
Marialuigia Raimondo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8121240/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanical and barrier properties of epoxy resin filled with multi-walled carbon nanotubes. Carbon, 2009, 47, 2419-2430.	5.4	150
2	Development of epoxy mixtures for application in aeronautics and aerospace. RSC Advances, 2014, 4, 15474-15488.	1.7	133
3	Self-healing epoxy nanocomposites via reversible hydrogen bonding. Composites Part B: Engineering, 2019, 157, 1-13.	5.9	103
4	Multifunctional graphene/POSS epoxy resin tailored for aircraft lightning strike protection. Composites Part B: Engineering, 2018, 140, 44-56.	5.9	98
5	The role of carbon nanofiber defects on the electrical and mechanical properties of CNF-based resins. Nanotechnology, 2013, 24, 305704.	1.3	97
6	Nanofilled epoxy adhesive for structural aeronautic materials. Composites Part B: Engineering, 2014, 61, 73-83.	5.9	85
7	Effect of incorporation of POSS compounds and phosphorous hardeners on thermal and fire resistance of nanofilled aeronautic resins. RSC Advances, 2015, 5, 10974-10986.	1.7	72
8	Influence of carbon nanoparticles/epoxy matrix interaction on mechanical, electrical and transport properties of structural advanced materials. Nanotechnology, 2017, 28, 094001.	1.3	72
9	Optimization of graphene-based materials outperforming host epoxy matrices. RSC Advances, 2015, 5, 36969-36978.	1.7	71
10	Graphene-based structural adhesive to enhance adhesion performance. RSC Advances, 2015, 5, 27874-27886.	1.7	67
11	Healing efficiency and dynamic mechanical properties of self-healing epoxy systems. Smart Materials and Structures, 2014, 23, 045001.	1.8	65
12	Effective formulation and processing of nanofilled carbon fiber reinforced composites. RSC Advances, 2015, 5, 6033-6042.	1.7	62
13	Correlation between electrical conductivity and manufacturing processes of nanofilled carbon fiber reinforced composites. Composites Part B: Engineering, 2015, 80, 7-14.	5.9	60
14	Development of self-healing multifunctional materials. Composites Part B: Engineering, 2017, 128, 30-38.	5.9	58
15	Reversible Self-Healing Carbon-Based Nanocomposites for Structural Applications. Polymers, 2019, 11, 903.	2.0	58
16	Use of Hoveyda–Grubbs' second generation catalyst in self-healing epoxy mixtures. Composites Part B: Engineering, 2011, 42, 296-301.	5.9	55
17	Selfâ€healing materials for structural applications. Polymer Engineering and Science, 2014, 54, 777-784.	1.5	52
18	Morphological, rheological and electrical properties of composites filled with carbon nanotubes functionalized with 1-pyrenebutyric acid. Composites Part B: Engineering, 2018, 147, 12-21.	5.9	51

#	Article	IF	CITATIONS
19	Cure Behavior and Physical Properties of Epoxy Resin—Filled with Multiwalled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2010, 10, 2686-2693.	0.9	49
20	Influence of carbon nanofillers on the curing kinetics of epoxy-amine resin. RSC Advances, 2015, 5, 90437-90450.	1.7	49
21	Electrical conductivity of carbon nanofiber reinforced resins: Potentiality of Tunneling Atomic Force Microscopy (TUNA) technique. Composites Part B: Engineering, 2018, 143, 148-160.	5.9	47
22	Nanometric Dispersion of a Mg/Al Layered Double Hydroxide into a Chemically Modified Polycaprolactone. Biomacromolecules, 2007, 8, 773-779.	2.6	45
23	Cure behavior and mechanical properties of structural selfâ€healing epoxy resins. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 2413-2423.	2.4	45
24	Relationships between nanofiller morphology and viscoelastic properties in CNF/epoxy resins. Polymer Composites, 2015, 36, 1152-1160.	2.3	44
25	Effect of carbon nanotubes on the photo-oxidative durability of syndiotactic polypropylene. Polymer Degradation and Stability, 2010, 95, 1614-1626.	2.7	43
26	Processing, thermal stability and morphology of chiral sensing syndiotactic polystyrene films. Journal of Materials Chemistry, 2008, 18, 567-572.	6.7	41
27	Multifunctionality of structural nanohybrids: the crucial role of carbon nanotube covalent and non-covalent functionalization in enabling high thermal, mechanical and self-healing performance. Nanotechnology, 2020, 31, 225708.	1.3	41
28	Improvement of the electrical conductivity in multiphase epoxy-based MWCNT nanocomposites by means of an optimized clay content. Composites Science and Technology, 2013, 89, 69-76.	3.8	38
29	Healing efficiency of epoxyâ€based materials for structural applications. Polymer Composites, 2013, 34, 1525-1532.	2.3	37
30	Healing agent for the activation of self-healing function at low temperature. Advanced Composite Materials, 2015, 24, 519-529.	1.0	35
31	Self-repairing CFRPs targeted towards structural aerospace applications. International Journal of Structural Integrity, 2016, 7, 656-670.	1.8	34
32	Transport and field emission properties of buckypapers obtained from aligned carbon nanotubes. Journal of Materials Science, 2017, 52, 6459-6468.	1.7	34
33	Synthesis of ruthenium catalysts functionalized graphene oxide for self-healing applications. Polymer, 2015, 69, 330-342.	1.8	33
34	Development of a new stable ruthenium initiator suitably designed for self-repairing applications in high reactive environments. Journal of Industrial and Engineering Chemistry, 2017, 54, 234-251.	2.9	28
35	The effect of filler aspect ratio on the electromagnetic properties of carbon-nanofibers reinforced composites. Journal of Applied Physics, 2015, 118, .	1.1	23
36	Protection of graphene supported ROMP catalyst through polymeric globular shell in self-healing materials. Composites Part B: Engineering, 2017, 116, 352-360.	5.9	22

#	Article	IF	CITATIONS
37	Development and characterization of antitumoral electrospun polycaprolactone/functionalized Fe3O4 hybrid membranes. Materials Today Chemistry, 2020, 17, 100309.	1.7	21
38	Influence of multiwall carbon nanotubes on morphological and structural changes during UV irradiation of syndiotactic polypropylene films. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 963-975.	2.4	20
39	Rheological and Morphological Properties of Non-Covalently Functionalized Graphene-Based Structural Epoxy Resins with Intrinsic Electrical Conductivity and Thermal Stability. Nanomaterials, 2020, 10, 1310.	1.9	19
40	Eco-friendly polymer nanocomposites designed for self-healing applications. Polymer, 2021, 223, 123718.	1.8	18
41	Electrical Current Map and Bulk Conductivity of Carbon Fiber-Reinforced Nanocomposites. Polymers, 2019, 11, 1865.	2.0	17
42	Carbon-Based Aeronautical Epoxy Nanocomposites: Effectiveness of Atomic Force Microscopy (AFM) in Investigating the Dispersion of Different Carbonaceous Nanoparticles. Polymers, 2019, 11, 832.	2.0	16
43	Flexible eco-friendly multilayer film heaters. Composites Part B: Engineering, 2021, 224, 109208.	5.9	16
44	Influence of nanofiller morphology on the viscoelastic properties of CNF/epoxy resins. AIP Conference Proceedings, 2014, , .	0.3	15
45	Functional structural nanocomposites with integrated self-healing ability. Materials Today: Proceedings, 2021, 34, 243-249.	0.9	14
46	Evaluation of the Mechanical Properties of Microcapsule-Based Self-Healing Composites. International Journal of Aerospace Engineering, 2016, 2016, 1-10.	0.5	13
47	New structure of diamine curing agent for epoxy resins with self-restoration ability: Synthesis and spectroscopy characterization. Journal of Molecular Structure, 2017, 1130, 400-407.	1.8	13
48	A critical assessment of multifunctional polymers with regard to their potential use in structural applications. Composites Part B: Engineering, 2019, 157, 150-162.	5.9	13
49	Structural and morphological changes during UV irradiation of the trans-planar form of syndiotactic polypropylene. Polymer Degradation and Stability, 2008, 93, 176-187.	2.7	12
50	Dependence of electrical properties of polypropylene isomers on morphology and chain conformation. Journal Physics D: Applied Physics, 2009, 42, 135405.	1.3	12
51	Encapsulation of health-monitoring agent in poly-methyl-methacrylate microcapsules using supercritical emulsion extraction. Journal of Industrial and Engineering Chemistry, 2020, 90, 287-299.	2.9	11
52	Tunneling Atomic Force Microscopy Analysis of Supramolecular Self-Responsive Nanocomposites. Polymers, 2021, 13, 1401.	2.0	11
53	UV Irradiated Graphene-Based Nanocomposites: Change in the Mechanical Properties by Local HarmoniX Atomic Force Microscopy Detection. Materials, 2019, 12, 962.	1.3	10
54	High-Performance Properties of an Aerospace Epoxy Resin Loaded with Carbon Nanofibers and Glycidyl Polyhedral Oligomeric Silsesquioxane. Aerospace, 2022, 9, 222.	1.1	10

Marialuigia Raimondo

#	Article	IF	CITATIONS
55	Electrospun Membranes Designed for Burst Release of New Gold-Complexes Inducing Apoptosis of Melanoma Cells. International Journal of Molecular Sciences, 2022, 23, 7147.	1.8	10
56	Electrical properties of multi-walled carbon nanotube/tetrafunctional epoxy-amine composites. , 2012, , .		9
57	Dynamic Mechanical Properties of Structural Self-Healing Epoxy Resins. Applied Mechanics and Materials, 0, 62, 95-105.	0.2	8
58	Analysis of the Effects of Hydrotalcite Inclusion on the Temperature-Sensing Properties of CNT-Epoxy Nanocomposites. IEEE Sensors Journal, 2016, 16, 7977-7985.	2.4	7
59	Design of self-healing biodegradable polymers. Journal of Thermal Analysis and Calorimetry, 2022, 147, 5463-5472.	2.0	7
60	Design of self-healing catalysts for aircraft application. International Journal of Structural Integrity, 2018, 9, 723-736.	1.8	6
61	Graphene/epoxy resins: Rheological behavior and morphological analysis by Atomic Force Microscopy (AFM). Materials Today: Proceedings, 2021, 34, 160-163.	0.9	6
62	Morphology and Elasticity of Oriented Syndiotactic Polypropylene from Solvent Cast Films. Crystal Growth and Design, 2006, 6, 1703-1710.	1.4	4
63	Enhanced electrical properties of carbon fiber reinforced composites obtained by an effective infusion process. , 2014, , .		4
64	Thermo-mechanical properties and electrical mapping of nanoscale domains of carbon-based structural resins. Journal of Thermal Analysis and Calorimetry, 2022, 147, 5473-5481.	2.0	4
65	Rheological and morphological properties of graphene-epoxy nanocomposites. AIP Conference Proceedings, 2016, , .	0.3	3
66	Development of aeronautical epoxy nanocomposites having an integrated selfhealing ability. MATEC Web of Conferences, 2018, 233, 00021.	0.1	3
67	Morphological and electrical characterization of epoxy resin filled with exfoliated graphite. , 2015, , .		1
68	Effect of functionalized carbon nanofillers on the rheological behavior of structural epoxy resins. AIP Conference Proceedings, 2019, , .	0.3	1
69	Electrical behavior at nanometer scale of functionalized graphene-based structural resins. AIP Conference Proceedings, 2021, , .	0.3	1
70	Self-Healing Mechanisms in Multifunctional Structural Materials. , 2020, , 277-302.		1
71	Impact of the inclusion of hydrotalcite on the morphological and electrical characteristics of an epoxy-based CNT nanocomposite. , 2012, , .		0
72	Temperature effects on the electrical properties of multiphase polymer composites. , 2014, , .		0

#	Article	IF	CITATIONS
73	Nanocomposites conductivity point measurement using Tunneling AFM (TUNA). MATEC Web of Conferences, 2018, 233, 00022.	0.1	Ο
74	Electrical characterization of aeronautical nanocomposites supported by Tunneling AFM (TUNA). MATEC Web of Conferences, 2018, 233, 00023.	0.1	0
75	Investigation of Electrical Properties of Graphene-Based Nanocomposites Supported by Tunnelling AFM (TUNA). Lecture Notes in Electrical Engineering, 2020, , 375-387.	0.3	0