List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8121266/publications.pdf Version: 2024-02-01

VANLEI HU

#	Article	IF	CITATIONS
1	Rapid Fabrication of 3D Chiral Microstructures by Single Exposure of Interfered Femtosecond Vortex Beams and Capillaryâ€Forceâ€Assisted Selfâ€Assembly. Advanced Functional Materials, 2022, 32, 2106917.	14.9	17
2	Sustaining Robust Cavities with Slippery Liquid–Liquid Interfaces. Advanced Science, 2022, 9, e2103568.	11.2	8
3	Anisotropic Sliding Behaviors of Gas Bubbles upon Ferrofluidâ€Infused Orthonormal Tracks (FOTs) Under Magnetic Stimuli. Advanced Materials Interfaces, 2022, 9, .	3.7	4
4	A Biocompatible Vibrationâ€Actuated Omniâ€Droplets Rectifier with Large Volume Range Fabricated by Femtosecond Laser. Advanced Materials, 2022, 34, e2108567.	21.0	40
5	Robust Underwater Air Layer Retention and Restoration on <i>Salvinia</i> -Inspired Self-Grown Heterogeneous Architectures. ACS Nano, 2022, 16, 2730-2740.	14.6	18
6	Reconfigurable Magnetic Liquid Metal Robot for High-Performance Droplet Manipulation. Nano Letters, 2022, 22, 2923-2933.	9.1	57
7	Characterization of white-light non-diffracting beams generated using a deformable mirror. Optics Express, 2022, 30, 13148.	3.4	2
8	Tailoring Optical Vortical Dichroism with Stereometamaterials. Laser and Photonics Reviews, 2022, 16,	8.7	8
9	Functional Shape-Morphing Microarchitectures Fabricated by Dynamic Holographically Shifted Femtosecond Multifoci. Nano Letters, 2022, 22, 5277-5286.	9.1	16
10	On-Demand Maneuvering of Diverse Prodrug Liquids on a Light-Responsive Candle-Soot-Hybridized Lubricant-Infused Slippery Surface for Highly Effective Toxicity Screening. ACS Applied Materials & Interfaces, 2022, 14, 31667-31676.	8.0	6
11	Transparent Lightâ€Ðriven Hydrogel Actuator Based on Photothermal Marangoni Effect and Buoyancy Flow for Threeâ€Ðimensional Motion. Advanced Functional Materials, 2021, 31, 2009386.	14.9	48
12	Light-driven Locomotion of Underwater Bubbles on Ultrarobust Paraffin-impregnated Laser-ablated Fe ₃ O ₄ -doped Slippery Surfaces. ACS Applied Materials & Interfaces, 2021, 13, 9272-9280.	8.0	15
13	Controllable double-helical microstructures by photonic orbital angular momentum for chiroptical response. Optics Letters, 2021, 46, 1401.	3.3	9
14	Noncontact Allâ€Inâ€Situ Reversible Reconfiguration of Femtosecond Laserâ€Induced Shape Memory Magnetic Microcones for Multifunctional Liquid Droplet Manipulation and Information Encryption. Advanced Functional Materials, 2021, 31, 2100543.	14.9	51
15	Kirigami Structures of Shape Memory Polymer by Femtosecond Laser Scribing and Constrained Heating. Advanced Materials Technologies, 2021, 6, 2100200.	5.8	4
16	Guiding the Patterned Growth of Neuronal Axons and Dendrites Using Anisotropic Micropillar Scaffolds. Advanced Healthcare Materials, 2021, 10, e2100094.	7.6	10
17	3D Multiscale Micro-/Nanofolds by Femtosecond Laser Intermittent Ablation and Constrained Heating on a Shape Memory Polymer. ACS Applied Materials & Interfaces, 2021, 13, 23210-23219	8.0	9
18	In Situ Electricâ€Induced Switchable Transparency and Wettability on Laserâ€Ablated Bioinspired Paraffinâ€Impregnated Slippery Surfaces. Advanced Science, 2021, 8, e2100701.	11.2	34

#	Article	IF	CITATIONS
19	Magnetically driven rotary microfilter fabricated by two-photon polymerization for multimode filtering of particles. Optics Letters, 2021, 46, 2968.	3.3	6
20	Direct Generation of Airy Beams at Designed Fourier Planes Using Integrated Airy Phase Plates. IEEE Photonics Technology Letters, 2021, 33, 595-598.	2.5	4
21	Magnetism-Actuated Superhydrophobic Flexible Microclaw: From Spatial Microdroplet Maneuvering to Cross-Species Control. ACS Applied Materials & amp; Interfaces, 2021, 13, 35165-35172.	8.0	9
22	Quasi-phase-matching-division multiplexing holography in a three-dimensional nonlinear photonic crystal. Light: Science and Applications, 2021, 10, 146.	16.6	42
23	Real-time capture of single particles in controlled flow by a rapidly generated foci array with adjustable intensity and pattern. Optics Letters, 2021, 46, 5308.	3.3	2
24	Femtosecond laser direct writing continuous phase vortex gratings with proportionally distributed diffraction energy. Applied Physics Letters, 2021, 119, .	3.3	1
25	Biomimetic Mechanoswitchable Interfaces for High-Performance Spatial Gas Bubble Maneuvering. ACS Applied Materials & Interfaces, 2021, 13, 43769-43776.	8.0	2
26	Reply to Comments on "Efficient full-path optical calculation of scalar and vector diffraction using the Bluestein method― Light: Science and Applications, 2021, 10, 13.	16.6	2
27	Giant Helical Dichroism of Single Chiral Nanostructures with Photonic Orbital Angular Momentum. ACS Nano, 2021, 15, 2893-2900.	14.6	63
28	Gigantic vortical differential scattering as a monochromatic probe for multiscale chiral structures. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	62
29	Environmentally Adaptive Shape-Morphing Microrobots for Localized Cancer Cell Treatment. ACS Nano, 2021, 15, 18048-18059.	14.6	94
30	Femtosecond Laser Regulated Ultrafast Growth of Mushroom-Like Architecture for Oil Repellency and Manipulation. Nano Letters, 2021, 21, 9301-9309.	9.1	22
31	3D microfluidic cloth-based analytical devices on a single piece of cloth by one-step laser hydrophilicity modification. Lab on A Chip, 2021, 21, 4805-4813.	6.0	5
32	Botanicalâ€Inspired 4D Printing of Hydrogel at the Microscale. Advanced Functional Materials, 2020, 30, 1907377.	14.9	122
33	Ultralow-Voltage-Driven Smart Control of Diverse Drop's Anisotropic Sliding by in Situ Switching Joule Heat on Paraffin-Infused Microgrooved Slippery Surface. ACS Applied Materials & Interfaces, 2020, 12, 1895-1904.	8.0	31
34	Femtosecond Laser-Assisted Top-Restricted Self-Growth Re-Entrant Structures on Shape Memory Polymer for Dynamic Pressure Resistance. Langmuir, 2020, 36, 12346-12356.	3.5	7
35	Efficient full-path optical calculation of scalar and vector diffraction using the Bluestein method. Light: Science and Applications, 2020, 9, 119.	16.6	38
36	Ultrathin and High-Stress-Resolution Liquid-Metal-Based Pressure Sensors with Simple Device Structures. ACS Applied Materials & Interfaces, 2020, 12, 55390-55398.	8.0	27

#	Article	lF	CITATIONS
37	Highâ€Performance Unidirectional Manipulation of Microdroplets by Horizontal Vibration on Femtosecond Laserâ€Induced Slant Microwall Arrays. Advanced Materials, 2020, 32, e2005039.	21.0	62
38	Chiral Microstructures: Chiral Assemblies of Laserâ€Printed Micropillars Directed by Asymmetrical Capillary Force (Adv. Mater. 31/2020). Advanced Materials, 2020, 32, 2070236.	21.0	0
39	Three-Dimensional Multifunctional Magnetically Responsive Liquid Manipulator Fabricated by Femtosecond Laser Writing and Soft Transfer. Nano Letters, 2020, 20, 7519-7529.	9.1	50
40	Cross-Species Bioinspired Anisotropic Surfaces for Active Droplet Transportation Driven by Unidirectional Microcolumn Waves. ACS Applied Materials & Interfaces, 2020, 12, 42264-42273.	8.0	33
41	Programmable 3D printed wheat awn-like system for high-performance fogdrop collection. Chemical Engineering Journal, 2020, 399, 125139.	12.7	36
42	High Performance Bubble Manipulation on Ferrofluid-Infused Laser-Ablated Microstructured Surfaces. Nano Letters, 2020, 20, 5513-5521.	9.1	63
43	Chiral Assemblies of Laserâ€Printed Micropillars Directed by Asymmetrical Capillary Force. Advanced Materials, 2020, 32, e2002356.	21.0	42
44	Spontaneous and unidirectional transportation of underwater bubbles on superhydrophobic dual rails. Applied Physics Letters, 2020, 116, .	3.3	18
45	Stimuli-Responsive Actuator Fabricated by Dynamic Asymmetric Femtosecond Bessel Beam for <i>In Situ</i> Particle and Cell Manipulation. ACS Nano, 2020, 14, 5233-5242.	14.6	87
46	Unidirectional Transport and Effective Collection of Underwater CO ₂ Bubbles Utilizing Ultrafast-Laser-Ablated Janus Foam. ACS Applied Materials & Interfaces, 2020, 12, 18110-18115.	8.0	34
47	In Situ Reversible Tuning from Pinned to Roll-Down Superhydrophobic States on a Thermal-Responsive Shape Memory Polymer by a Silver Nanowire Film. ACS Applied Materials & Interfaces, 2020, 12, 13464-13472.	8.0	55
48	Nanogap Plasmonic Structures Fabricated by Switchable Capillaryâ€Force Driven Selfâ€Assembly for Localized Sensing of Anticancer Medicines with Microfluidic SERS. Advanced Functional Materials, 2020, 30, 1909467.	14.9	91
49	4D Printing: Botanicalâ€inspired 4D Printing of Hydrogel at the Microscale (Adv. Funct. Mater. 4/2020). Advanced Functional Materials, 2020, 30, 2070026.	14.9	2
50	Bioinspired micro/nanostructured surfaces prepared by femtosecond laser direct writing for multi-functional applications. International Journal of Extreme Manufacturing, 2020, 2, 032002.	12.7	73
51	Efficient fabrication of a high-aspect-ratio AFM tip by one-step exposure of a long focal depth holographic femtosecond axilens beam. Optics Letters, 2020, 45, 897.	3.3	8
52	Hybrid femtosecond laser fabrication of a size-tunable microtrap chip with a high-trapping retention rate. Optics Letters, 2020, 45, 1071.	3.3	14
53	Amplitude-phase optimized long depth of focus femtosecond axilens beam for single-exposure fabrication of high-aspect-ratio microstructures. Optics Letters, 2020, 45, 2584.	3.3	16
54	Self-assembled micropillars fabricated by holographic femtosecond multi-foci beams forin situ trapping of microparticles. Optics Letters, 2020, 45, 4698.	3.3	13

#	Article	IF	CITATIONS
55	Dynamic Airy imaging through high-efficiency broadband phase microelements by femtosecond laser direct writing. Photonics Research, 2020, 8, 875.	7.0	20
56	Remote Photothermal Actuation of Underwater Bubble toward Arbitrary Direction on Planar Slippery Fe ₃ O ₄ â€Doped Surfaces. Advanced Functional Materials, 2019, 29, 1904766.	14.9	59
57	Reversible Tuning between Isotropic and Anisotropic Sliding by One-Direction Mechanical Stretching on Microgrooved Slippery Surfaces. Langmuir, 2019, 35, 10625-10630.	3.5	31
58	Dualâ€Responsive Janus Membrane by Oneâ€Step Laser Drilling for Underwater Bubble Selective Capture and Repelling. Advanced Materials Interfaces, 2019, 6, 1901176.	3.7	20
59	Photothermal Actuation of Diverse Liquids on an Fe3O4-Doped Slippery Surface for Electric Switching and Cell Culture. Langmuir, 2019, 35, 13915-13922.	3.5	25
60	Smart Stretchable Janus Membranes with Tunable Collection Rate for Fog Harvesting. Advanced Materials Interfaces, 2019, 6, 1901465.	3.7	34
61	Targeted Singleâ€Cell Therapeutics with Magnetic Tubular Micromotor by Oneâ€Step Exposure of Structured Femtosecond Optical Vortices. Advanced Functional Materials, 2019, 29, 1905745.	14.9	54
62	Efficient nonlinear beam shaping in three-dimensional lithium niobate nonlinear photonic crystals. Nature Communications, 2019, 10, 4193.	12.8	114
63	Pitcher plant-bioinspired bubble slippery surface fabricated by femtosecond laser for buoyancy-driven bubble self-transport and efficient gas capture. Nanoscale, 2019, 11, 1370-1378.	5.6	74
64	Multifunctional Janus Microplates Arrays Actuated by Magnetic Fields for Water/Light Switches and Bioâ€Inspired Assimilatory Coloration. Advanced Materials, 2019, 31, e1807507.	21.0	144
65	Erratum to "Femtosecond Laser Direct Ablating Micro/Nanostructures and Micropatterns on CH ₃ NH ₃ Pbl ₃ Single Crystal―[Apr 17 Art. no. 2400110]. IEEE Photonics Journal, 2019, 11, 1-2.	2.0	0
66	Microholeâ€Arrayed PDMS with Controllable Wettability Gradient by Oneâ€6tep Femtosecond Laser Drilling for Ultrafast Underwater Bubble Unidirectional Selfâ€Transport. Advanced Materials Interfaces, 2019, 6, 1900297.	3.7	47
67	Multilayered skyscraper microchips fabricated by hybrid "all-in-one―femtosecond laser processing. Microsystems and Nanoengineering, 2019, 5, 17.	7.0	19
68	Anisotropic Sliding of Underwater Bubbles On Microgrooved Slippery Surfaces by One-Step Femtosecond Laser Scanning. ACS Applied Materials & Interfaces, 2019, 11, 20574-20580.	8.0	43
69	Conical Hollow Microhelices with Superior Swimming Capabilities for Targeted Cargo Delivery. Advanced Materials, 2019, 31, e1808226.	21.0	89
70	Channel-controlled Janus membrane fabricated by simultaneous laser ablation and nanoparticles deposition for underwater bubbles manipulation. Applied Physics Letters, 2019, 114, .	3.3	17
71	<i>In Situ</i> Reversible Control between Sliding and Pinning for Diverse Liquids under Ultra-Low Voltage. ACS Nano, 2019, 13, 5742-5752.	14.6	73
72	Femtosecond Mathieu Beams for Rapid Controllable Fabrication of Complex Microcages and Application in Trapping Microobjects. ACS Nano, 2019, 13, 4667-4676.	14.6	63

#	Article	IF	CITATIONS
73	Negative photoconductivity in sulfur-hyperdoped silicon film. Materials Science in Semiconductor Processing, 2019, 98, 106-112.	4.0	12
74	Large area metal micro-/nano-groove arrays with both structural color and anisotropic wetting fabricated by one-step focused laser interference lithography. Nanoscale, 2019, 11, 4803-4810.	5.6	63
75	Tunable microfluidic device fabricated by femtosecond structured light for particle and cell manipulation. Lab on A Chip, 2019, 19, 3988-3996.	6.0	14
76	Controllable micro-/nanostructures on titanium surface induced by femtosecond laser for underwater air bubble manipulation. Chinese Science Bulletin, 2019, 64, 1296-1302.	0.7	1
77	Holographic femtosecond laser integration of microtube arrays inside a hollow needle as a lab-in-a-needle device. Optics Letters, 2019, 44, 5073.	3.3	12
78	Fabricating Nanogap for SERS by Combing Laser Printing with Capillary-Force Self-Assembly on Soft Base. , 2019, , .		1
79	Integration of functional microstructures inside a microfluidic chip by direct femtosecond laser writing. , 2019, , .		0
80	Allâ€Glass 3D Optofluidic Microchip with Builtâ€in Tunable Microlens Fabricated by Femtosecond Laserâ€Assisted Etching. Advanced Optical Materials, 2018, 6, 1701299.	7.3	61
81	Switchable Underwater Bubble Wettability on Laser-Induced Titanium Multiscale Micro-/Nanostructures by Vertically Crossed Scanning. ACS Applied Materials & Interfaces, 2018, 10, 16867-16873.	8.0	65
82	Real-time two-photon lithography in controlled flow to create a single-microparticle array and particle-cluster array for optofluidic imaging. Lab on A Chip, 2018, 18, 442-450.	6.0	35
83	<i>In situ</i> tunable bubble wettability with fast response induced by solution surface tension. Journal of Materials Chemistry A, 2018, 6, 20878-20886.	10.3	30
84	Unidirectional self-transport of air bubble via a Janus membrane in aqueous environment. Applied Physics Letters, 2018, 113, .	3.3	32
85	Capillary-assisted localized crystallization on discrete micropillar rings. Applied Physics Letters, 2018, 113, .	3.3	4
86	Mechanical-Tunable Capillary-Force-Driven Self-Assembled Hierarchical Structures on Soft Substrate. ACS Nano, 2018, 12, 10142-10150.	14.6	29
87	Localized Selfâ€Growth of Reconfigurable Architectures Induced by a Femtosecond Laser on a Shapeâ€Memory Polymer. Advanced Materials, 2018, 30, e1803072.	21.0	55
88	Microtubes with Complex Cross Section Fabricated by C-Shaped Bessel Laser Beam for Mimicking Stomata That Opens and Closes Rapidly. ACS Applied Materials & Interfaces, 2018, 10, 36369-36376.	8.0	17
89	Generation of colorful Airy beams and Airy imaging of letters via two-photon processed cubic phase plates. Optics Letters, 2018, 43, 1151.	3.3	21
90	Generation of high-quality tunable Airy beams with an adaptive deformable mirror. Optics Letters, 2018, 43, 3634.	3.3	18

#	Article	lF	CITATIONS
91	Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal. Nature Photonics, 2018, 12, 596-600.	31.4	224
92	High-aspect-ratio microtubes with variable diameter and uniform wall thickness by compressing Bessel hologram phase depth. Optics Letters, 2018, 43, 3514.	3.3	18
93	Multifunctional oil-water and immiscible organic liquid separation by micropore arrayed Ti foil. Applied Surface Science, 2018, 455, 221-226.	6.1	12
94	Flexible and rapid fabrication of silver microheaters with spatial-modulated multifoci by femtosecond laser multiphoton reduction. Optics Letters, 2018, 43, 5335.	3.3	10
95	One-step synthesis of three-dimensional microtubes with single exposure of structured femtosecond optical vortices. , 2018, , .		0
96	High-quality microhole arrays by water-assisted femtosecond laser perforating for improved particle sorting. Optical Engineering, 2018, 57, 1.	1.0	0
97	Biomimetic surfaces with anisotropic sliding wetting by energy-modulation femtosecond laserÂirradiation for enhanced water collection. RSC Advances, 2017, 7, 11170-11179.	3.6	63
98	Selfâ€5ealed Bionic Long Microchannels with Thin Walls and Designable Nanoholes Prepared by Lineâ€Contact Capillaryâ€Force Assembly. Small, 2017, 13, 1603957.	10.0	22
99	Femtosecond Laser Direct Ablating Micro/Nanostructures and Micropatterns on CH3NH3 PbI3 Single Crystal. IEEE Photonics Journal, 2017, 9, 1-10.	2.0	3
100	Three-level cobblestone-like TiO2 micro/nanocones for dual-responsive water/oil reversible wetting without fluorination. Applied Physics Letters, 2017, 111, .	3.3	18
101	Multifurcate Assembly of Slanted Micropillars Fabricated by Superposition of Optical Vortices and Application in Highâ€Efficiency Trapping Microparticles. Advanced Functional Materials, 2017, 27, 1701939.	14.9	24
102	Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material. Light: Science and Applications, 2017, 6, e17011-e17011.	16.6	201
103	A Janus oil barrel with tapered microhole arrays for spontaneous high-flux spilled oil absorption and storage. Nanoscale, 2017, 9, 15796-15803.	5.6	57
104	Dimensionâ€Controllable Microtube Arrays by Dynamic Holographic Processing as 3D Yeast Culture Scaffolds for Asymmetrical Growth Regulation. Small, 2017, 13, 1701190.	10.0	26
105	A single-layer Janus membrane with dual gradient conical micropore arrays for self-driving fog collection. Journal of Materials Chemistry A, 2017, 5, 18403-18408.	10.3	103
106	Optical superimposed vortex beams generated by integrated holographic plates with blazed grating. Applied Physics Letters, 2017, 111, 061901.	3.3	8
107	A facile strategy to integrate robust porous aluminum foil into microfluidic chip for sorting particles. Microfluidics and Nanofluidics, 2017, 21, 1.	2.2	4
108	High efficiency fabrication of complex microtube arrays by scanning focused femtosecond laser Bessel beam for trapping/releasing biological cells. Optics Express, 2017, 25, 8144.	3.4	33

#	Article	IF	CITATIONS
109	Arch-like microsorters with multi-modal and clogging-improved filtering functions by using femtosecond laser multifocal parallel microfabrication. Optics Express, 2017, 25, 16739.	3.4	27
110	Continuous cubic phase microplates for generating high-quality Airy beams with strong deflection. Optics Letters, 2017, 42, 2483.	3.3	18
111	Two-photon polymerization of microstructures by a non-diffraction multifoci pattern generated from a superposed Bessel beam. Optics Letters, 2017, 42, 743.	3.3	49
112	Direct laser writing of complex microtubes using femtosecond vortex beams. Applied Physics Letters, 2017, 110, .	3.3	40
113	Two-stage optical recording: photoinduced birefringence and surface-mediated bits storage in bisazo-containing copolymers towards ultrahigh data memory. Optics Express, 2016, 24, 23557.	3.4	12
114	Highly uniform parallel microfabrication using a large numerical aperture system. Applied Physics Letters, 2016, 109, .	3.3	9
115	One-step facile fabrication of controllable microcone and micromolar silicon arrays with tunable wettability by liquid-assisted femtosecond laser irradiation. RSC Advances, 2016, 6, 37463-37471.	3.6	29
116	High efficiency integration of three-dimensional functional microdevices inside a microfluidic chip by using femtosecond laser multifoci parallel microfabrication. Scientific Reports, 2016, 6, 19989.	3.3	58
117	Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels. Scientific Reports, 2016, 6, 33281.	3.3	42
118	Multifunctional ultrathin aluminum foil: oil/water separation and particle filtration. Journal of Materials Chemistry A, 2016, 4, 18832-18840.	10.3	92
119	Single-exposure multiphoton fabrication of polygonized structures by an SLM-modulated Fresnel zone lens. Optical Engineering, 2016, 55, 035102.	1.0	3
120	Synthesis, structure and optical data storage properties of silver nanoparticles modified with azobenzene thiols. Materials Chemistry and Physics, 2016, 170, 108-112.	4.0	22
121	Femtosecond laser cleaning the surface of reflective mirror in telescope. Chinese Science Bulletin, 2016, 61, 622-629.	0.7	1
122	Laser printing hierarchical structures with the aid of controlled capillary-driven self-assembly. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6876-6881.	7.1	87
123	Parallel direct laser writing of micro-optical and photonic structures using spatial light modulator. Optics and Lasers in Engineering, 2015, 70, 26-32.	3.8	99
124	In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting. Light: Science and Applications, 2015, 4, e228-e228.	16.6	107
125	Femtosecond laser color marking stainless steel surface with different wavelengths. Applied Physics A: Materials Science and Processing, 2015, 118, 1189-1196.	2.3	62
126	Ship-in-a-bottle femtosecond laser integration of optofluidic microlens arrays with center-pass units enabling coupling-free parallel cell counting with a 100% success rate. Lab on A Chip, 2015, 15, 1515-1523.	6.0	64

#	Article	IF	CITATIONS
127	Novel carbazole derivatives with quinoline ring: Synthesis, electronic transition, and two-photon absorption three-dimensional optical data storage. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 139, 243-252.	3.9	32
128	Fish scale inspired design of underwater superoleophobic microcone arrays by sucrose solution assisted femtosecond laser irradiation for multifunctional liquid manipulation. Journal of Materials Chemistry A, 2015, 3, 18675-18683.	10.3	84
129	Displacement improvement of piezoelectric membrane microactuator by controllable in-plane stress. Sensors and Actuators A: Physical, 2015, 230, 45-51.	4.1	7
130	Eliminating hysteresis of piezoelectric deformable mirror by charge control. Optics Communications, 2015, 349, 1-5.	2.1	5
131	Selective display of multiple patterns encoded with different oriented ripples using femtosecond laser. Optics and Laser Technology, 2015, 71, 85-88.	4.6	10
132	Capillary Force Driven Self-Assembly of Anisotropic Hierarchical Structures Prepared by Femtosecond Laser 3D Printing and Their Applications in Crystallizing Microparticles. ACS Nano, 2015, 9, 12060-12069.	14.6	47
133	Large-Area One-Step Assembly of Three-Dimensional Porous Metal Micro/Nanocages by Ethanol-Assisted Femtosecond Laser Irradiation for Enhanced Antireflection and Hydrophobicity. ACS Applied Materials & Interfaces, 2015, 7, 383-390.	8.0	55
134	Facile fabrication of functional PDMS surfaces with tunable wettablity and high adhesive force via femtosecond laser textured templating. AIP Advances, 2014, 4, 127141.	1.3	6
135	Realization of diverse displays for multiple color patterns on metal surfaces. Applied Surface Science, 2014, 316, 451-455.	6.1	16
136	An improved multi-exposure approach for high quality holographic femtosecond laser patterning. Applied Physics Letters, 2014, 105, .	3.3	28
137	Numerical and Experimental Study of the Structural Color by Widening the Pore Size of Nanoporous Anodic Alumina. Journal of Nanomaterials, 2014, 2014, 1-10.	2.7	7
138	A rapid two-photon fabrication of tube array using an annular Fresnel lens. Optics Express, 2014, 22, 3983.	3.4	22
139	Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams. Applied Physics Letters, 2014, 105, 041110.	3.3	44
140	Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of shipâ€inâ€aâ€bottle biochip. Laser and Photonics Reviews, 2014, 8, 458-467.	8.7	126
141	Controllable liquid spread speed in the groove using femtosecond laser. , 2014, , .		0
142	Fast Bits Recording in Photoisomeric Polymers by Phase-Modulated Femtosecond Laser. IEEE Photonics Technology Letters, 2014, 26, 1154-1156.	2.5	8
143	Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass. Lab on A Chip, 2014, 14, 3447-3458.	6.0	190
144	Self-driven flow in surface grooves fabricated by femtosecond laser. Surface and Coatings Technology, 2014, 242, 246-250.	4.8	5

#	Article	IF	CITATIONS
145	Projection two-photon polymerization using a spatial light modulator. Optics Communications, 2014, 331, 82-86.	2.1	25
146	Evolution of titanium surfaces irradiated by femtosecond laser pulses with different wavelengths. , 2013, , .		2
147	Three dimensional micro-mechanical and micro-optical devices fabricated by holographic two-photon lithography. , 2013, , .		0
148	Evolution of aluminum surface irradiated by femtosecond laser pulses with different pulse overlaps. Applied Surface Science, 2013, 276, 203-209.	6.1	34
149	Rapid, Controllable Fabrication of Regular Complex Microarchitectures by Capillary Assembly of Micropillars and Their Application in Selectively Trapping/Releasing Microparticles. Small, 2013, 9, 760-767.	10.0	25
150	Individually controlled multi-focus on a line for two-photon polymerization based on computer-generated holograms. , 2013, , .		0
151	Low-cost unimorph deformable mirror with high actuator count for astronomical adaptive optics. Optical Engineering, 2013, 52, 016602.	1.0	7
152	An improved method for computer generation of three-dimensional digital holography. Journal of Optics (United Kingdom), 2013, 15, 125704.	2.2	1
153	High-efficiency fabrication of aspheric microlens arrays by holographic femtosecond laser-induced photopolymerization. Applied Physics Letters, 2013, 103, .	3.3	55
154	Femtosecond laser induced surface deformation in multi-dimensional data storage. Applied Physics Letters, 2012, 101, .	3.3	13
155	Hydrogen bonded supramolecular azopolymers: a media for multilayered and polarization-multiplexed data storage based on two-photon process. Proceedings of SPIE, 2012, , .	0.8	1
156	Comparison of optimization algorithms for adaptive optics system without a wavefront sensor. Proceedings of SPIE, 2012, , .	0.8	0
157	Two-photon induced data storage in hydrogen bonded supramolecular azopolymers. Optics Communications, 2012, 285, 4941-4945.	2.1	22
158	Brilliant and tunable color by changing pore diameter of metal-coated porous anodic alumina. Proceedings of SPIE, 2012, , .	0.8	3
159	Influence of secondary converse piezoelectric effect on deflection of fully covered PZT actuators. Sensors and Actuators A: Physical, 2012, 175, 132-138.	4.1	13
160	Study on the rewritability of bisazobenzene-containing films in optical storage based on two-photon process. Optics Communications, 2011, 284, 802-806.	2.1	4
161	Threeâ€Level Biomimetic Riceâ€Leaf Surfaces with Controllable Anisotropic Sliding. Advanced Functional Materials, 2011, 21, 2927-2932.	14.9	251
162	Curvatureâ€Driven Reversible In Situ Switching Between Pinned and Rollâ€Down Superhydrophobic States for Water Droplet Transportation. Advanced Materials, 2011, 23, 545-549.	21.0	268

#	Article	IF	CITATIONS
163	Ag nanoparticle/azopolymer nanocomposites: In situ synthesis, microstructure, rewritable optically induced birefringence and optical recording. Polymer, 2010, 51, 1395-1403.	3.8	24
164	High numerical aperture microlens arrays of close packing. Applied Physics Letters, 2010, 97, .	3.3	143
165	Two-photon-induced polarization-multiplexed and multilevel storage in photoisomeric copolymer film. Optics Letters, 2010, 35, 46.	3.3	22
166	Femtosecond Laser Based Polarization Storage by Direct-Writing in Diazobenzene Copolymer Film. Journal of Laser Micro Nanoengineering, 2010, 5, 64-67.	0.1	5
167	Self-organization of polymer nanoneedles into large-area ordered flowerlike arrays. Applied Physics Letters, 2009, 95, 091902.	3.3	35
168	Polarization storage by two-photon-induced anisotropy in bisazobenzene copolymer film. Optics Communications, 2009, 282, 3282-3285.	2.1	18
169	Polarization storage by two-photon absorption method in a diazobenzene/MMA copolymer. , 2008, , .		1