
Adam W Augustyniak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8120981/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New Palladium – ZrO ₂ Nanoâ€Architectures from Thermal Transformation of UiOâ€66â€NH ₂ for Carbonylative Suzuki and Hydrogenation Reactions. Chemistry - A European Journal, 2022, 28, .	3.3	7
2	The two faces of platinum hydrospirophosphorane complexes—Not only relevant catalysts but cytotoxic compounds as well. Applied Organometallic Chemistry, 2022, 36, .	3.5	1
3	Hydrogen production and transfer hydrogenation of phenylacetylene with ammonia borane in water catalyzed by the [Pd(2-pymo)2]n framework. Inorganica Chimica Acta, 2022, 538, 120977.	2.4	2
4	NiOBDP and Ni/NiOBDP catalyzed transfer hydrogenation of acetophenone and 4-nitrophenol. Polyhedron, 2022, 224, 116029.	2.2	1
5	Pdâ€Nanocomposites Formed by Calcination of [Pd(2â€pymo) ₂] _n Framework as Catalysts of Phenylacetylene Semihydrogenation in Water. ChemCatChem, 2021, 13, 2145-2151.	3.7	8
6	Phenylacetylene semihydrogenation over a palladium pyrazolate hydrogen-bonded network. Inorganica Chimica Acta, 2021, 518, 120255.	2.4	1
7	First dinuclear rhodium(II) complexes with triazolopyrimidines and the prospect of their potential biological use. Journal of Inorganic Biochemistry, 2020, 210, 111072.	3.5	9
8	Incorporation of PdCl ₂ P ₂ Complexes in Niâ€MOF for Catalyzing Heck Arylation of Functionalized Olefins. European Journal of Inorganic Chemistry, 2019, 2019, 4282-4288.	2.0	12
9	Magnesium Exchanged Zirconium Metal–Organic Frameworks with Improved Detoxification Properties of Nerve Agents. Journal of the American Chemical Society, 2019, 141, 11801-11805.	13.7	48
10	The role of palladium nanoparticles in catalytic C–C cross-coupling reactions. Coordination Chemistry Reviews, 2019, 384, 1-20.	18.8	142
11	Design of Shapeâ€Palladium Nanoparticles Anchored on Titanium(IV) Metalâ€Organic Framework: Highly Active Catalysts for Reduction of p â€Nitrophenol in Water. ChemistrySelect, 2018, 3, 7934-7939.	1.5	9
12	Reactivity of nano-size zinc powder in the aqueous solution of [Fe ^{III} (edta)(H ₂ O)] ^{â^'} . Environmental Technology (United Kingdom), 2017, 38, 103-107.	2.2	8
13	Palladium nanoparticles supported on a nickel pyrazolate metal organic framework as a catalyst for Suzuki and carbonylative Suzuki couplings. Dalton Transactions, 2016, 45, 13525-13531.	3.3	37
14	A vanadium(<scp>iv</scp>) pyrazolate metal–organic polyhedron with permanent porosity and adsorption selectivity. Chemical Communications, 2015, 51, 14724-14727.	4.1	31
15	Applied Kinetics Aspects of Ferric EDTA Complex Reduction with Metal Powder. Industrial & Engineering Chemistry Research, 2014, 53, 14234-14240.	3.7	28