extract (â^')-epigallocatechin-3-gallate<br>toward metal-associated amyloid-β species. Proceedings of the National Academy of Sciences of the<br>United States of America, 2013, 110, 3743-3748. | 7.1 | 221       |
| 185 | Cations as Switches of Amyloid-Mediated Membrane Disruption Mechanisms: Calcium and IAPP.<br>Biophysical Journal, 2013, 104, 173-184.                                                                                                                        | 0.5 | 103       |
| 186 | When detergent meets bilayer: Birth and coming of age of lipid bicelles. Progress in Nuclear Magnetic<br>Resonance Spectroscopy, 2013, 69, 1-22.                                                                                                             | 7.5 | 106       |
| 187 | Lipid Composition-Dependent Membrane Fragmentation and Pore-Forming Mechanisms of Membrane<br>Disruption by Pexiganan (MSI-78). Biochemistry, 2013, 52, 3254-3263.                                                                                           | 2.5 | 63        |
| 188 | 2D <sup>1</sup> H/ <sup>1</sup> H RFDR and NOESY NMR Experiments on a Membrane-Bound<br>Antimicrobial Peptide Under Magic Angle Spinning. Journal of Physical Chemistry B, 2013, 117, 6693-6700.                                                             | 2.6 | 43        |
| 189 | MetabolD: A graphical user interface package for assignment of 1H NMR spectra of bodyfluids and tissues. Journal of Magnetic Resonance, 2013, 226, 93-99.                                                                                                    | 2.1 | 24        |
| 190 | 3P069 Amyloid-like fibrillization and the structure of human calcitonin in the presence of acidic lipids(01C. Protein: Property,Poster). Seibutsu Butsuri, 2013, 53, S223.                                                                                   | 0.1 | 0         |
| 191 | Bacterial curli protein promotes the conversion of PAP <sub>248-286</sub> into the amyloid SEVI:<br>cross-seeding of dissimilar amyloid sequences. PeerJ, 2013, 1, e5.                                                                                       | 2.0 | 73        |
| 192 | Does Cholesterol Play a Role in the Bacterial Selectivity of Antimicrobial Peptides?. Frontiers in Immunology, 2012, 3, 195.                                                                                                                                 | 4.8 | 97        |
| 193 | Dual-function triazole–pyridine derivatives as inhibitors of metal-induced amyloid-β aggregation.<br>Metallomics, 2012, 4, 910.                                                                                                                              | 2.4 | 58        |
| 194 | Androgen receptor activation results in metabolite signatures of an aggressive prostate cancer phenotype: an NMR-based metabonomics study. Metabolomics, 2012, 8, 1026-1036.                                                                                 | 3.0 | 14        |
| 195 | Metabolomic Signatures in Guinea Pigs Infected with Epidemic-Associated W-Beijing Strains of Mycobacterium tuberculosis. Journal of Proteome Research, 2012, 11, 4873-4884.                                                                                  | 3.7 | 47        |
| 196 | Site Specific Interaction of the Polyphenol EGCG with the SEVI Amyloid Precursor Peptide PAP(248–286). Journal of Physical Chemistry B, 2012, 116, 3650-3658.                                                                                                | 2.6 | 83        |
| 197 | High-Resolution Structural Insights into Bone: A Solid-State NMR Relaxation Study Utilizing Paramagnetic Doping. Journal of Physical Chemistry B, 2012, 116, 11656-11661.                                                                                    | 2.6 | 50        |
| 198 | NMR Characterization of Monomeric and Oligomeric Conformations of Human Calcitonin and Its<br>Interaction with EGCG. Journal of Molecular Biology, 2012, 416, 108-120.                                                                                       | 4.2 | 66        |

| #   | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | Membrane Disruption and Early Events in the Aggregation of the Diabetes Related Peptide IAPP from a Molecular Perspective. Accounts of Chemical Research, 2012, 45, 454-462.                                       | 15.6 | 322       |
| 200 | Pseudonegative Thermal Expansion and the State of Water in Graphene Oxide Layered Assemblies. ACS<br>Nano, 2012, 6, 8357-8365.                                                                                     | 14.6 | 136       |
| 201 | The Magic of Bicelles Lights Up Membrane Protein Structure. Chemical Reviews, 2012, 112, 6054-6074.                                                                                                                | 47.7 | 305       |
| 202 | Alternative Pathways of Human Islet Amyloid Polypeptide Aggregation Distinguished by <sup>19</sup> F<br>Nuclear Magnetic Resonance-Detected Kinetics of Monomer Consumption. Biochemistry, 2012, 51,<br>8154-8162. | 2.5  | 118       |
| 203 | Does cholesterol suppress the antimicrobial peptide induced disruption of lipid raft containing membranes?. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 3019-3024.                                   | 2.6  | 80        |
| 204 | Delineating metabolic signatures of head and neck squamous cell carcinoma: Phospholipase A2, a<br>potential therapeutic target. International Journal of Biochemistry and Cell Biology, 2012, 44,<br>1852-1861.    | 2.8  | 87        |
| 205 | Two-Step Mechanism of Membrane Disruption by AÎ <sup>2</sup> through Membrane Fragmentation and Pore<br>Formation. Biophysical Journal, 2012, 103, 702-710.                                                        | 0.5  | 326       |
| 206 | Phosphatidylethanolamine Enhances Amyloid Fiber-Dependent Membrane Fragmentation. Biochemistry, 2012, 51, 7676-7684.                                                                                               | 2.5  | 103       |
| 207 | Determination of <sup>15</sup> N Chemical Shift Anisotropy from a Membrane-Bound Protein by NMR<br>Spectroscopy. Journal of Physical Chemistry B, 2012, 116, 7181-7189.                                            | 2.6  | 15        |
| 208 | Side-Chain Dynamics Reveals Transient Association of Aβ <sub>1–40</sub> Monomers with Amyloid<br>Fibers. Journal of Physical Chemistry B, 2012, 116, 13618-13623.                                                  | 2.6  | 26        |
| 209 | Misfolded proteins in Alzheimer's disease and type II diabetes. Chemical Society Reviews, 2012, 41, 608-621.                                                                                                       | 38.1 | 335       |
| 210 | Coherent averaging in the frequency domain. Journal of Chemical Physics, 2012, 136, 214504.                                                                                                                        | 3.0  | 5         |
| 211 | Variable Reference Alignment: An Improved Peak Alignment Protocol for NMR Spectral Data with Large<br>Intersample Variation. Analytical Chemistry, 2012, 84, 5372-5379.                                            | 6.5  | 26        |
| 212 | Solid-State NMR Spectroscopy Provides Atomic-Level Insights Into the Dehydration of Cartilage.<br>Journal of Physical Chemistry B, 2011, 115, 9948-9954.                                                           | 2.6  | 41        |
| 213 | Role of Cationic Group Structure in Membrane Binding and Disruption by Amphiphilic Copolymers.<br>Journal of Physical Chemistry B, 2011, 115, 366-375.                                                             | 2.6  | 151       |
| 214 | A Proton Spin Diffusion Based Solid-State NMR Approach for Structural Studies on Aligned Samples.<br>Journal of Physical Chemistry B, 2011, 115, 4863-4871.                                                        | 2.6  | 10        |
| 215 | Fast NMR Data Acquisition From Bicelles Containing a Membrane-Associated Peptide at<br>Natural-Abundance. Journal of Physical Chemistry B, 2011, 115, 12448-12455.                                                 | 2.6  | 33        |
| 216 | Membrane Orientation of MSI-78 Measured by Sum Frequency Generation Vibrational Spectroscopy.<br>Langmuir, 2011, 27, 7760-7767.                                                                                    | 3.5  | 78        |

| #   | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 217 | Biphasic Effects of Insulin on Islet Amyloid Polypeptide Membrane Disruption. Biophysical Journal, 2011, 100, 685-692.                                                                                                            | 0.5  | 88        |
| 218 | An Active Photoreceptor Intermediate Revealed by In Situ Photoirradiated Solid-State NMR<br>Spectroscopy. Biophysical Journal, 2011, 101, L50-L52.                                                                                | 0.5  | 26        |
| 219 | Magic Angle Spinning NMR-Based Metabolic Profiling of Head and Neck Squamous Cell Carcinoma<br>Tissues. Journal of Proteome Research, 2011, 10, 5232-5241.                                                                        | 3.7  | 97        |
| 220 | Development of Bifunctional Stilbene Derivatives for Targeting and Modulating Metal-Amyloid-β<br>Species. Inorganic Chemistry, 2011, 50, 10724-10734.                                                                             | 4.0  | 75        |
| 221 | The amyloidogenic SEVI precursor, PAP248-286, is highly unfolded in solution despite an underlying helical tendency. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 1161-1169.                                         | 2.6  | 31        |
| 222 | Structure and membrane orientation of IAPP in its natively amidated form at physiological pH in a membrane environment. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2337-2342.                                      | 2.6  | 229       |
| 223 | A partially folded structure of amyloid-beta(1–40) in an aqueous environment. Biochemical and<br>Biophysical Research Communications, 2011, 411, 312-316.                                                                         | 2.1  | 376       |
| 224 | A Two-Site Mechanism for the Inhibition of IAPP Amyloidogenesis by Zinc. Journal of Molecular<br>Biology, 2011, 410, 294-306.                                                                                                     | 4.2  | 111       |
| 225 | Cross-correlations between low-Î <sup>3</sup> nuclei in solids via a common dipolar bath. Journal of Magnetic<br>Resonance, 2011, 212, 95-101.                                                                                    | 2.1  | 16        |
| 226 | Polymorphs and Hydrates of Acyclovir. Journal of Pharmaceutical Sciences, 2011, 100, 949-963.                                                                                                                                     | 3.3  | 64        |
| 227 | Innentitelbild: Inhibition of Amyloid Peptide Fibrillation by Inorganic Nanoparticles: Functional Similarities with Proteins (Angew. Chem. 22/2011). Angewandte Chemie, 2011, 123, 5096-5096.                                     | 2.0  | 2         |
| 228 | Inhibition of Amyloid Peptide Fibrillation by Inorganic Nanoparticles: Functional Similarities with<br>Proteins. Angewandte Chemie - International Edition, 2011, 50, 5110-5115.                                                  | 13.8 | 248       |
| 229 | Inside Cover: Inhibition of Amyloid Peptide Fibrillation by Inorganic Nanoparticles: Functional<br>Similarities with Proteins (Angew. Chem. Int. Ed. 22/2011). Angewandte Chemie - International Edition,<br>2011, 50, 4992-4992. | 13.8 | 4         |
| 230 | Absorbance-based assay for membrane disruption by antimicrobial peptides and synthetic copolymers using pyrroloquinoline quinone-loaded liposomes. Analytical Biochemistry, 2011, 411, 194-199.                                   | 2.4  | 4         |
| 231 | Nanoparticle Processing of Cholesterol-Lowering Drug. , 2011, , 263-283.                                                                                                                                                          |      | 0         |
| 232 | Chemical shift tensor – The heart of NMR: Insights into biological aspects of proteins. Progress in<br>Nuclear Magnetic Resonance Spectroscopy, 2010, 57, 181-228.                                                                | 7.5  | 166       |
| 233 | NMR Structure of Pardaxin, a Pore-forming Antimicrobial Peptide, in Lipopolysaccharide Micelles.<br>Journal of Biological Chemistry, 2010, 285, 3883-3895.                                                                        | 3.4  | 123       |
| 234 | Antimicrobial and Membrane Disrupting Activities of a Peptide Derived from the Human Cathelicidin<br>Antimicrobial Peptide LL37. Biophysical Journal, 2010, 98, 248-257.                                                          | 0.5  | 121       |

| #   | Article                                                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 235 | Amphipathic Helical Cationic Antimicrobial Peptides Promote Rapid Formation of Crystalline States in the Presence of Phosphatidylglycerol: Lipid Clustering in Anionic Membranes. Biophysical Journal, 2010, 98, 2564-2573.                                                             | 0.5  | 56        |
| 236 | Structure, Interactions, and Antibacterial Activities of MSI-594 Derived Mutant Peptide MSI-594F5A in<br>Lipopolysaccharide Micelles: Role of the Helical Hairpin Conformation in Outer-Membrane<br>Permeabilization. Journal of the American Chemical Society, 2010, 132, 18417-18428. | 13.7 | 104       |
| 237 | Proton-Evolved Local-Field Solid-State NMR Studies of Cytochrome <i>b</i> <sub>5</sub> Embedded in<br>Bicelles, Revealing both Structural and Dynamical Information. Journal of the American Chemical<br>Society, 2010, 132, 5779-5788.                                                 | 13.7 | 35        |
| 238 | Use of a Copper-Chelated Lipid Speeds Up NMR Measurements from Membrane Proteins. Journal of the<br>American Chemical Society, 2010, 132, 6929-6931.                                                                                                                                    | 13.7 | 69        |
| 239 | Homogeneous Nanoparticles To Enhance the Efficiency of a Hydrophobic Drug, Antihyperlipidemic<br>Probucol, Characterized by Solid-State NMR. Molecular Pharmaceutics, 2010, 7, 299-305.                                                                                                 | 4.6  | 38        |
| 240 | Probing the Spontaneous Membrane Insertion of a Tail-Anchored Membrane Protein by Sum Frequency<br>Generation Spectroscopy. Journal of the American Chemical Society, 2010, 132, 15112-15115.                                                                                           | 13.7 | 57        |
| 241 | Natural-Abundance <sup>43</sup> Ca Solid-State NMR Spectroscopy of Bone. Journal of the American<br>Chemical Society, 2010, 132, 11504-11509.                                                                                                                                           | 13.7 | 67        |
| 242 | Role of Zinc in Human Islet Amyloid Polypeptide Aggregation. Journal of the American Chemical Society, 2010, 132, 8973-8983.                                                                                                                                                            | 13.7 | 212       |
| 243 | INEPT-Based Separated-Local-Field NMR Spectroscopy: A Unique Approach To Elucidate Side-Chain<br>Dynamics of Membrane-Associated Proteins. Journal of the American Chemical Society, 2010, 132,<br>9944-9947.                                                                           | 13.7 | 24        |
| 244 | Cholesterol reduces pardaxin's dynamics—a barrel-stave mechanism of membrane disruption<br>investigated by solid-state NMR. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 223-227.                                                                                          | 2.6  | 88        |
| 245 | Special issue on "Membrane Protein Dynamics: Correlating Structure to Functionâ€: Biochimica Et<br>Biophysica Acta - Biomembranes, 2010, 1798, 65-67.                                                                                                                                   | 2.6  | 2         |
| 246 | Probing the "Charge Cluster Mechanism―in Amphipathic Helical Cationic Antimicrobial Peptides.<br>Biochemistry, 2010, 49, 4076-4084.                                                                                                                                                     | 2.5  | 141       |
| 247 | Limiting an Antimicrobial Peptide to the Lipidâ^'Water Interface Enhances Its Bacterial Membrane<br>Selectivity: A Case Study of MSI-367. Biochemistry, 2010, 49, 10595-10605.                                                                                                          | 2.5  | 64        |
| 248 | Design of small molecules that target metal-AÎ <sup>2</sup> species and regulate metal-induced AÎ <sup>2</sup> aggregation and<br>neurotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 2010,<br>107, 21990-21995.                            | 7.1  | 253       |
| 249 | Solid-State NMR Reveals the Hydrophobic-Core Location of Poly(amidoamine) Dendrimers in Biomembranes. Journal of the American Chemical Society, 2010, 132, 8087-8097.                                                                                                                   | 13.7 | 95        |
| 250 | Helical Hairpin Structure of a Potent Antimicrobial Peptide MSIâ€594 in Lipopolysaccharide Micelles by<br>NMR Spectroscopy. Chemistry - A European Journal, 2009, 15, 2036-2040.                                                                                                        | 3.3  | 89        |
| 251 | Multifunctional host defense peptides: functional and mechanistic insights from NMR structures of potent antimicrobial peptides. FEBS Journal, 2009, 276, 6465-6473.                                                                                                                    | 4.7  | 88        |
| 252 | Beyond NMR spectra of antimicrobial peptides: Dynamical images at atomic resolution and functional insights. Solid State Nuclear Magnetic Resonance, 2009, 35, 201-207.                                                                                                                 | 2.3  | 139       |

| #   | Article                                                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 253 | Efficient cross-polarization using a composite 0° pulse for NMR studies on static solids. Journal of<br>Magnetic Resonance, 2009, 196, 105-109.                                                                                                  | 2.1  | 20        |
| 254 | Determining the Effects of Lipophilic Drugs on Membrane Structure by Solid-State NMR Spectroscopy:<br>The Case of the Antioxidant Curcumin. Journal of the American Chemical Society, 2009, 131, 4490-4498.                                      | 13.7 | 245       |
| 255 | Fluorine—a new element in the design of membrane-active peptides. Molecular BioSystems, 2009, 5, 1143.                                                                                                                                           | 2.9  | 60        |
| 256 | Nanoparticle Processing in the Solid State Dramatically Increases the Cell Membrane Permeation of a<br>Cholesterol-Lowering Drug, Probucol. Molecular Pharmaceutics, 2009, 6, 1029-1035.                                                         | 4.6  | 26        |
| 257 | Association of Highly Compact Type II Diabetes Related Islet Amyloid Polypeptide Intermediate Species at<br>Physiological Temperature Revealed by Diffusion NMR Spectroscopy. Journal of the American Chemical<br>Society, 2009, 131, 7079-7085. | 13.7 | 143       |
| 258 | NMR Structure in a Membrane Environment Reveals Putative Amyloidogenic Regions of the SEVI<br>Precursor Peptide PAP <sub>248â^'286</sub> . Journal of the American Chemical Society, 2009, 131,<br>17972-17979.                                  | 13.7 | 62        |
| 259 | Induction of Negative Curvature as a Mechanism of Cell Toxicity by Amyloidogenic Peptides: The Case of Islet Amyloid Polypeptide. Journal of the American Chemical Society, 2009, 131, 4470-4478.                                                | 13.7 | 130       |
| 260 | Small Molecule Modulators of Copper-Induced Al <sup>2</sup> Aggregation. Journal of the American Chemical Society, 2009, 131, 16663-16665.                                                                                                       | 13.7 | 189       |
| 261 | Structure, membrane orientation, mechanism, and function of pexiganan — A highly potent<br>antimicrobial peptide designed from magainin. Biochimica Et Biophysica Acta - Biomembranes, 2009,<br>1788, 1680-1686.                                 | 2.6  | 279       |
| 262 | Solid-state NMR and molecular dynamics simulations reveal the oligomeric ion-channels of<br>TM2-GABAA stabilized by intermolecular hydrogen bonding. Biochimica Et Biophysica Acta -<br>Biomembranes, 2009, 1788, 686-695.                       | 2.6  | 41        |
| 263 | High-resolution Structures of Membrane-Bound IAPP Reveal Functional Implications of the Toxicity of<br>Prefibrillar States of Amyloidogenic Proteins. Biophysical Journal, 2009, 96, 92a-93a.                                                    | 0.5  | 0         |
| 264 | An α-Helical Conformation of the SEVI Peptide, a Dramatic Enhancer of HIV Infectivity, Promotes Lipid<br>Aggregation and Fusion. Biophysical Journal, 2009, 96, 93a-94a.                                                                         | 0.5  | 0         |
| 265 | Helical Conformation of the SEVI Precursor Peptide PAP248-286, a Dramatic Enhancer of HIV<br>Infectivity, Promotes Lipid Aggregation and Fusion. Biophysical Journal, 2009, 97, 2474-2483.                                                       | 0.5  | 43        |
| 266 | Three-Dimensional Structure and Orientation of Rat Islet Amyloid Polypeptide Protein in a Membrane<br>Environment by Solution NMR Spectroscopy. Journal of the American Chemical Society, 2009, 131,<br>8252-8261.                               | 13.7 | 142       |
| 267 | Comprehensive Analysis of Lipid Dynamics Variation with Lipid Composition and Hydration of Bicelles<br>Using Nuclear Magnetic Resonance (NMR) Spectroscopy. Langmuir, 2009, 25, 7010-7018.                                                       | 3.5  | 48        |
| 268 | Chemical Structure Effects on Bone Response to Mechanical Loading. Biophysical Journal, 2009, 96, 409a.                                                                                                                                          | 0.5  | 0         |
| 269 | Time-Resolved Dehydration-Induced Structural Changes in an Intact Bovine Cortical Bone Revealed by Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2009, 131, 17064-17065.                                               | 13.7 | 104       |
| 270 | Quantum dots as mineral- and matrix-specific strain gages for bone biomechanical studies.<br>Proceedings of SPIE, 2009, , .                                                                                                                      | 0.8  | 1         |

| #   | Article                                                                                                                                                                                                                                     | IF                | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|
| 271 | Bicelles – A Much Needed Magic Wand to Study Membrane Proteins by NMR Spectroscopy. , 2009, , 117-128.                                                                                                                                      |                   | 3         |
| 272 | Using Fluorous Amino Acids to Modulate the Biological Activity of an Antimicrobial Peptide.<br>ChemBioChem, 2008, 9, 370-373.                                                                                                               | 2.6               | 109       |
| 273 | Bicelleâ€Enabled Structural Studies on a Membraneâ€Associated Cytochromeâ€b <sub>5</sub> by Solidâ€State<br>MAS NMR Spectroscopy. Angewandte Chemie - International Edition, 2008, 47, 7864-7867.                                           | <sup>2</sup> 13.8 | 51        |
| 274 | NMR Structure of the Cathelicidin-Derived Human Antimicrobial Peptide LL-37 in<br>Dodecylphosphocholine Micelles. Biochemistry, 2008, 47, 5565-5572.                                                                                        | 2.5               | 157       |
| 275 | Freezing Point Depression of Water in Phospholipid Membranes: A Solid-State NMR Study. Langmuir, 2008, 24, 13598-13604.                                                                                                                     | 3.5               | 28        |
| 276 | Amyloid Fiber Formation and Membrane Disruption are Separate Processes Localized in Two Distinct<br>Regions of IAPP, the Type-2-Diabetes-Related Peptide. Journal of the American Chemical Society, 2008,<br>130, 6424-6429.                | 13.7              | 214       |
| 277 | Studies on anticancer activities of antimicrobial peptides. Biochimica Et Biophysica Acta -<br>Biomembranes, 2008, 1778, 357-375.                                                                                                           | 2.6               | 1,036     |
| 278 | Using Fluorous Amino Acids To Probe the Effects of Changing Hydrophobicity on the Physical and<br>Biological Properties of the β-Hairpin Antimicrobial Peptide Protegrin-1. Biochemistry, 2008, 47,<br>9243-9250.                           | 2.5               | 80        |
| 279 | Nitrogen-14 Solid-State NMR Spectroscopy of Aligned Phospholipid Bilayers to Probe Peptideâ^'Lipid<br>Interaction and Oligomerization of Membrane Associated Peptides. Journal of the American Chemical<br>Society, 2008, 130, 11023-11029. | 13.7              | 46        |
| 280 | High-Resolution Characterization of Liquid-Crystalline [60]Fullerenes Using Solid-State Nuclear<br>Magnetic Resonance Spectroscopy. Journal of Physical Chemistry B, 2008, 112, 12347-12353.                                                | 2.6               | 19        |
| 281 | A Single Mutation in the Nonamyloidogenic Region of Islet Amyloid Polypeptide Greatly Reduces<br>Toxicity. Biochemistry, 2008, 47, 12680-12688.                                                                                             | 2.5               | 142       |
| 282 | Structures of Rat and Human Islet Amyloid Polypeptide IAPP <sub>1â^'19</sub> in Micelles by NMR<br>Spectroscopy. Biochemistry, 2008, 47, 12689-12697.                                                                                       | 2.5               | 161       |
| 283 | Two-dimensional homonuclear chemical shift correlation established by the cross-relaxation driven spin diffusion in solids. Journal of Chemical Physics, 2008, 128, 052308.                                                                 | 3.0               | 30        |
| 284 | Membrane fragmentation by an amyloidogenic fragment of human Islet Amyloid Polypeptide detected<br>by solid-state NMR spectroscopy of membrane nanotubes. Biochimica Et Biophysica Acta -<br>Biomembranes, 2007, 1768, 2026-2029.           | 2.6               | 131       |
| 285 | The cytochromes P450 and b5 and their reductases—Promising targets for structural studies by<br>advanced solid-state NMR spectroscopy. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768,<br>3235-3259.                              | 2.6               | 107       |
| 286 | NMR structural studies on membrane proteins. Biochimica Et Biophysica Acta - Biomembranes, 2007,<br>1768, 2947-2948.                                                                                                                        | 2.6               | 6         |
| 287 | Ultrastrong and Stiff Layered Polymer Nanocomposites. Science, 2007, 318, 80-83.                                                                                                                                                            | 12.6              | 1,500     |
| 288 | Solid-State NMR Reveals Structural and Dynamical Properties of a Membrane-Anchored<br>Electron-Carrier Protein, Cytochromeb5. Journal of the American Chemical Society, 2007, 129,<br>6670-6671.                                            | 13.7              | 121       |

| #   | Article                                                                                                                                                                                                                                 | IF                | CITATIONS            |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------|
| 289 | Structure, Topology, and Tilt of Cell-Signaling Peptides Containing Nuclear Localization Sequences in<br>Membrane Bilayers Determined by Solid-State NMR and Molecular Dynamics Simulation Studies.<br>Biochemistry, 2007, 46, 965-975. | 2.5               | 63                   |
| 290 | High-Resolution 2D NMR Spectroscopy of Bicelles To Measure the Membrane Interaction of Ligands.<br>Journal of the American Chemical Society, 2007, 129, 794-802.                                                                        | 13.7              | 62                   |
| 291 | Sensitivity and resolution enhancement in solid-state NMR spectroscopy of bicelles. Journal of Magnetic Resonance, 2007, 184, 228-235.                                                                                                  | 2.1               | 45                   |
| 292 | Atomistic-Resolution Structural Studies of Liquid Crystalline Materials Using Solid-State NMR<br>Techniques. , 2007, , 85-116.                                                                                                          |                   | 5                    |
| 293 | Structures of the Dimeric and Monomeric Variants of Magainin Antimicrobial Peptides (MSI-78 and) Tj ETQq1 1 C                                                                                                                           | ).784314 r<br>2.5 | gBŢ <i>¦</i> Overloc |
| 294 | Deletion of All Cysteines in Tachyplesin I Abolishes Hemolytic Activity and Retains Antimicrobial Activity and Lipopolysaccharide Selective Binding. Biochemistry, 2006, 45, 6529-6540.                                                 | 2.5               | 109                  |
| 295 | Solid-State NMR Investigation of the Membrane-Disrupting Mechanism of Antimicrobial Peptides MSI-78 and MSI-594 Derived from Magainin 2 and Melittin. Biophysical Journal, 2006, 91, 206-216.                                           | 0.5               | 246                  |
| 296 | A High-Resolution Solid-State NMR Approach for the Structural Studies of Bicelles. Journal of the<br>American Chemical Society, 2006, 128, 6326-6327.                                                                                   | 13.7              | 60                   |
| 297 | The spectrum of antimicrobial activity of the bacteriocin subtilosin A. Journal of Antimicrobial Chemotherapy, 2006, 59, 297-300.                                                                                                       | 3.0               | 166                  |
| 298 | Cell selectivity correlates with membrane-specific interactions: A case study on the antimicrobial peptide G15 derived from granulysin. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 154-163.                              | 2.6               | 63                   |
| 299 | LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochimica Et<br>Biophysica Acta - Biomembranes, 2006, 1758, 1408-1425.                                                                              | 2.6               | 822                  |
| 300 | The human beta-defensin-3, an antibacterial peptide with multiple biological functions. Biochimica Et<br>Biophysica Acta - Biomembranes, 2006, 1758, 1499-1512.                                                                         | 2.6               | 269                  |
| 301 | Separated local field NMR spectroscopy by windowless isotropic mixing. Chemical Physics Letters, 2006, 419, 168-173.                                                                                                                    | 2.6               | 19                   |
| 302 | Measurement of heteronuclear dipolar couplings using a rotating frame solid-state NMR experiment.<br>Chemical Physics Letters, 2006, 419, 533-536.                                                                                      | 2.6               | 30                   |
| 303 | Heteronuclear isotropic mixing separated local field NMR spectroscopy. Journal of Chemical Physics, 2006, 125, 034507.                                                                                                                  | 3.0               | 61                   |
| 304 | How Far Can the Sensitivity of NMR Be Increased?. Annual Reports on NMR Spectroscopy, 2006, 58, 155-175.                                                                                                                                | 1.5               | 44                   |
| 305 | Membrane permeabilization, orientation, and antimicrobial mechanism of subtilosin A. Chemistry and Physics of Lipids, 2005, 137, 38-51.                                                                                                 | 3.2               | 109                  |
| 306 | Broadband-PISEMA solid-state NMR spectroscopy. Chemical Physics Letters, 2005, 407, 289-293.                                                                                                                                            | 2.6               | 54                   |

| #   | Article                                                                                                                                                                          | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 307 | PITANSEMA-MAS, a solid-state NMR method to measure heteronuclear dipolar couplings under MAS.<br>Chemical Physics Letters, 2005, 408, 118-122.                                   | 2.6  | 28        |
| 308 | Solution Structure and Interaction of the Antimicrobial Polyphemusins with Lipid Membranesâ€,‡.<br>Biochemistry, 2005, 44, 15504-15513.                                          | 2.5  | 100       |
| 309 | Solid-State NMR Characterization and Determination of the Orientational Order of a Nematogen.<br>Journal of Physical Chemistry B, 2005, 109, 19696-19703.                        | 2.6  | 27        |
| 310 | Solid-State NMR Characterization of a Novel Thiophene-Based Three Phenyl Ring Mesogen. Chemistry of Materials, 2005, 17, 4567-4569.                                              | 6.7  | 25        |
| 311 | A 2D Solid-State NMR Experiment To Resolve Overlapping Aromatic Resonances of Thiophene-Based<br>Nematogens. Journal of the American Chemical Society, 2005, 127, 6958-6959.     | 13.7 | 36        |
| 312 | Synthetic and Natural Polycationic Polymer Nanoparticles Interact Selectively with Fluid-Phase<br>Domains of DMPC Lipid Bilayers. Langmuir, 2005, 21, 8588-8590.                 | 3.5  | 128       |
| 313 | Antimicrobial activity and membrane selective interactions of a synthetic lipopeptide MSI-843.<br>Biochimica Et Biophysica Acta - Biomembranes, 2005, 1711, 49-58.               | 2.6  | 106       |
| 314 | Membrane Thinning Due to Antimicrobial Peptide Binding: An Atomic Force Microscopy Study of MSI-78<br>in Lipid Bilayers. Biophysical Journal, 2005, 89, 4043-4050.               | 0.5  | 194       |
| 315 | Synthesis and 13C CPMAS NMR Characterization of Novel Thiophene-Based Nematogens. Chemistry of Materials, 2005, 17, 2013-2018.                                                   | 6.7  | 40        |
| 316 | PISEMA Solid-State NMR Spectroscopy. Annual Reports on NMR Spectroscopy, 2004, 52, 1-52.                                                                                         | 1.5  | 165       |
| 317 | Structure and Orientation of Pardaxin Determined by NMR Experiments in Model Membranes. Journal of Biological Chemistry, 2004, 279, 45815-45823.                                 | 3.4  | 157       |
| 318 | A study of a Cα,β-didehydroalanine homo-oligopeptide series in the solid-state by13C cross-polarization magic angle spinning NMR. Journal of Peptide Science, 2004, 10, 336-341. | 1.4  | 9         |
| 319 | Effects of antidepressants on the conformation of phospholipid headgroups studied by solid-state NMR. Magnetic Resonance in Chemistry, 2004, 42, 105-114.                        | 1.9  | 60        |
| 320 | Guest Editors' Foreword: Solid-state NMR on biological systems. Magnetic Resonance in Chemistry, 2004, 42, 86-86.                                                                | 1.9  | 1         |
| 321 | Direct observation of lipid bilayer disruption by poly(amidoamine) dendrimers. Chemistry and Physics of Lipids, 2004, 132, 3-14.                                                 | 3.2  | 221       |
| 322 | Investigation of the interaction of myelin basic protein with phospholipid bilayers using solid-state NMR spectroscopy. Chemistry and Physics of Lipids, 2004, 132, 47-54.       | 3.2  | 18        |
| 323 | PITANSEMA, a low-power PISEMA solid-state NMR experiment. Chemical Physics Letters, 2004, 399, 359-362.                                                                          | 2.6  | 36        |
| 324 | How Does an Amide-15N Chemical Shift Tensor Vary in Peptides?. Journal of Physical Chemistry B, 2004,<br>108, 16577-16585.                                                       | 2.6  | 54        |

| #   | Article                                                                                                                                                                                                                                                                                             | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 325 | Solid-State NMR Spectroscopy of Aligned Lipid Bilayers at Low Temperatures. Journal of the American<br>Chemical Society, 2004, 126, 2318-2319.                                                                                                                                                      | 13.7 | 17        |
| 326 | Ab Initio Study of13CαChemical Shift Anisotropy Tensors in Peptides. Journal of the American Chemical<br>Society, 2004, 126, 8529-8534.                                                                                                                                                             | 13.7 | 44        |
| 327 | Conformational preferences of the amylin nucleation site in SDS micelles: An NMR study. Biopolymers, 2003, 69, 29-41.                                                                                                                                                                               | 2.4  | 60        |
| 328 | Determination of the conformation and stability of simple homopolypeptides using solid-state NMR.<br>Solid State Nuclear Magnetic Resonance, 2003, 24, 94-109.                                                                                                                                      | 2.3  | 34        |
| 329 | Interaction of Cd and Zn with Biologically Important Ligands Characterized Using Solid-State NMR and ab Initio Calculations. Inorganic Chemistry, 2003, 42, 3142-3151.                                                                                                                              | 4.0  | 42        |
| 330 | Characterization of Metal Centers in Bioinorganic Complexes Using Ab Initio Calculations of113Cd<br>Chemical Shifts. Inorganic Chemistry, 2003, 42, 2200-2202.                                                                                                                                      | 4.0  | 16        |
| 331 | Nuclear magnetic resonance studies of metals in solid state non-metallic materials. Materials Science and Technology, 2003, 19, 1191-1196.                                                                                                                                                          | 1.6  | 6         |
| 332 | Quantum Chemical Calculations of Cadmium Chemical Shifts in Inorganic Complexes. Journal of<br>Physical Chemistry A, 2002, 106, 10363-10369.                                                                                                                                                        | 2.5  | 22        |
| 333 | An Innovative Procedure Using a Sublimable Solid to Align Lipid Bilayers for Solid-State NMR Studies.<br>Biophysical Journal, 2002, 82, 2499-2503.                                                                                                                                                  | 0.5  | 99        |
| 334 | One-dimensional 1H-detected solid-state NMR experiment to determine amide-1H chemical shifts in peptides. Chemical Physics Letters, 2002, 351, 42-46.                                                                                                                                               | 2.6  | 16        |
| 335 | Solid-State13C NMR Chemical Shift Anisotropy Tensors of Polypeptides. Journal of the American Chemical Society, 2001, 123, 6118-6126.                                                                                                                                                               | 13.7 | 122       |
| 336 | An Experimental Strategy to Dramatically Reduce the RF Power Used in Cross Polarization Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2001, 123, 7467-7468.                                                                                                               | 13.7 | 26        |
| 337 | Orientation of Amide-Nitrogen-15 Chemical Shift Tensors in Peptides:Â A Quantum Chemical Study.<br>Journal of the American Chemical Society, 2001, 123, 914-922.                                                                                                                                    | 13.7 | 91        |
| 338 | A Two-Dimensional Magic-Angle Decoupling and Magic-Angle Turning Solid-State NMR Method:Â An<br>Application to Study Chemical Shift Tensors from Peptides That Are Nonselectively Labeled with15N<br>Isotope. Journal of Physical Chemistry B, 2001, 105, 4752-4762.                                | 2.6  | 33        |
| 339 | The unitary evolution operator for cross-polarization schemes in NMR. Chemical Physics Letters, 2001, 342, 127-134.                                                                                                                                                                                 | 2.6  | 21        |
| 340 | 2D – isotropic chemical shift correlation established by – dipolar coherence transfer in biological solids. Chemical Physics Letters, 2001, 342, 312-316.                                                                                                                                           | 2.6  | 22        |
| 341 | Characterization of 15N Chemical Shift and 1Hâ^15N Dipolar Coupling Interactions in a Peptide Bond of<br>Uniaxially Oriented and Polycrystalline Samples by One-Dimensional Dipolar Chemical Shift<br>Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 1998, 120, 8868-8874. | 13.7 | 62        |
| 342 | Complete resolution of the solid-state NMR spectrum of a uniformly 15N-labeled membrane protein in phospholipid bilayers. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 8551-8556.                                                                     | 7.1  | 209       |

| #   | Article                                                                                                                                                                                                                                                                                                                                                                             | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 343 | Magnitudes and Orientations of the Principal Elements of the1H Chemical Shift,1Hâ <sup>~</sup> 15N Dipolar<br>Coupling, and15N Chemical Shift Interaction Tensors in15Nε1-Tryptophan and15Nπ-Histidine Side Chains<br>Determined by Three-Dimensional Solid-State NMR Spectroscopy of Polycrystalline Samples. Journal of<br>the American Chemical Society, 1997, 119, 10479-10486. | 13.7 | 70        |
| 344 | Three-Dimensional Solid-State NMR Experiment That Correlates the Chemical Shift and Dipolar<br>Coupling Frequencies of Two Heteronuclei. Journal of Magnetic Resonance Series B, 1995, 107, 88-90.                                                                                                                                                                                  | 1.6  | 76        |
| 345 | Four-Dimensional Solid-State NMR Experiment That Correlates the Chemical-Shift and<br>Dipolar-Coupling Frequencies of Two Heteronuclei with the Exchange of Dilute-Spin Magnetization.<br>Journal of Magnetic Resonance Series B, 1995, 109, 112-116.                                                                                                                               | 1.6  | 38        |
| 346 | Three-dimensional solid-state NMR spectroscopy of a peptide oriented in membrane bilayers. Journal of<br>Biomolecular NMR, 1995, 6, 329-34.                                                                                                                                                                                                                                         | 2.8  | 80        |
| 347 | Two-dimensional chemical shift/heteronuclear dipolar coupling spectra obtained with polarization<br>inversion spin exchange at the magic angle and magic-angle sample spinning (PISEMAMAS). Solid State<br>Nuclear Magnetic Resonance, 1995, 4, 387-392.                                                                                                                            | 2.3  | 80        |
| 348 | High-Resolution Heteronuclear Dipolar Solid-State NMR Spectroscopy. Journal of Magnetic Resonance<br>Series A, 1994, 109, 270-272.                                                                                                                                                                                                                                                  | 1.6  | 403       |
| 349 | Analysis of the Performance of NQR Composite Pulses. Journal of Magnetic Resonance Series A, 1993, 102, 274-286.                                                                                                                                                                                                                                                                    | 1.6  | 15        |
| 350 | An RF Pulse Sequence Optimized for Homonuclear J Cross Polarization under Magic-Angle-Spinning<br>Conditions in Solids. Journal of Magnetic Resonance Series A, 1993, 104, 366-368.                                                                                                                                                                                                 | 1.6  | 10        |
| 351 | Dipolar HOHAHA under MAS conditions for solid-state NMR. Chemical Physics Letters, 1993, 212, 81-84.                                                                                                                                                                                                                                                                                | 2.6  | 59        |
| 352 | Broadband excitation sequences for NQR spectroscopy. Molecular Physics, 1991, 73, 207-219.                                                                                                                                                                                                                                                                                          | 1.7  | 10        |
| 353 | Double quantum nuclear quadrupole resonance spectroscopy of spinl= 7/2 nuclei in zero magnetic field. Molecular Physics, 1991, 72, 1425-1429.                                                                                                                                                                                                                                       | 1.7  | 7         |
| 354 | Generalized theory of multiple-pulse zero-time resolution in spin-32 NQR spectroscopy. Chemical Physics Letters, 1990, 168, 401-404.                                                                                                                                                                                                                                                | 2.6  | 4         |
| 355 | Design of composite pulses for nuclear quadrupole resonance spectroscopy. Journal of Molecular<br>Structure, 1989, 192, 333-344.                                                                                                                                                                                                                                                    | 3.6  | 16        |