
Piotr Martyniuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8120958/publications.pdf Version: 2024-02-01

PIOTO MADTVNILLE

#	Article	IF	CITATIONS
1	Quantum-dot infrared photodetectors: Status and outlook. Progress in Quantum Electronics, 2008, 32, 89-120.	7.0	227
2	New concepts in infrared photodetector designs. Applied Physics Reviews, 2014, 1, 041102.	11.3	205
3	InAs/GaSb type-II superlattice infrared detectors: Future prospect. Applied Physics Reviews, 2017, 4, .	11.3	188
4	Challenges of small-pixel infrared detectors: a review. Reports on Progress in Physics, 2016, 79, 046501.	20.1	179
5	InAs/GaInSb superlattices as a promising material system for third generation infrared detectors. Infrared Physics and Technology, 2006, 48, 39-52.	2.9	124
6	Two-dimensional infrared and terahertz detectors: Outlook and status. Applied Physics Reviews, 2019, 6, .	11.3	94
7	Sensing Infrared Photons at Room Temperature: From Bulk Materials to Atomic Layers. Small, 2019, 15, e1904396.	10.0	83
8	HOT infrared photodetectors. Opto-electronics Review, 2013, 21, .	2.4	81
9	Barrier infrared detectors. Opto-electronics Review, 2014, 22, .	2.4	81
10	Type-II superlattice photodetectors versus HgCdTe photodiodes. Progress in Quantum Electronics, 2019, 68, 100228.	7.0	81
11	Trends in Performance Limits of the HOT Infrared Photodetectors. Applied Sciences (Switzerland), 2021, 11, 501.	2.5	48
12	Assessment of quantum dot infrared photodetectors for high temperature operation. Journal of Applied Physics, 2008, 104, 034314.	2.5	47
13	InAsSb-Based Infrared Photodetectors: Thirty Years Later On. Sensors, 2020, 20, 7047.	3.8	46
14	Antimonide-based Infrared Detectors: A New Perspective. , 2018, , .		36
15	Modelling of MWIR HgCdTe complementary barrier HOT detector. Solid-State Electronics, 2013, 80, 96-104.	1.4	35
16	Performance modeling of MWIR InAs/GaSb/B–Al0.2Ga0.8Sb type-II superlattice nBn detector. Semiconductor Science and Technology, 2012, 27, 055002.	2.0	28
17	Mid-wavelength infrared type-II InAs/GaSb superlattice interband cascade photodetectors. Optical Engineering, 2014, 53, 043107.	1.0	28
18	MOCVD grown HgCdTe device structure for ambient temperature LWIR detectors. Semiconductor Science and Technology, 2013, 28, 105017.	2.0	27

#	Article	IF	CITATIONS
19	MWIR barrier detectors versus HgCdTe photodiodes. Infrared Physics and Technology, 2015, 70, 125-128.	2.9	27
20	InAs/GaSb type-II superlattice infrared detectors: three decades of development. Proceedings of SPIE, 2017, , .	0.8	26
21	Insight into performance of quantum dot infrared photodetectors. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2009, 57, .	0.8	25
22	Demonstration of HOT LWIR T2SLs InAs/InAsSb photodetectors grown on GaAs substrate. Infrared Physics and Technology, 2018, 95, 222-226.	2.9	22
23	Theoretical Modeling of HOT HgCdTe Barrier Detectors for the Mid-Wave Infrared Range. Journal of Electronic Materials, 2013, 42, 3309-3319.	2.2	21
24	Performance prediction of p-i-n HgCdTe long-wavelength infrared HOT photodiodes. Applied Optics, 2018, 57, D11.	1.8	21
25	Interfacial Misfit Array Technique for GaSb Growth on GaAs (001) Substrate by Molecular Beam Epitaxy. Journal of Electronic Materials, 2018, 47, 299-304.	2.2	19
26	Enhanced Performance of HgCdTe Midwavelength Infrared Electron Avalanche Photodetectors With Guard Ring Designs. IEEE Transactions on Electron Devices, 2020, 67, 542-546.	3.0	19
27	Enhanced Performance of HgCdTe Long-Wavelength Infrared Photodetectors With nBn Design. IEEE Transactions on Electron Devices, 2020, 67, 2001-2007.	3.0	18
28	Comparison of performance of quantum dot and other types of infrared photodetectors. Proceedings of SPIE, 2008, , .	0.8	17
29	Performance limits of the mid-wave InAsSb/AlAsSb nBn HOT infrared detector. Optical and Quantum Electronics, 2014, 46, 581-591.	3.3	17
30	Photon recycling effect in small pixel p-i-n HgCdTe long wavelength infrared photodiodes. Infrared Physics and Technology, 2019, 97, 38-42.	2.9	17
31	Engineering steps for optimizing high temperature LWIR HgCdTe photodiodes. Infrared Physics and Technology, 2017, 81, 276-281.	2.9	16
32	Optimization of a HOT LWIR HgCdTe Photodiode for Fast Response and High Detectivity in Zero-Bias Operation Mode. Journal of Electronic Materials, 2017, 46, 6045-6055.	2.2	16
33	Low-frequency noise limitations of InAsSb-, and HgCdTe-based infrared detectors. Sensors and Actuators A: Physical, 2020, 305, 111908.	4.1	16
34	Application of localization landscape theory and the k · p model for direct modeling of carrier transport in a type II superlattice InAs/InAsSb photoconductor system. Journal of Applied Physics, 2020, 127, .	2.5	16
35	Modeling of midwavelength infrared InAs/GaSb type II superlattice detectors. Optical Engineering, 2013, 52, 061307.	1.0	15
36	Performance comparison of barrier detectors and HgCdTe photodiodes. Optical Engineering, 2014, 53, 106105.	1.0	15

#	Article	IF	CITATIONS
37	Molecular beam epitaxial growth and characterization of InAs layers on GaAs (001) substrate. Optical and Quantum Electronics, 2016, 48, 1.	3.3	15
38	Low-temperature growth of GaSb epilayers on GaAs (001) by molecular beam epitaxy. Opto-electronics Review, 2016, 24, .	2.4	15
39	Optimization of the interfacial misfit array growth mode of GaSb epilayers on GaAs substrate. Journal of Crystal Growth, 2018, 483, 26-30.	1.5	15
40	Investigation of surface leakage current in MWIR HgCdTe and InAsSb barrier detectors. Semiconductor Science and Technology, 2018, 33, 125010.	2.0	15
41	Bandgap energy determination of InAsSb epilayers grown by molecular beam epitaxy on GaAs substrates. Progress in Natural Science: Materials International, 2019, 29, 472-476.	4.4	15
42	Theoretical modeling of InAsSb/AlAsSb barrier detectors for higher-operation-temperature conditions. Optical Engineering, 2014, 53, 017106.	1.0	14
43	Mid-Wavelength Infrared nBn for HOT Detectors. Journal of Electronic Materials, 2014, 43, 2963-2969.	2.2	14
44	Demonstration of the Very Long Wavelength Infrared Type-II Superlattice InAs/InAsSb GaAs Immersed Photodetector Operating at Thermoelectric Cooling. IEEE Electron Device Letters, 2019, 40, 1396-1398.	3.9	14
45	Interband Quantum Cascade Infrared Photodetectors: Current Status and Future Trends. Physical Review Applied, 2022, 17, .	3.8	14
46	Modeling of HgCdTe LWIR detector for high operation temperature conditions. Metrology and Measurement Systems, 2013, 20, 159-170.	1.4	13
47	HOT mid-wave HgCdTe nBn and pBp infrared detectors. Optical and Quantum Electronics, 2015, 47, 1311-1318.	3.3	13
48	Mid-wave T2SLs InAs/GaSb single pixel PIN detector with GaAs immersion lens for HOT condition. Solid-State Electronics, 2016, 119, 1-4.	1.4	13
49	Numerical analysis of HgCdTe dual-band infrared detector. Optical and Quantum Electronics, 2019, 51, 1.	3.3	13
50	Status of HgCdTe Barrier Infrared Detectors Grown by MOCVD in Military University of Technology. Journal of Electronic Materials, 2016, 45, 4563-4573.	2.2	12
51	Dark current modeling of MWIR type-II superlattice detectors. , 2012, , .		11
52	Modeling of InAsSb/AlAsSb nBn HOT detector's performance limit. Proceedings of SPIE, 2013, , .	0.8	10
53	Electrical Properties of Midwave and Longwave InAs/GaSb Superlattices Grown on GaAs Substrates by Molecular Beam Epitaxy. Nanoscale Research Letters, 2018, 13, 196.	5.7	10
54	Modeling of HOT (111) HgCdTe MWIR detector for fast response operation. Optical and Quantum Electronics, 2014, 46, 1303-1312.	3.3	9

#	Article	IF	CITATIONS
55	Recent progress in MOCVD growth for thermoelectrically cooled HgCdTe medium wavelength infrared photodetectors. Solid-State Electronics, 2016, 118, 61-65.	1.4	9
56	Investigation on the InAs _{1–x} Sb _x epilayers growth on GaAs (001) substrate by molecular beam epitaxy. Journal of Semiconductors, 2018, 39, 033003.	3.7	9
57	Long-Wavelength Interband Cascade Detector Architectures for Room Temperature Operation. IEEE Journal of Quantum Electronics, 2019, 55, 1-6.	1.9	9
58	InAs/InAsSb Strain-Balanced Superlattices for Longwave Infrared Detectors. Sensors, 2019, 19, 1907.	3.8	9
59	New wet etching solution molar ratio for processing T2SLs InAs/GaSb nBn MWIR infrared detectors grown on GaSb substrates. Materials Science in Semiconductor Processing, 2016, 41, 261-264.	4.0	8
60	Locallyâ€Strainâ€Induced Heavyâ€Holeâ€Band Splitting Observed in Mobility Spectrum of pâ€Type InAs Grown o GaAs. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900604.	^{on} 2.4	8
61	Study of HgCdTe (100) and HgCdTe (111)B Heterostructures Grown by MOCVD and Their Potential Application to APDs Operating in the IR Range up to 8 µm. Sensors, 2022, 22, 924.	3.8	8
62	MOCVD grown HgCdTe barrier detectors for MWIR high-operating temperature operation. Optical Engineering, 2015, 54, 105105.	1.0	7
63	Interface Influence on the Long-Wave Auger Suppressed Multilayer N+ \$pi\$ P+p+n+ HgCdTe HOT Detector Performance. IEEE Sensors Journal, 2017, 17, 674-678.	4.7	7
64	Optimal absorber thickness in interband cascade photodetectors. Infrared Physics and Technology, 2018, 95, 136-140.	2.9	7
65	Higher Operating Temperature IR Detectors of the MOCVD Grown HgCdTe Heterostructures. Journal of Electronic Materials, 2020, 49, 6908-6917.	2.2	7
66	Studies of Dark Current Reduction in InAsSb Mid-Wave Infrared HOT Detectors through Two Step Passivation Technique. Acta Physica Polonica A, 2017, 132, 325-328.	0.5	7
67	nBn HgCdTe infrared detector with HgTe(HgCdTe)/CdTe SLs barrier. Optical and Quantum Electronics, 2016, 48, 1.	3.3	6
68	High frequency response of LWIR HgCdTe photodiodes operated under zero-bias mode. Optical and Quantum Electronics, 2018, 50, 1.	3.3	6
69	Molecular beam epitaxy growth of InAs/AISb superlattices on GaAs substrates. Journal of Crystal Growth, 2019, 522, 125-127.	1.5	6
70	1/f Noise in InAs/InAsSb Superlattice Photoconductors. IEEE Transactions on Electron Devices, 2020, 67, 3205-3210.	3.0	6
71	Impact ionization in HgCdTe avalanche photodiode optimized to 8µm cut–off wavelength at 230ÂK. Infrared Physics and Technology, 2021, 115, 103704.	2.9	6
72	Investigating the physics of higher-order optical transitions in InAs/GaSb superlattices. Physical Review B, 2021, 104, .	3.2	6

#	Article	IF	CITATIONS
73	Type-II InAs/GaSb (InAsSb) superlattices for interband cascade midwavelength detectors. Optical Engineering, 2018, 57, 1.	1.0	6
74	Investigation of hillocks formation on (1 0 0) HgCdTe layers grown by MOCVD on GaAs epi-ready substrates. Infrared Physics and Technology, 2017, 84, 87-93.	2.9	5
75	Response time improvement of LWIR HOT MCT detectors. Proceedings of SPIE, 2017, , .	0.8	5
76	Method of electron affinity evaluation for the type-2 InAs/InAs1â [~] 'xSbx superlattice. Journal of Materials Science, 2020, 55, 5135-5144.	3.7	5
77	Multiple Long Wavelength Infrared MOCVD Grown HgCdTe Photodetectors for High Temperature Conditions. IEEE Sensors Journal, 2021, 21, 4509-4516.	4.7	5
78	Electrical and optical performance of mid-wavelength infrared InAsSb heterostructure detectors. , 2017, , .		5
79	Influence of GaAs and GaSb substrates on detection parameters of InAs/GaSb superlattice-based mid-infrared interband cascade photodetectors. Applied Optics, 2020, 59, E42.	1.8	5
80	Low-frequency noise in type-II superlattice MWIR nBn detector. , 2013, , .		4
81	Theoretical modelling of MWIR thermoelectrically cooled nBn HgCdTe detector. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2013, 61, 211-220.	0.8	4
82	Demonstration of Mid-Wave Type-II Superlattice InAs/GaSb Single Pixel Barrier Detector With GaAs Immersion Lens. IEEE Electron Device Letters, 2016, 37, 64-66.	3.9	4
83	Study on the specific contact resistance of evaporated or electroplated golden contacts to n- and p- type InAs epitaxial layers grown by MBE. Materials Science in Semiconductor Processing, 2018, 81, 60-63.	4.0	4
84	Electronic band structure of InAs/InAsSb type-II superlattice for HOT LWIR detectors. Results in Physics, 2018, 11, 1119-1123.	4.1	4
85	Trap parameters in the infrared InAsSb absorber found by capacitance and noise measurements. Semiconductor Science and Technology, 2019, 34, 105017.	2.0	4
86	Raman scattering of InAsSb. AIP Advances, 2019, 9, 025107.	1.3	4
87	A Thermoelectrically Cooled nBn Typeâ€I Superlattices InAs/InAsSb/Bâ€AlAsSb Midâ€Wave Infrared Detector. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900522.	1.8	4
88	Molecular beam epitaxy growth and characterization of interband cascade infrared detectors on GaAs substrates. Journal of Crystal Growth, 2020, 534, 125512.	1.5	4
89	Response time study in unbiased long wavelength HgCdTe detectors. Optical Engineering, 2017, 56, 1.	1.0	4
90	Calculations of Dark Current in Interband Cascade Type-II Infrared InAs/GaSb Superlattice Detector. Acta Physica Polonica A, 2017, 132, 1415-1419.	0.5	4

#	Article	IF	CITATIONS
91	MOCVD grown MWIR HgCdTe detectors for high operation temperature conditions. Opto-electronics Review, 2014, 22, .	2.4	3
92	The Numerical–Experimental Enhanced Analysis of HOT MCT Barrier Infrared Detectors. Journal of Electronic Materials, 2017, 46, 5471-5478.	2.2	3
93	Utmost response time of long-wave HgCdTe photodetectors operating under zero voltage condition. Optical and Quantum Electronics, 2018, 50, 1.	3.3	3
94	X-ray and Raman determination of InAsSb mole fraction for x <0.5. Journal of Crystal Growth, 2018, 498, 137-139.	1.5	3
95	Ultimate Performance of IB CID T2SLs InAs/GaSb and InAs/InAsSb Longwave Photodetectors for High Operating Temperature Condition. Journal of Electronic Materials, 2019, 48, 6093-6098.	2.2	3
96	Switchable Fabry–Perot filter for mid-infrared radiation. Liquid Crystals, 2019, 46, 1877-1880.	2.2	3
97	Theoretical modeling of XBn T2SLs InAs/InAsSb/B-AISb longwave infrared detector operating under thermoelectrical cooling. Optical and Quantum Electronics, 2020, 52, 1.	3.3	3
98	Demonstration of the long wavelength InAs/InAsSb type-II superlattice based methane sensor. Sensors and Actuators A: Physical, 2021, 332, 113107.	4.1	3
99	High-operating temperature InAsSb/AlSb heterostructure infrared detectors grown on GaAs substrates by molecular beam epitaxy. Optical Engineering, 2018, 57, 1.	1.0	3
100	Comparison of performance limits of HOT HgCdTe photodiodes and colloidal quantum dot infrared detectors. , 2020, , .		3
101	Comparative Study of the Molecular Beam Epitaxial Growth of InAs/GaSb Superlattices on GaAs and GaSb Substrates. Acta Physica Polonica A, 2017, 132, 322-324.	0.5	3
102	p-Type Doping of GaSb by Beryllium Grown on GaAs (001) Substrate by Molecular Beam Epitaxy. Journal of Semiconductor Technology and Science, 2016, 16, 695-701.	0.4	3
103	Van der Waals two-color infrared detection. Light: Science and Applications, 2022, 11, 27.	16.6	3
104	Barrier Detectors Versus Homojunction Photodiode. Metrology and Measurement Systems, 2014, 21, .	1.4	2
105	MOCVD grown HgCdTe p ⁺ BnN ⁺ barrier detector for MWIR HOT operation. Proceedings of SPIE, 2015, , .	0.8	2
106	Status of long-wave Auger suppressed HgCdTe detectors operating > 200 K. Opto-electronics Review, 2015, 23, .	2.4	2
107	Recent progress in LWIR HOT photoconductors based on MOCVD grown (100) HgCdTe. Semiconductor Science and Technology, 2016, 31, 105004.	2.0	2
108	Uncooled middle wavelength infrared photoconductors based on (111) and (100) oriented HgCdTe. Optical Engineering, 2017, 56, 091602.	1.0	2

#	Article	IF	CITATIONS
109	Theoretical utmost performance of (100) mid-wave HgCdTe photodetectors. Optical and Quantum Electronics, 2017, 49, 1.	3.3	2
110	Fast Response Hot (111) HGCDTE MWIR Detectors. Metrology and Measurement Systems, 2017, 24, 509-514.	1.4	2
111	Demonstration of a Dual-Band Mid-Wavelength HgCdTe Detector Operating at Room Temperature. Journal of Electronic Materials, 2018, 47, 5752-5758.	2.2	2
112	Theoretical simulation of the thermoelectrically cooled HgCdTe LWIR detector for fast response operating under unbiased conditions. IET Optoelectronics, 2018, 12, 161-167.	3.3	2
113	Interband cascade type-II infrared InAs/GaSb - current status and future trends. , 2017, , .		2
114	Long term stability study of InAsSb mid-wave infrared HOT detectors passivated through two step passivation technique. , 2018, , .		2
115	Study of the Effectiveness of Anodic Films as Surface Passivation for InAsSb Mid-Wave Infrared HOT Detectors. Acta Physica Polonica A, 2018, 134, 981-985.	0.5	2
116	The Dependence of InAs/InAsSb Superlattice Detectors' Spectral Response on Molecular Beam Epitaxy Growth Temperature. Applied Sciences (Switzerland), 2022, 12, 1368.	2.5	2
117	Contribution of Series Resistance in Modelling of High-Temperature Type II Superlattice p-i-n Photodiodes. Advances in Optical Technologies, 2012, 2012, 1-5.	0.8	1
118	nBn T2SLs InAs/GaSb/B-AlGaSb HOT detector for fast frequency response operation. , 2014, , .		1
119	HOT HgCdTe infrared detectors. , 2014, , .		1
120	Performance comparison of barrier detectors and HgCdTe photodiodes. Proceedings of SPIE, 2014, , .	0.8	1
121	Theoretical modelling of mercury cadmium telluride midâ€wave detector for high temperature operation. IET Optoelectronics, 2014, 8, 239-244.	3.3	1
122	nBn HgCdTe infrared detector with HgTe/CdTe SLs barier. , 2015, , .		1
123	Theorerical utmost performance of (100) mid-wave HgCdTe photodetectors. , 2016, , .		1
124	High operating temperature long-wave HgCdTe detector for fast response operation: optimization approach. , 2016, , .		1
125	Heavily Si-doped InAs photoluminescence measurements. Materials Science-Poland, 2017, 35, 647-650.	1.0	1
126	Theoretical simulation of T2SLs InAs/GaSb cascade photodetector for HOT condition. Journal of Semiconductors, 2018, 39, 094004.	3.7	1

#	Article	IF	CITATIONS
127	Theoretical modeling of XBn T2SLs InAs/InAsSb/B-AlAsSb mid-wave detector operating below thermoelectrical cooling. , 2018, , .		1
128	Theoretical modelling of XBn T2SLs InAs/InAsSb/B-AlAsSb mid-wave detector operating below thermoelectrical cooling. Opto-electronics Review, 2019, 27, 275-281.	2.4	1
129	Optimal absorber thickness in long-wave multiple-stage detector. Optical and Quantum Electronics, 2019, 51, 1.	3.3	1
130	Numerical Analysis of Dark Currents in T2SL nBn Detector Grown by MBE on GaAs Substrate. Proceedings (mdpi), 2019, 27, .	0.2	1
131	Calculation of optimal absorber thickness in interband cascade type-II infrared InAs/GaSb superlattice photodetectors. , 2017, , .		1
132	Low frequency noise of mid-wavelength interband cascade photodetectors up to 300 K. , 2019, , .		1
133	Theoretical simulation of mid-wave type-II InAs/GaSb superlattice interband cascade photodetector. , 2017, , .		1
134	The development of the room temperature LWIR HgCdTe detectors for free space optics communication systems. , 2017, , .		1
135	Structural and optical characterization of the high quality Be-doped InAs epitaxial layer grown on GaAs substrate. , 2018, , .		1
136	Higher operating temperature photoresponse of MWIR T2SLs InAs/InAsSb photodetector. , 2018, , .		1
137	Selected technological aspects of semiconductor samples preparation for Hall effect measurements. , 2018, , .		1
138	InAsSb mole fraction determination using Raman low energy modes. Optical Materials Express, 2020, 10, 149.	3.0	1
139	LPE growth of Hg 1-x Cd x Te heterostructures from Te-rich solutions. , 2001, , .		0
140	Progress in MOCVD growth of HgCdTe epilayers for HOT infrared detectors. Proceedings of SPIE, 2016, , .	0.8	0
141	A method of obtaining high quantum efficiency in uncooled LWIR HgCdTe photodetectors. , 2016, , .		0
142	Theoretical utmost performance of the (1 0 0) long-wave HgCdTe Auger suppressed photodetectors grown on GaAs. Infrared Physics and Technology, 2017, 84, 58-62.	2.9	0
143	Theoretical Simulation of a Room Temperature HgCdTe Long-Wave Detector for Fast Response â~' Operating Under Zero Bias Conditions. Metrology and Measurement Systems, 2017, 24, 729-738.	1.4	0
144	Low-frequency noise versus deep level transient spectroscopy of InAs/GaSb superlattice		0

⁴ mid-wavelength infrared detectors. , 2017, , .

0

#	Article	IF	CITATIONS
145	High frequency response of LWIR HgCdTe photodiodes operated under zero-bias mode. , 2017, , .		Ο
146	Utmost response time of long-wave HgCdTe photodetectors operating under zero voltage condition. , 2017, , .		0
147	Numerical analysis of HgCdTe dual-band infrared detector. , 2018, , .		0
148	Infrared modulators based on liquid crystals. , 2018, , .		0
149	Type-II superlattice detectors for free space optics applications and higher operating temperature conditions. Opto-electronics Review, 2018, 26, 279-284.	2.4	0
150	Thermoelectrically Cooled nBn T2SLs InAs/InAsSb/B-AlAsSb MWIR Detector. , 2019, , .		0
151	Theoretical simulation of the barrier T2SLs InAs/InAsSb/B-AlSb longwave detector operating under thermoelectrical cooling. , 2019, , .		0
152	Uncertainty in the estimation of the InAs1â^'xSbx intrinsic carrier concentration. Infrared Physics and Technology, 2021, 117, 103854.	2.9	0
153	Modulators for MWIR detectors with liquid crystals. , 2017, , .		0
154	Experimental determination of leakage current occurring in HgCdTe infrared detectors operating in the mid-infrared. , 2017, , .		0
155	Mobility spectrum analysis of HgCdTe epitaxial layers grown by metalorganic chemical vapour deposition. , 2017, , .		0
156	Dark current simulation in interband cascade photodetectors operating in room temperature. , 2017, , .		0
157	Theoretical simulation of the long-wave HgCdTe detector for ultra fast response-operating under zero bias condition and room temperature. , 2017, , .		0
158	Raman and photoluminescence investigation of InAs/GaSb and InAs/InAsSb superlattices. , 2017, , .		0
159	InAs/GaSb superlattice quality investigation. , 2017, , .		0
160	InAsSb photoluminescence at low temperatures. , 2018, , .		0
161	Theoretical investigation of properties of InAsSb mid-wave infrared detectors. , 2018, , .		0

162 High-operating temperatures InAsSb/AlSb heterostructure infrared detectors. , 2018, , .

0

#	Article	IF	CITATIONS
163	Growth and preliminary characterization of InAsSb photodiodes for mid-wave infrared detection. , 2019, , .		0

164 Performance modeling of III-V antimonide-based barrier infrared detectors. , 2020, , .