Andreja RamÅ;ak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8120097/publications.pdf

Version: 2024-02-01

516710 610901 28 595 16 24 citations g-index h-index papers 30 30 30 951 docs citations times ranked citing authors all docs

4	#	Article	IF	CITATIONS
1		Biomaterials and Bioactive Natural Products from Marine Invertebrates: From Basic Research to Innovative Applications. Marine Drugs, 2022, 20, 219.	4.6	26
2	2	Stem cells of aquatic invertebrates as an advanced tool for assessing ecotoxicological impacts. Science of the Total Environment, 2021, 771, 144565.	8.0	24
;		Sampling Site Specific Biomarker Responses in Mediterranean Mussels from the Adriatic Sea. Bulletin of Environmental Contamination and Toxicology, 2021, 106, 310-317.	2.7	O
4	4	A Marine Biodiversity Observation Network for Genetic Monitoring of Hard-Bottom Communities (ARMS-MBON). Frontiers in Marine Science, 2020, 7, .	2.5	34
	5	Ecological time series and integrative taxonomy unveil seasonality and diversity of the toxic diatom Pseudo-nitzschia H. Peragallo in the northern Adriatic Sea. Harmful Algae, 2020, 93, 101773.	4.8	30
(6	Early Pleistocene divergence ofPelagia noctilucapopulations (Cnidaria, Medusozoa) between the Atlantic Ocean and the Mediterranean Sea. Journal of the Marine Biological Association of the United Kingdom, 2019, 99, 1753-1764.	0.8	3
7		Assessing chemical contamination in the coastal waters of the Adriatic Sea using active mussel biomonitoring with Mytilus galloprovincialis. Marine Pollution Bulletin, 2019, 141, 283-298.	5.0	46
8		Introduction to the Proceedings of the 52nd European Marine Biology Symposium. Journal of the Marine Biological Association of the United Kingdom, 2018, 98, 1843-1844.	0.8	0
Ģ	9	Variation of parasite and fungi infection between farmed and wild mussels (<i>Mytilus) Tj ETQq1 1 0.784314 rgBT Association of the United Kingdom, 2018, 98, 1871-1879.</i>		10 Tf 50 42 5
1		Maristemâ€"Stem Cells of Marine/Aquatic Invertebrates: From Basic Research to Innovative Applications. Sustainability, 2018, 10, 526.	3.2	9
1	11	Variations of biomarkers response in mussels Mytilus galloprovincialis to low, moderate and high concentrations of organic chemicals and metals. Chemosphere, 2017, 174, 554-562.	8.2	33
1	12	Redescription of Pelagia benovici into a new jellyfish genus, Mawia, gen. nov., and its phylogenetic position within Pelagiidae (Cnidaria: Scyphozoa: Semaeostomeae). Invertebrate Systematics, 2016, 30, 523.	1.3	16
1	13	Biochemical biomarker responses to pollution in selected sentinel organisms across the Eastern Mediterranean and the Black Sea. Environmental Science and Pollution Research, 2016, 23, 1789-1804.	5.3	17
-	14	Assessment of pollution level using Mytilus galloprovincialis as a bioindicator species: The case of the Gulf of Trieste. Marine Pollution Bulletin, 2014, 89, 455-463.	5.0	36
	15	PCR survey of 50 introns in animals: Cross-amplification of homologous EPIC loci in eight non-bilaterian, protostome and deuterostome phyla. Marine Genomics, 2013, 12, 1-8.	1.1	10
	16	Comparative phylogeography of meroplanktonic species, Aurelia spp. and Rhizostoma pulmo (Cnidaria:) Tj ETQq0 () 0 rgBT /0	Overlock 10
	17	Comparative phylogeography of meroplanktonic species, Aurelia spp. and Rhizostoma pulmo (Cnidaria:) Tj ETQq1	1 0.78431	4 rgBT /Ove
:	18	Lack of genetic structure in the jellyfish Pelagia noctiluca (Cnidaria: Scyphozoa: Semaeostomeae) across European seas. Molecular Phylogenetics and Evolution, 2010, 57, 417-428.	2.7	56

#	Article	IF	CITATIONS
19	Potential of the hepatic transcriptome expression profile of the striped seabream (Lithognathus) Tj ETQq $1\ 1\ 0.78$ 4	1314 rgBT 1.9	/Overlock 1
20	p63 in Mytilus galloprovincialis and p53 family members in the phylum Mollusca. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2009, 154, 264-273.	1.6	17
21	Reflection of hydrocarbon pollution on hepatic EROD activity in the black goby (Gobius niger). Environmental Toxicology and Pharmacology, 2007, 24, 304-310.	4.0	8
22	Microsatellite DNA variation reveals high gene flow and panmictic populations in the Adriatic shared stocks of the European squid and cuttlefish (Cephalopoda). Heredity, 2004, 93, 166-174.	2.6	31
23	Species-specific microsatellite loci for the European squid (Loligo vulgaris). Molecular Ecology Notes, 2003, 3, 312-313.	1.7	4
24	Novel polymorphic microsatellite markers for the common pandora (Pagellus erythrinus). Molecular Ecology Notes, 2003, 3, 553-555.	1.7	8
25	Molecular Microbiology of Gut Bacteria: Genetic Diversity and Community Structure Analysis. Acta Microbiologica Et Immunologica Hungarica, 2003, 50, 395-406.	0.8	2
26	Systematics and evolution of ruminal species of the genusPrevotella. Folia Microbiologica, 2001, 46, 40-44.	2.3	17
27	Unravelling the genetic diversity of ruminal bacteria belonging to the CFB phylum. FEMS Microbiology Ecology, 2000, 33, 69-79.	2.7	97
28	Unravelling the genetic diversity of ruminal bacteria belonging to the CFB phylum. FEMS Microbiology Ecology, 2000, 33, 69-79.	2.7	16