Jolanda Spadavecchia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/812046/publications.pdf

Version: 2024-02-01

567281 580821 45 713 15 25 citations g-index h-index papers 47 47 47 948 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Targeted polyethylene glycol gold nanoparticles for the treatment of pancreatic cancer: from synthesis to proof-of-concept in vitro studies. International Journal of Nanomedicine, 2016, 11, 791.	6.7	86
2	Shape and Size Effect on Photothermal Heat Elevation of Gold Nanoparticles: Absorption Coefficient Experimental Measurement of Spherical and Urchin-Shaped Gold Nanoparticles. Journal of Physical Chemistry C, 2019, 123, 17548-17554.	3.1	53
3	Tunable Design of Gold(III)–Doxorubicin Complex–PEGylated Nanocarrier. The Golden Doxorubicin for Oncological Applications. ACS Applied Materials & Samp; Interfaces, 2016, 8, 19946-19957.	8.0	49
4	Oneâ€Step Synthesis of Collagen Hybrid Gold Nanoparticles and Formation on Egyptianâ€like Goldâ€Plated Archaeological Ivory. Angewandte Chemie - International Edition, 2014, 53, 8363-8366.	13.8	34
5	Lactose-Modified Chitosan Gold(III)-PEGylated Complex-Bioconjugates: From Synthesis to Interaction with Targeted Galectin-1 Protein. Bioconjugate Chemistry, 2018, 29, 3352-3361.	3.6	29
6	Amplified plasmonic detection of DNA hybridization using doxorubicin-capped gold particles. Analyst, The, 2014, 139, 157-164.	3.5	26
7	Scattering Correlation Spectroscopy and Raman Spectroscopy of Thiophenol on Gold Nanoparticles: Comparative Study between Nanospheres and Nanourchins. Journal of Physical Chemistry C, 2017, 121, 18254-18262.	3.1	26
8	A protein corona study by scattering correlation spectroscopy: a comparative study between spherical and urchin-shaped gold nanoparticles. Nanoscale, 2019, 11, 3665-3673.	5.6	26
9	The amphiphilic hydrophobin Vmh2 plays a key role in one step synthesis of hybrid protein–gold nanoparticles. Colloids and Surfaces B: Biointerfaces, 2015, 136, 214-221.	5.0	23
10	Polyphosphonate ligands: From synthesis to design of hybrid PEGylated nanoparticles toward phototherapy studies. Journal of Colloid and Interface Science, 2018, 513, 205-213.	9.4	23
11	Green extraction of endemic plants to synthesize gold nanoparticles for theranostic applications. Frontiers in Laboratory Medicine, 2017, 1, 158-171.	1.7	20
12	Bioconjugated gold nanorods to enhance the sensitivity of FT-SPR-based biosensors. Colloids and Surfaces B: Biointerfaces, 2012, 100, 1-8.	5.0	19
13	<p>Design and Synthesis of Gold-Gadolinium-Core-Shell Nanoparticles as Contrast Agent: a Smart Way to Future Nanomaterials for Nanomedicine Applications</p> . International Journal of Nanomedicine, 2019, Volume 14, 9309-9324.	6.7	19
14	Temozolomide, Gemcitabine, and Decitabine Hybrid Nanoconjugates: From Design to Proof-of-Concept (PoC) of Synergies toward the Understanding of Drug Impact on Human Glioblastoma Cells. Journal of Medicinal Chemistry, 2020, 63, 7410-7421.	6.4	17
15	Taxanes Hybrid Nanovectors: From Design to Physicoâ€Chemical Evaluation of Docetaxel and Paclitaxel Gold (III)â€PEGylated Complex Nanocarriers. Particle and Particle Systems Characterization, 2018, 35, 1700299.	2.3	16
16	Enzyme mediated synthesis of hybrid polyedric gold nanoparticles. Scientific Reports, 2021, 11, 3208.	3.3	16
17	Polyethylene glycol gold-nanoparticles: Facile nanostructuration of doxorubicin and its complex with DNA molecules for SERS detection. Chemical Physics Letters, 2016, 648, 182-188.	2.6	14
18	HIVâ€1 Tat Peptideâ€Gemcitabine Gold (III)â€PEGylated Complex—Nanoflowers: A Sleek Thermosensitive Hybric Nanocarrier as Prospective Anticancer. Particle and Particle Systems Characterization, 2018, 35, 1800082.	2.3	14

#	Article	IF	CITATIONS
19	Doxorubicin (DOX) Gadolinium–Gold-Complex: A New Way to Tune Hybrid Nanorods as Theranostic Agent. International Journal of Nanomedicine, 2021, Volume 16, 2219-2236.	6.7	14
20	Spherical and Flower-Shaped Gold Nanoparticles Characterization by Scattering Correlation Spectroscopy. Journal of Physical Chemistry C, 2016, 120, 11700-11708.	3.1	13
21	The curious case of how mimicking physiological complexity in in vitro models of the human respiratory system influences the inflammatory responses. A preliminary study focused on gold nanoparticles. Journal of Interdisciplinary Nanomedicine, 2017, 2, 110-130.	3.6	12
22	Galectin-1 protein modified gold (III)-PEGylated complex-nanoparticles: Proof of concept of alternative probe in colorimetric glucose detection. Colloids and Surfaces B: Biointerfaces, 2020, 185, 110588.	5.0	12
23	Cell penetrating peptide (CPP) gold(<scp>iii</scp>) – complex – bioconjugates: from chemical design to interaction with cancer cells for nanomedicine applications. Nanoscale Advances, 2022, 4, 3010-3022.	4.6	11
24	Tuning the shape and size of hybrid gold nanoparticles by porphyrins using seed-mediated synthesis. Chemical Physics Letters, 2014, 609, 134-141.	2.6	10
25	Highly crystalline sphere and rod-shaped TiO 2 nanoparticles: A facile route to bio-polymer grafting. Frontiers in Laboratory Medicine, 2017, 1, 217-223.	1.7	10
26	Proof of concept of plasmonic thermal destruction of surface cancers by gold nanoparticles obtained by green chemistry. Colloids and Surfaces B: Biointerfaces, 2019, 184, 110496.	5.0	10
27	Pegylated doxorubicin gold complex: From nanovector to potential intercalant agent for biosensor applications. Frontiers in Laboratory Medicine, 2017, 1, 114-121.	1.7	9
28	Size, Shape, and Wavelength Effect on Photothermal Heat Elevation of Gold Nanoparticles: Absorption Coefficient Experimental Measurement. Particle and Particle Systems Characterization, 2020, 37, 2000255.	2.3	8
29	Design and Synthesis of Hybrid PEGylated Metal Monopicolinate Cyclam Ligands for Biomedical Applications. ACS Omega, 2019, 4, 2500-2509.	3.5	7
30	Aptamer–Gold(III) Complex Nanoparticles: A New Way to Detect Cu, Zn SOD Glycoprotein. ACS Omega, 2020, 5, 13851-13859.	3.5	7
31	Flavin-adenine-dinucleotide gold complex nanoparticles: chemical modeling design, physico-chemical assessment and perspectives in nanomedicine. Nanoscale Advances, 2021, 3, 6144-6156.	4.6	7
32	Endemic Plants: From Design to a New Way of Smart Hybrid Nanomaterials for Green Nanomedicine Applications. Journal of Nanomedicine & Nanotechnology, 2018, 09, .	1.1	6
33	A Pegylated Flavin Adenine Dinucleotide PEG Complex to Boost Immunogenic and Therapeutic Effects in a Liver Cancer Model. Nanotheranostics, 2021, 5, 405-416.	5.2	6
34	Influence of the Aptamer Grafting on its Conformation and its Interaction with Targeted Protein. Plasmonics, 2019, 14, 1029-1038.	3.4	5
35	Lenalidomide (LENA) Hybrid Gold Complex Nanoparticles: Synthesis, Physicochemical Evaluation, and Perspectives in Nanomedicine. ACS Omega, 2020, 5, 28483-28492.	3.5	5
36	Docetaxel gold complex nanoflowers: A chemo-biological evaluation for their use as nanotherapeutics. Colloids and Surfaces B: Biointerfaces, 2020, 194, 111172.	5.0	5

#	Article	IF	CITATIONS
37	Idarubicin–Gold Complex: From Crystal Growth to Gold Nanoparticles. ACS Omega, 2021, 6, 1235-1245.	3.5	5
38	Thiol-Poly(Sodium Styrene Sulfonate) (PolyNaSS-SH) Gold Complexes: From a Chemical Design to a One-Step Synthesis of Hybrid Gold Nanoparticles and Their Interaction with Human Proteins. ACS Omega, 2020, 5, 8137-8145.	3.5	4
39	A simple assay for direct colorimetric detection of prostatic acid phosphatase (PAP) at fg levels using biphosphonated loaded PEGylated gold nanoparticles. Frontiers in Laboratory Medicine, 2017, 1, 186-191.	1.7	3
40	CTL–doxorubicin (DOX)–gold complex nanoparticles (DOX–AuGCs): from synthesis to enhancement of therapeutic effect on liver cancer model. Nanoscale Advances, 2020, 2, 5231-5241.	4.6	3
41	Aptamer Grafting onto (on) and into (in) Pegylated Gold Nanoparticles: Physicochemical Characterization and In vitro Cytotoxicity Investigation in Renal Cells. Journal of Nanomedicine & Nanotechnology, 2018, 09, .	1.1	2
42	Hybrid Hydrophobin/Gold Nanoparticles: Synthesis and Characterization of New Synthetic Probes for Biological Applications. Lecture Notes in Electrical Engineering, 2018, , 169-176.	0.4	1
43	Correction to "Lactose-Modified Chitosan Gold(III)-PEGylated Complex-Bioconjugates: From Synthesis to Interaction with Targeted Galectin-1 Protein― Bioconjugate Chemistry, 2022, 33, 1439-1439.	3.6	0
44	Correction to "Idarubicin–Gold Complex: From Crystal Growth to Gold Nanoparticles― ACS Omega, 0,	3.5	0
45	Correction to "Temozolomide, Gemcitabine, and Decitabine Hybrid Nanoconjugates: From Design to Proof-of-Concept (PoC) of Synergies toward the Understanding of Drug Impact on Human Glioblastoma Cells― Journal of Medicinal Chemistry, 2022, 65, 9506-9506.	6.4	0