Krzysztof Matyjaszewski

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8119510/krzysztof-matyjaszewski-publications-by-year.pdf

Version: 2024-04-11

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 1,322
 121,125
 164
 298

 papers
 citations
 h-index
 g-index

 1,376
 129,483
 7
 8.99

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
1322	Injectable bottlebrush hydrogels with tissue-mimetic mechanical properties <i>Science Advances</i> , 2022 , 8, eabm2469	14.3	6
1321	Maltotriose-based star polymers as self-healing materials. European Polymer Journal, 2022, 164, 110972	<u>?</u> 5.2	O
1320	Star Polymers with Designed Reactive Oxygen Species Scavenging and Agent Delivery Functionality Promote Plant Stress Tolerance <i>ACS Nano</i> , 2022 , 16, 4467-4478	16.7	3
1319	Red-Light-Induced, Copper-Catalyzed Atom Transfer Radical Polymerization <i>ACS Macro Letters</i> , 2022 , 11, 376-381	6.6	7
1318	Toward Green Atom Transfer Radical Polymerization: Current Status and Future Challenges <i>Advanced Science</i> , 2022 , e2106076	13.6	8
1317	Polymer-Stabilized Liquid Metal Nanoparticles as a Scalable Current Collector Engineering Approach Enabling Lithium Metal Anodes. <i>ACS Applied Energy Materials</i> , 2022 , 5, 3615-3625	6.1	O
1316	Copper(II) Chloride/Tris(2-pyridylmethyl)amine-Catalyzed Depolymerization of Poly(n-butyl methacrylate). <i>Macromolecules</i> , 2022 , 55, 78-87	5.5	9
1315	The scale-up of electrochemically mediated atom transfer radical polymerization without deoxygenation. <i>Chemical Engineering Journal</i> , 2022 , 445, 136690	14.7	2
1314	Nanocrystal co-existed highly dense atomically disperse Pt@3D-hierarchical porous carbon electrocatalysts for tri-iodide and oxygen reduction reactions. <i>Chemical Engineering Journal</i> , 2022 , 446, 137249	14.7	1
1313	Hairy nanoparticles by atom transfer radical polymerization in miniemulsion. <i>Reactive and Functional Polymers</i> , 2021 , 170, 105104	4.6	1
1312	Biocompatible photoinduced CuAAC using sodium pyruvate. <i>Chemical Communications</i> , 2021 , 57, 12844	- 9 . 2 847	71
1311	Tuning dispersity of linear polymers and polymeric brushes grown from nanoparticles by atom transfer radical polymerization. <i>Polymer Chemistry</i> , 2021 , 12, 6071-6082	4.9	7
1310	Improved Self-Assembly of P3HT with Pyrene-Functionalized Methacrylates. <i>ACS Omega</i> , 2021 , 6, 27325	5 <i>-923</i> 733	41
1309	Regio- and sequence-controlled conjugated topological oligomers and polymers via boronate-tag assisted solution-phase strategy. <i>Nature Communications</i> , 2021 , 12, 5853	17.4	5
1308	ATRP of MIDA Boronate-Containing Monomers as a Tool for Synthesizing Linear Phenolic and Functionalized Polymers <i>ACS Macro Letters</i> , 2021 , 10, 1327-1332	6.6	4
1307	Redox-Initiated RAFT Polymerization and (Electro)chemical Activation of RAFT Agents 2021, 647-677		2
1306	Engineering exosome polymer hybrids by atom transfer radical polymerization. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	20

(2021-2021)

1305	Fabrication of Advanced Hierarchical Porous Polymer Nanosheets and Their Application in LithiumBulfur Batteries. <i>Macromolecules</i> , 2021 , 54, 2992-2999	5.5	5
1304	Making ATRP More Practical: Oxygen Tolerance. <i>Accounts of Chemical Research</i> , 2021 , 54, 1779-1790	24.3	30
1303	Molecular Dynamics-Guided Design of a Functional Protein-ATRP Conjugate That Eliminates Protein-Protein Interactions. <i>Bioconjugate Chemistry</i> , 2021 , 32, 821-832	6.3	4
1302	Recent developments in natural and synthetic polymeric drug delivery systems used for the treatment of osteoarthritis. <i>Acta Biomaterialia</i> , 2021 , 123, 31-50	10.8	20
1301	Synthesis and Applications of ZnO/Polymer Nanohybrids 2021 , 3, 599-621		16
1300	Effective SERS materials by loading Ag nanoparticles into poly(acrylic acid-stat-acrylamide)-block-polystyrene nano-objects prepared by PISA. <i>Polymer</i> , 2021 , 224, 123747	3.9	4
1299	Conjugated Cross-linked Phenothiazines as Green or Red Light Heterogeneous Photocatalysts for Copper-Catalyzed Atom Transfer Radical Polymerization. <i>Journal of the American Chemical Society</i> , 2021 , 143, 9630-9638	16.4	18
1298	Comparative performance of ex situ artificial solid electrolyte interphases for Li metal batteries with liquid electrolytes. <i>IScience</i> , 2021 , 24, 102578	6.1	5
1297	Depolymerization of P(PDMS11MA) Bottlebrushes via Atom Transfer Radical Polymerization with Activator Regeneration. <i>Macromolecules</i> , 2021 , 54, 5526-5538	5.5	12
1296	Processable Sub-5 Nanometer Organosilica Hybrid Particles for Dye Stabilization. <i>ACS Applied Polymer Materials</i> , 2021 , 3, 3631-3635	4.3	O
1295	Grafting Polymer Brushes by ATRP from Functionalized Poly(ether ether ketone) Microparticles <i>Polymers for Advanced Technologies</i> , 2021 , 32, 3948-3954	3.2	1
1294	Star Polymer Size, Charge Content, and Hydrophobicity Affect their Leaf Uptake and Translocation in Plants. <i>Environmental Science & Environmental Sci</i>	10.3	9
1293	Control of Phase Morphology of Binary Polymer Grafted Nanoparticle Blend Films Direct Immersion Annealing. <i>ACS Nano</i> , 2021 ,	16.7	1
1292	Amphiphilic polymer co-networks: 32 years old and growing stronger happens perspective. <i>Polymer International</i> , 2021 , 70, 10-13	3.3	7
1291	Interfacial dilatational rheology as a bridge to connect amphiphilic heterografted bottlebrush copolymer architecture to emulsifying efficiency. <i>Journal of Colloid and Interface Science</i> , 2021 , 581, 135	9147	4
1290	Star polymer T iO2 nanohybrids to effectively modify the surface of PMMA dielectric layers for solution processable OFETs. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 1269-1278	7.1	7
1289	RAFT polymerization within high internal phase emulsions: Porous structures, mechanical behaviors, and uptakes. <i>Polymer</i> , 2021 , 213, 123327	3.9	8
1288	Transparent Hybrid Opals with Unexpected Strong Resonance-Enhanced Photothermal Energy Conversion. <i>Advanced Materials</i> , 2021 , 33, e2004732	24	3

1287	Hybrid Opals: Transparent Hybrid Opals with Unexpected Strong Resonance-Enhanced Photothermal Energy Conversion (Adv. Mater. 2/2021). <i>Advanced Materials</i> , 2021 , 33, 2170013	24	1
1286	A comprehensive analysis in one run - in-depth conformation studies of protein-polymer chimeras by asymmetrical flow field-flow fractionation. <i>Chemical Science</i> , 2021 , 12, 13848-13856	9.4	2
1285	Amphiphilic Thiol Polymer Nanogel Removes Environmentally Relevant Mercury Species from Both Produced Water and Hydrocarbons. <i>Environmental Science & Environmental Science &</i>	10.3	3
1284	Cu-Catalyzed Atom Transfer Radical Polymerization in the Presence of Liquid Metal Micro/Nanodroplets. <i>Macromolecules</i> , 2021 , 54, 1631-1638	5.5	9
1283	Highly efficient and tunable miktoarm stars for HIPE stabilization and polyHIPE synthesis. <i>Polymer</i> , 2021 , 217, 123444	3.9	5
1282	Internal Microstructure Dictates Interactions of Polymer-grafted Nanoparticles in Solution. Macromolecules, 2021 , 54, 7234-7243	5.5	O
1281	Assemblies of Polyacrylonitrile-Derived Photoactive Polymers as Blue and Green Light Photo-Cocatalysts for Cu-Catalyzed ATRP in Water and Organic Solvents. <i>Frontiers in Chemistry</i> , 2021 , 9, 734076	5	3
1280	Phosphate Polymer Nanogel for Selective and Efficient Rare Earth Element Recovery. <i>Environmental Science & Environmental Scie</i>	10.3	4
1279	Are RAFT and ATRP Universally Interchangeable Polymerization Methods in Network Formation?. <i>Macromolecules</i> , 2021 , 54, 8331-8340	5.5	8
1278	Conformational Variations for Surface-Initiated Reversible Deactivation Radical Polymerization: From Flat to Curved Nanoparticle Surfaces. <i>Macromolecules</i> , 2021 , 54, 8270-8288	5.5	5
1277	Fe-Doped Copolymer-Templated Nitrogen-Rich Carbon as a PGM-Free Fuel Cell Catalyst. <i>ACS Applied Energy Materials</i> , 2021 , 4, 9653-9663	6.1	1
1276	Functional polymers for lithium metal batteries. <i>Progress in Polymer Science</i> , 2021 , 122, 101453	29.6	8
1275	Molecular bottlebrush with pH-responsive cleavable bonds as a unimolecular vehicle for anticancer drug delivery. <i>Materials Science and Engineering C</i> , 2021 , 130, 112439	8.3	4
1274	Effect of Added Salt on Disordered Poly(ethylene oxide)-Block-Poly(methyl methacrylate) Copolymer Electrolytes. <i>Macromolecules</i> , 2021 , 54, 1414-1424	5.5	4
1273	Mechanism and application of surface-initiated ATRP in the presence of a Zn0 plate. <i>Polymer Chemistry</i> , 2020 , 11, 7009-7014	4.9	8
1272	Understanding the origin of softness in structurally tailored and engineered macromolecular (STEM) gels: A DPD study. <i>Polymer</i> , 2020 , 208, 122909	3.9	O
1271	Tunable Assembly of Block Copolymer Tethered Particle Brushes by Surface-Initiated Atom Transfer Radical Polymerization. <i>ACS Macro Letters</i> , 2020 , 9, 806-812	6.6	9
1270	p-Substituted Tris(2-pyridylmethyl)amines as Ligands for Highly Active ATRP Catalysts: Facile Synthesis and Characterization. <i>Angewandte Chemie</i> , 2020 , 132, 15020-15030	3.6	2

(2020-2020)

1269	Atom Transfer Radical Polymerization Driven by Near-Infrared Light with Recyclable Upconversion Nanoparticles. <i>Macromolecules</i> , 2020 , 53, 4678-4684	5.5	36	
1268	p-Substituted Tris(2-pyridylmethyl)amines as Ligands for Highly Active ATRP Catalysts: Facile Synthesis and Characterization. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 14910-14920	16.4	16	
1267	Investigating Temporal Control in Photoinduced Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2020 , 53, 5280-5288	5.5	21	•
1266	Glycopolymer Brushes by Reversible Deactivation Radical Polymerization: Preparation, Applications, and Future Challenges. <i>Polymers</i> , 2020 , 12,	4.5	5	
1265	Catalytic Halogen Exchange in Miniemulsion ARGET ATRP: A Pathway to Well-Controlled Block Copolymers. <i>Macromolecular Rapid Communications</i> , 2020 , 41, e2000264	4.8	6	
1264	STEM Gels by Controlled Radical Polymerization. <i>Trends in Chemistry</i> , 2020 , 2, 341-353	14.8	18	
1263	Complex polymer architectures through free-radical polymerization of multivinyl monomers. <i>Nature Reviews Chemistry</i> , 2020 , 4, 194-212	34.6	43	
1262	Self-Assembly Strategy for Double Network Elastomer Nanocomposites with Ultralow Energy Consumption and Ultrahigh Wear Resistance. <i>Advanced Functional Materials</i> , 2020 , 30, 2003429	15.6	8	
1261	Grafting polymer from oxygen-vacancy-rich nanoparticles to enable protective layers for stable lithium metal anode. <i>Nano Energy</i> , 2020 , 76, 105046	17.1	18	
1260	Temperature- and pH-Responsive Star Polymers as Nanocarriers with Potential for Agrochemical Delivery. <i>ACS Nano</i> , 2020 , 14, 10954-10965	16.7	38	
1259	Surface Engineering of Liquid Metal Nanodroplets by Attachable Diblock Copolymers. <i>ACS Nano</i> , 2020 , 14, 9884-9893	16.7	22	
1258	Copolymer-Derived N/B Co-Doped Nanocarbons with Controlled Porosity and Highly Active Surface. <i>Journal of Polymer Science</i> , 2020 , 58, 225-232	2.4	4	
1257	Synthesis of high molecular weight poly(n-butyl acrylate) macromolecules via seATRP: From polymer stars to molecular bottlebrushes. <i>European Polymer Journal</i> , 2020 , 126, 109566	5.2	13	
1256	Synthesis of Riboflavin-Based Macromolecules through Low ppm ATRP in Aqueous Media. <i>Macromolecular Chemistry and Physics</i> , 2020 , 221, 1900496	2.6	13	
1255	Oxygen Tolerant and Cytocompatible Iron(0)-Mediated ATRP Enables the Controlled Growth of Polymer Brushes from Mammalian Cell Cultures. <i>Journal of the American Chemical Society</i> , 2020 , 142, 3158-3164	16.4	34	
1254	Molecular Parameters Governing the Elastic Properties of Brush Particle Films. <i>Macromolecules</i> , 2020 , 53, 1502-1513	5.5	15	
1253	Liquid metal nanocomposites. <i>Nanoscale Advances</i> , 2020 , 2, 2668-2677	5.1	40	
1252	Poor Solvents Improve Yield of Grafting-Through Radical Polymerization of OEO19MA. <i>ACS Macro Letters</i> , 2020 , 9, 674-679	6.6	4	

1251	Atom Transfer Radical Polymerization of Acrylic and Methacrylic Acids: Preparation of Acidic Polymers with Various Architectures. <i>ACS Macro Letters</i> , 2020 , 9, 693-699	6.6	14
1250	Surface-Initiated Photoinduced ATRP: Mechanism, Oxygen Tolerance, and Temporal Control during the Synthesis of Polymer Brushes. <i>Macromolecules</i> , 2020 , 53, 2801-2810	5.5	26
1249	Why Do We Need More Active ATRP Catalysts?. Israel Journal of Chemistry, 2020, 60, 108-123	3.4	27
1248	Preparation of Nitrogen-Doped Mesoporous Carbon for the Efficient Removal of Bilirubin in Hemoperfusion <i>ACS Applied Bio Materials</i> , 2020 , 3, 1036-1043	4.1	10
1247	Iodine-mediated photoATRP in aqueous media with oxygen tolerance. <i>Polymer Chemistry</i> , 2020 , 11, 843	- & .498	14
1246	Understanding the Relationship between Catalytic Activity and Termination in photoATRP: Synthesis of Linear and Bottlebrush Polyacrylates. <i>Macromolecules</i> , 2020 , 53, 59-67	5.5	20
1245	Brush-modified materials: Control of molecular architecture, assembly behavior, properties and applications. <i>Progress in Polymer Science</i> , 2020 , 100, 101180	29.6	71
1244	Emerging Functional Porous Polymeric and Carbonaceous Materials for Environmental Treatment and Energy Storage. <i>Advanced Functional Materials</i> , 2020 , 30, 1907006	15.6	91
1243	Tuning Butyrylcholinesterase Inactivation and Reactivation by Polymer-Based Protein Engineering. <i>Advanced Science</i> , 2020 , 7, 1901904	13.6	7
1242	Swelling of multi-responsive spherical polyelectrolyte brushes across a wide range of grafting densities. <i>Colloid and Polymer Science</i> , 2020 , 298, 35-49	2.4	7
1241	Polymer Chemistry for Improving Lithium Metal Anodes. <i>Macromolecular Chemistry and Physics</i> , 2020 , 221, 1900379	2.6	7
1240	Bioinspired polymers for lubrication and wear resistance. <i>Progress in Polymer Science</i> , 2020 , 110, 101298	B29.6	17
1239	Enhancing the Performance of Rubber with Nano ZnO as Activators. <i>ACS Applied Materials & Activators</i> , 2020 , 12, 48007-48015	9.5	9
1238	Reversible-deactivation radical polymerization (Controlled/living radical polymerization): From discovery to materials design and applications. <i>Progress in Polymer Science</i> , 2020 , 111, 101311	29.6	223
1237	Fully oxygen-tolerant atom transfer radical polymerization triggered by sodium pyruvate. <i>Chemical Science</i> , 2020 , 11, 8809-8816	9.4	27
1236	The Next 100 Years of Polymer Science. <i>Macromolecular Chemistry and Physics</i> , 2020 , 221, 2000216	2.6	36
1235	Catalytic Detoxification of Organophosphorus Nerve Agents by Butyrylcholinesterase-Polymer-Oxime Bioscavengers. <i>Biomacromolecules</i> , 2020 , 21, 3867-3877	6.9	5
1234	Polymer-Derived Heteroatom-Doped Porous Carbon Materials. <i>Chemical Reviews</i> , 2020 , 120, 9363-9419	68.1	196

1233	Superlubricity of Zwitterionic Bottlebrush Polymers in the Presence of Multivalent Ions. <i>Journal of the American Chemical Society</i> , 2020 , 142, 14843-14847	16.4	17
1232	Polymer brushes in pores by ATRP: Monte Carlo simulations. <i>Polymer</i> , 2020 , 211, 123124	3.9	8
1231	Polyene-Free Photoluminescent Polymers via Hydrothermal Hydrolysis of Polyacrylonitrile in Neutral Water. <i>ACS Macro Letters</i> , 2020 , 9, 1403-1408	6.6	4
1230	Understanding the Synthesis of Linear B ottlebrush l linear Block Copolymers: Toward Plastomers with Well-Defined Mechanical Properties. <i>Macromolecules</i> , 2020 , 53, 8324-8332	5.5	11
1229	A Thermodynamic Roadmap for the Grafting-through Polymerization of PDMS11MA. <i>ACS Macro Letters</i> , 2020 , 9, 1303-1309	6.6	9
1228	Under pressure: electrochemically-mediated atom transfer radical polymerization of vinyl chloride. <i>Polymer Chemistry</i> , 2020 , 11, 6745-6762	4.9	7
1227	Nanosized Organo-Silica Particles with B uilt-In S urface-Initiated Atom Transfer Radical Polymerization Capability as a Platform for Brush Particle Synthesis. <i>ACS Macro Letters</i> , 2020 , 9, 1218-13	223	4
1226	Double Network Elastomers: Self-Assembly Strategy for Double Network Elastomer Nanocomposites with Ultralow Energy Consumption and Ultrahigh Wear Resistance (Adv. Funct. Mater. 34/2020). <i>Advanced Functional Materials</i> , 2020 , 30, 2070227	15.6	
1225	Synthesis of Metallopolymers via Atom Transfer Radical Polymerization from a [2Fe-2S] Metalloinitiator: Molecular Weight Effects on Electrocatalytic Hydrogen Production. <i>Macromolecular Rapid Communications</i> , 2020 , 41, e1900424	4.8	4
1224	Synthesis of Ultra-high Molecular Weight SiO2-g-PMMA Particle Brushes. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2020 , 30, 174-181	3.2	4
1223	An isocyanide ligand for the rapid quenching and efficient removal of copper residues after Cu/TEMPO-catalyzed aerobic alcohol oxidation and atom transfer radical polymerization. <i>Chemical Science</i> , 2020 , 11, 4251-4262	9.4	13
1222	Iron Catalysts in Atom Transfer Radical Polymerization. <i>Molecules</i> , 2020 , 25,	4.8	17
1221	Synergy between Zwitterionic Polymers and Hyaluronic Acid Enhances Antifouling Performance. <i>Langmuir</i> , 2019 , 35, 15535-15542	4	19
1220	Structural Engineering of Graphitic Carbon Nitrides for Enhanced Metal-Free PET-RAFT Polymerizations in Heterogeneous and Homogeneous Systems. <i>ACS Omega</i> , 2019 , 4, 16247-16255	3.9	20
1219	Redox-switchable atom transfer radical polymerization. <i>Chemical Communications</i> , 2019 , 55, 612-615	5.8	17
1218	Enzymatically Degassed Surface-Initiated Atom Transfer Radical Polymerization with Real-Time Monitoring. <i>Journal of the American Chemical Society</i> , 2019 , 141, 3100-3109	16.4	48
1217	Atom Transfer Radical Polymerization Enabled by Sonochemically Labile Cu-carbonate Species. <i>ACS Macro Letters</i> , 2019 , 8, 161-165	6.6	38
1216	Toward Electrochemically Mediated Reversible Addition Eragmentation Chain-Transfer (eRAFT) Polymerization: Can Propagating Radicals Be Efficiently Electrogenerated from RAFT Agents?. Macromolecules 2019, 52, 1479-1488	5.5	39

1215	ATRP of N-Hydroxyethyl Acrylamide in the Presence of Lewis Acids: Control of Tacticity, Molecular Weight, and Architecture. <i>Macromolecular Rapid Communications</i> , 2019 , 40, e1800877	4.8	12
1214	Impact of Organometallic Intermediates on Copper-Catalyzed Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2019 , 52, 4079-4090	5.5	27
1213	Translating Surface-Initiated Atom Transfer Radical Polymerization into Technology: The Mechanism of Cu0-Mediated SI-ATRP under Environmental Conditions. <i>ACS Macro Letters</i> , 2019 , 8, 865-	8 7 6	35
1212	Control of Dispersity and Grafting Density of Particle Brushes by Variation of ATRP Catalyst Concentration. <i>ACS Macro Letters</i> , 2019 , 8, 859-864	6.6	49
1211	Localized Surface Plasmon Resonance Meets Controlled/Living Radical Polymerization: An Adaptable Strategy for Broadband Light-Regulated Macromolecular Synthesis. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 12096-12101	16.4	22
1210	Synthesis of High k Nanoparticles by Controlled Radical Polymerization 2019 , 181-226		O
1209	Solution processable liquid metal nanodroplets by surface-initiated atom transfer radical polymerization. <i>Nature Nanotechnology</i> , 2019 , 14, 684-690	28.7	112
1208	Intelligent Machine Learning: Tailor-Making Macromolecules. <i>Polymers</i> , 2019 , 11,	4.5	12
1207	Charge-Preserving Atom Transfer Radical Polymerization Initiator Rescues the Lost Function of Negatively Charged Protein-Polymer Conjugates. <i>Biomacromolecules</i> , 2019 , 20, 2392-2405	6.9	15
1206	A Liquid-Metal-Elastomer Nanocomposite for Stretchable Dielectric Materials. <i>Advanced Materials</i> , 2019 , 31, e1900663	24	122
1205	Polymer brush relaxation during and after polymerization IMonte Carlo simulation study. <i>Polymer</i> , 2019 , 173, 190-196	3.9	13
1204	Degradable Polymer Stars Based on Tannic Acid Cores by ATRP. <i>Polymers</i> , 2019 , 11,	4.5	12
1203	Frontispiz: Biomimetic Bottlebrush Polymer Coatings for Fabrication of Ultralow Fouling Surfaces. <i>Angewandte Chemie</i> , 2019 , 131,	3.6	2
1202	Preparation of Well-Defined Polymers and DNAPolymer Bioconjugates via Small-Volume eATRP in the Presence of Air. <i>ACS Macro Letters</i> , 2019 , 603-609	6.6	37
1201	Reductive Termination of Cyanoisopropyl Radicals by Copper(I) Complexes and Proton Donors: Organometallic Intermediates or Coupled Proton-Electron Transfer?. <i>Inorganic Chemistry</i> , 2019 , 58, 644	5 ⁵ 645	7 ²²
1200	Transformation of gels via catalyst-free selective RAFT photoactivation. <i>Polymer Chemistry</i> , 2019 , 10, 2477-2483	4.9	40
1199	Fabrication of Porous Nanonetwork-Structured Carbons from Well-Defined Cylindrical Molecular Bottlebrushes. <i>ACS Applied Materials & Description</i> (2019), 11, 18763-18769	9.5	7
1198	Well-Defined N/S Co-Doped Nanocarbons from Sulfurized PAN-b-PBA Block Copolymers: Structure and Supercapacitor Performance. <i>ACS Applied Nano Materials</i> , 2019 , 2, 2467-2474	5.6	18

1197	Disentangling the Role of Chain Conformation on the Mechanics of Polymer Tethered Particle Materials. <i>Nano Letters</i> , 2019 , 19, 2715-2722	11.5	34	
1196	Solvent-Processed Metallic Lithium Microparticles for Lithium Metal Batteries. <i>ACS Applied Energy Materials</i> , 2019 , 2, 1623-1628	6.1	8	
1195	Mechanistically Guided Predictive Models for Ligand and Initiator Effects in Copper-Catalyzed Atom Transfer Radical Polymerization (Cu-ATRP). <i>Journal of the American Chemical Society</i> , 2019 , 141, 7486-7497	16.4	56	
1194	Polyacrylonitrile-derived nanostructured carbon materials. <i>Progress in Polymer Science</i> , 2019 , 92, 89-13-	429.6	50	
1193	Non-Tacky Fluorinated and Elastomeric STEM Networks. <i>Macromolecular Rapid Communications</i> , 2019 , 40, e1800876	4.8	12	
1192	In Situ Crosslinking of Nanoparticles in Polymerization-Induced Self-Assembly via ARGET ATRP of Glycidyl Methacrylate. <i>Macromolecular Rapid Communications</i> , 2019 , 40, e1800332	4.8	24	
1191	Evolution of Morphology of POEGMA-b-PBzMA Nano-Objects Formed by PISA. <i>Macromolecular Rapid Communications</i> , 2019 , 40, e1800331	4.8	9	
1190	Iron-Catalyzed Atom Transfer Radical Polymerization of Semifluorinated Methacrylates. <i>ACS Macro Letters</i> , 2019 , 8, 1110-1114	6.6	23	
1189	Rapid On-Demand Extracellular Vesicle Augmentation with Versatile Oligonucleotide Tethers. <i>ACS Nano</i> , 2019 , 13, 10555-10565	16.7	40	
1188	Localized Surface Plasmon Resonance Meets Controlled/Living Radical Polymerization: An Adaptable Strategy for Broadband Light-Regulated Macromolecular Synthesis. <i>Angewandte Chemie</i> , 2019 , 131, 12224-12229	3.6	14	
1187	A facile route to well-dispersed Ru nanoparticles embedded in self-templated mesoporous carbons for high-performance supercapacitors. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 20208-20222	13	14	
1186	A Semiliquid Lithium Metal Anode. <i>Joule</i> , 2019 , 3, 1637-1646	27.8	34	
1185	Precision and Purity of Conjugated Polymers To be Ensured Before Processing 2019 , 1-55			
1184	Growing Polymer Brushes from a Variety of Substrates under Ambient Conditions by Cu-Mediated Surface-Initiated ATRP. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 27470-27477	9.5	34	
1183	Transforming protein-polymer conjugate purification by tuning protein solubility. <i>Nature Communications</i> , 2019 , 10, 4718	17.4	20	
1182	Liquid Metal Supercooling for Low-Temperature Thermoelectric Wearables. <i>Advanced Functional Materials</i> , 2019 , 29, 1906098	15.6	79	
1181	Degradable cellulose-based polymer brushes with controlled grafting densities. <i>Journal of Polymer Science Part A</i> , 2019 , 57, 2426-2435	2.5	8	
1180	Covalent Attachment of P15 Peptide to Ti Alloy Surface Modified with Polymer to Enhance Osseointegration of Implants. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 38531-38536	9.5	8	

1179	Pushing the Limit: Synthesis of SiO2-g-PMMA/PS Particle Brushes via ATRP with Very Low Concentration of Functionalized SiO2Br Nanoparticles. <i>Macromolecules</i> , 2019 , 52, 8713-8723	5.5	11
1178	Impact of Catalyzed Radical Termination (CRT) and Reductive Radical Termination (RRT) in Metal-Mediated Radical Polymerization Processes. <i>European Journal of Inorganic Chemistry</i> , 2019 , 2019, 4489-4499	2.3	12
1177	Modification of wood-based materials by atom transfer radical polymerization methods. <i>European Polymer Journal</i> , 2019 , 120, 109253	5.2	25
1176	Atom Transfer Radical Polymerization for Biorelated Hybrid Materials. <i>Biomacromolecules</i> , 2019 , 20, 4272-4298	6.9	33
1175	Axially Ligated Mesohemins as Bio-Mimicking Catalysts for Atom Transfer Radical Polymerization. <i>Molecules</i> , 2019 , 24,	4.8	2
1174	Synthesis of Gradient Copolymer Grafted Particle Brushes by ATRP. <i>Macromolecules</i> , 2019 , 52, 9466-947	75 .5	10
1173	Soft-Templated Tellurium-Doped Mesoporous Carbon as a Pt-Free Electrocatalyst for High-Performance Dye-Sensitized Solar Cells. <i>ACS Applied Materials & Description (Company)</i> , 11, 2093-210	0 ³² ⁵	27
1172	What happens in the dark? Assessing the temporal control of photo-mediated controlled radical polymerizations. <i>Journal of Polymer Science Part A</i> , 2019 , 57, 268-273	2.5	61
1171	Biomimetic Bottlebrush Polymer Coatings for Fabrication of Ultralow Fouling Surfaces. <i>Angewandte Chemie</i> , 2019 , 131, 1322-1328	3.6	13
1170	Versatile PISA templates for tailored synthesis of nanoparticles. <i>European Polymer Journal</i> , 2019 , 110, 49-55	5.2	14
1169	Biomimetic Bottlebrush Polymer Coatings for Fabrication of Ultralow Fouling Surfaces. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 1308-1314	16.4	47
1168	Atom Transfer Radical Polymerization: Billion Times More Active Catalysts and New Initiation Systems. <i>Macromolecular Rapid Communications</i> , 2019 , 40, e1800616	4.8	131
1167	Lubrication and Wear Protection of Micro-Structured Hydrogels Using Bioinspired Fluids. <i>Biomacromolecules</i> , 2019 , 20, 326-335	6.9	6
1166	Photoinduced atom transfer radical polymerization in ab initio emulsion. <i>Polymer</i> , 2019 , 165, 163-167	3.9	9
1165	Molecular Sieving on the Surface of a Nano-Armored Protein. <i>Biomacromolecules</i> , 2019 , 20, 1235-1245	6.9	18
1164	Polymer-Based Synthetic Routes to Carbon-Based Metal-Free Catalysts. <i>Advanced Materials</i> , 2019 , 31, e1804626	24	26
1163	Poly(2-hydroxyethyl methacrylate) brushes synthesized by atom transfer radical polymerization from gold surface as a gate insulator in organic thin-film transistors. <i>Thin Solid Films</i> , 2019 , 669, 133-140	2.2	3
1162	Molecular Bottlebrushes as Novel Materials. <i>Biomacromolecules</i> , 2019 , 20, 27-54	6.9	135

1161	Electrochemically mediated atom transfer radical polymerization with dithiocarbamates as alkyl pseudohalides. <i>Journal of Polymer Science Part A</i> , 2019 , 57, 376-381	2.5	15
1160	Tuning the molecular weight distribution from atom transfer radical polymerization using deep reinforcement learning. <i>Molecular Systems Design and Engineering</i> , 2018 , 3, 496-508	4.6	25
1159	Intelligent Monte Carlo: A New Paradigm for Inverse Polymerization Engineering. <i>Macromolecular Theory and Simulations</i> , 2018 , 27, 1700106	1.5	24
1158	Solid-phase synthesis of protein-polymers on reversible immobilization supports. <i>Nature Communications</i> , 2018 , 9, 845	17.4	26
1157	Physical Networks from Multifunctional Telechelic Star Polymers: A Rheological Study by Experiments and Simulations. <i>Macromolecules</i> , 2018 , 51, 2872-2886	5.5	16
1156	Advanced Materials by Atom Transfer Radical Polymerization. <i>Advanced Materials</i> , 2018 , 30, e1706441	24	300
1155	Toward Ultimate Control of Radical Polymerization: Functionalized Metal Drganic Frameworks as a Robust Environment for Metal-Catalyzed Polymerizations. <i>Chemistry of Materials</i> , 2018 , 30, 2983-2994	9.6	34
1154	Ultrasonication-Induced Aqueous Atom Transfer Radical Polymerization. <i>ACS Macro Letters</i> , 2018 , 7, 275-280	6.6	95
1153	New protocol to determine the equilibrium constant of atom transfer radical polymerization. <i>Electrochimica Acta</i> , 2018 , 260, 648-655	6.7	35
1152	ZnO/carbon hybrids derived from polymer nanocomposite precursor materials for pseudocapacitor electrodes with high cycling stability. <i>Polymer</i> , 2018 , 137, 370-377	3.9	19
1151	Synthesis and Characterization of the Most Active Copper ATRP Catalyst Based on Tris[(4-dimethylaminopyridyl)methyl]amine. <i>Journal of the American Chemical Society</i> , 2018 , 140, 1525-1	1594	94
1150	Protection of opening lids: very high catalytic activity of lipase immobilized on core-shell nanoparticles. <i>Macromolecules</i> , 2018 , 51, 289-296	5.5	12
1149	Friction and adhesion control between adsorbed layers of polyelectrolyte brush-grafted nanoparticles via pH-triggered bridging interactions. <i>Journal of Colloid and Interface Science</i> , 2018 , 526, 114-123	9.3	9
1148	Organosilica with Grafted Polyacrylonitrile Brushes for High Surface Area Nitrogen-Enriched Nanoporous Carbons. <i>Chemistry of Materials</i> , 2018 , 30, 2208-2212	9.6	18
1147	[FeFe]-Hydrogenase Mimetic Metallopolymers with Enhanced Catalytic Activity for Hydrogen Production in Water. <i>Angewandte Chemie</i> , 2018 , 130, 12074-12078	3.6	9
1146	Heteroatom-Doped Carbon Dots (CDs) as a Class of Metal-Free Photocatalysts for PET-RAFT Polymerization under Visible Light and Sunlight. <i>Angewandte Chemie</i> , 2018 , 130, 12213-12218	3.6	24
1145	Benefits of Catalyzed Radical Termination: High-Yield Synthesis of Polyacrylate Molecular Bottlebrushes without Gelation. <i>Macromolecules</i> , 2018 , 51, 6218-6225	5.5	17
1144	Heteroatom-Doped Carbon Dots (CDs) as a Class of Metal-Free Photocatalysts for PET-RAFT Polymerization under Visible Light and Sunlight. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 12037-12042	16.4	89

1143	[FeFe]-Hydrogenase Mimetic Metallopolymers with Enhanced Catalytic Activity for Hydrogen Production in Water. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 11898-11902	16.4	35
1142	Copolymer-Templated Synthesis of Nitrogen-Doped Mesoporous Carbons for Enhanced Adsorption of Hexavalent Chromium and Uranium. <i>ACS Applied Nano Materials</i> , 2018 , 1, 2536-2543	5.6	26
1141	Synergy between Electrochemical ATRP and RAFT for Polymerization at Low Copper Loading. Macromolecular Rapid Communications, 2018, 39, e1800221	4.8	21
1140	Transformable Materials: Structurally Tailored and Engineered Macromolecular (STEM) Gels by Controlled Radical Polymerization. <i>Macromolecules</i> , 2018 , 51, 3808-3817	5.5	39
1139	Reversible Deactivation Radical Polymerization: State-of-the-Art in 2017. <i>ACS Symposium Series</i> , 2018 , 1-39	0.4	5
1138	The Role of Cu0 in Surface-Initiated Atom Transfer Radical Polymerization: Tuning Catalyst Dissolution for Tailoring Polymer Interfaces. <i>Macromolecules</i> , 2018 , 51, 6825-6835	5.5	33
1137	Recent Developments in External Regulation of Reversible Addition Fragmentation Chain Transfer (RAFT) Polymerization. <i>ACS Symposium Series</i> , 2018 , 273-290	0.4	5
1136	Cationic Hyperbranched Polymers with Biocompatible Shells for siRNA Delivery. <i>Biomacromolecules</i> , 2018 , 19, 3754-3765	6.9	17
1135	Accessibility of Densely Localized DNA on Soft Polymer Nanoparticles. <i>Langmuir</i> , 2018 , 34, 14731-14737.	4	4
1134	Catalyzed Radical Termination (CRT) in the Metal-Mediated Polymerization of Acrylates: Experimental and Computational Studies. <i>ACS Symposium Series</i> , 2018 , 135-159	0.4	2
1133	Intramolecular Interactions of Conjugated Polymers Mimic Molecular Chaperones to Stabilize Protein-Polymer Conjugates. <i>Biomacromolecules</i> , 2018 , 19, 3798-3813	6.9	28
1132	Monte Carlo Simulations of Atom Transfer Radical (Homo)polymerization of Divinyl Monomers: Applicability of FloryBtockmayer Theory. <i>Macromolecules</i> , 2018 , 51, 6673-6681	5.5	19
1131	Externally controlled atom transfer radical polymerization. <i>Chemical Society Reviews</i> , 2018 , 47, 5457-549	5 8.5	191
1130	Iron Oxide Nanoparticles with Grafted Polymeric Analogue of Dimethyl Sulfoxide as Potential Magnetic Resonance Imaging Contrast Agents. <i>ACS Applied Materials & Dimethyl Sulfoxide as Potential Magnetic Resonance Imaging Contrast Agents.</i>	² 1 5 08	16
1129	Photoinduced Miniemulsion Atom Transfer Radical Polymerization. ACS Macro Letters, 2018, 7, 720-725	6.6	27
1128	Common Carbons as Water-Reducing Catalysts in Photo-Driven Hydrogen Evolution with Nitrogen-Dependent Activity. <i>ChemNanoMat</i> , 2018 , 4, 1039-1042	3.5	1
1127	A Breathing Atom-Transfer Radical Polymerization: Fully Oxygen-Tolerant Polymerization Inspired by Aerobic Respiration of Cells. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 933-936	16.4	129
1126	Direct ATRP of Methacrylic Acid with Iron-Porphyrin Based Catalysts. <i>ACS Macro Letters</i> , 2018 , 7, 26-30	6.6	23

1	125	A Breathing Atom-Transfer Radical Polymerization: Fully Oxygen-Tolerant Polymerization Inspired by Aerobic Respiration of Cells. <i>Angewandte Chemie</i> , 2018 , 130, 945-948	3.6	34	
1	124	Single-Ion Homopolymer Electrolytes with High Transference Number Prepared by Click Chemistry and Photoinduced Metal-Free Atom-Transfer Radical Polymerization. <i>ACS Energy Letters</i> , 2018 , 3, 20-27	20.1	71	
1	123	Two-compartment kinetic Monte Carlo modelling of electrochemically mediated ATRP. <i>Reaction Chemistry and Engineering</i> , 2018 , 3, 866-874	4.9	21	
1	122	Macromolecular Engineering of the Outer Coordination Sphere of [2Fe-2S] Metallopolymers to Enhance Catalytic Activity for H2 Production. <i>ACS Macro Letters</i> , 2018 , 7, 1383-1387	6.6	17	
1	121	Fabrication of Porous Functional Nanonetwork-Structured Polymers with Enhanced Adsorption Performance from Well-Defined Molecular Brush Building Blocks. <i>Chemistry of Materials</i> , 2018 , 30, 8624	-8629	7	
1	120	Structurally Tailored and Engineered Macromolecular (STEM) Gels as Soft Elastomers and Hard/Soft Interfaces. <i>Macromolecules</i> , 2018 , 51, 9184-9191	5.5	24	
1	1119	Universality of the Entanglement Plateau Modulus of Comb and Bottlebrush Polymer Melts. <i>Macromolecules</i> , 2018 , 51, 10028-10039	5.5	39	
1	118	Viscoelastic properties and ion dynamics in star-shaped polymerized ionic liquids. <i>European Polymer Journal</i> , 2018 , 109, 326-335	5.2	13	
1	117	Synthesis of Polymer Bioconjugates via Photoinduced Atom Transfer Radical Polymerization under Blue Light Irradiation. <i>ACS Macro Letters</i> , 2018 , 7, 1248-1253	6.6	34	
1	116	Catalyst-Free Selective Photoactivation of RAFT Polymerization: A Facile Route for Preparation of Comblike and Bottlebrush Polymers. <i>Macromolecules</i> , 2018 , 51, 7776-7784	5.5	43	
1	1115	Structure of block copolymer grafted silica nanoparticles. <i>Polymer</i> , 2018 , 159, 138-145	3.9	8	
1	114	The interaction of carbon-centered radicals with copper(I) and copper(II) complexes*. <i>Journal of Coordination Chemistry</i> , 2018 , 71, 1641-1668	1.6	10	
1	1113	Biocatalytic Dxygen-FueledlAtom Transfer Radical Polymerization. <i>Angewandte Chemie</i> , 2018 , 130, 16389-16393	3.6	9	
1	112	Enzyme-Deoxygenated Low Parts per Million Atom Transfer Radical Polymerization in Miniemulsion and Emulsion. <i>ACS Macro Letters</i> , 2018 , 7, 1317-1321	6.6	30	
1	1111	Biocatalytic "Oxygen-Fueled" Atom Transfer Radical Polymerization. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 16157-16161	16.4	58	
1	110	Nanocarbons from Synthetic Polymer Precursors and Their Catalytic Properties 2018 , 133-166			
1	109	Tailoring Site Specificity of Bioconjugation Using Step-Wise Atom-Transfer Radical Polymerization on Proteins. <i>Biomacromolecules</i> , 2018 , 19, 4044-4051	6.9	12	
1	108	Temporal Control in Atom Transfer Radical Polymerization Using Zerovalent Metals. Macromolecules, 2018 , 51, 4250-4258	5.5	21	

1107	Ab Initio Emulsion Atom-Transfer Radical Polymerization. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 8270-8274	16.4	21
1106	Intermolecular Interactions between Bottlebrush Polymers Boost the Protection of Surfaces against Frictional Wear. <i>Chemistry of Materials</i> , 2018 , 30, 4140-4149	9.6	34
1105	Ab Initio Emulsion Atom-Transfer Radical Polymerization. <i>Angewandte Chemie</i> , 2018 , 130, 8402-8406	3.6	1
1104	Next generation protein-polymer conjugates. <i>AICHE Journal</i> , 2018 , 64, 3230-3245	3.6	40
1103	Cubosomes from hierarchical self-assembly of poly(ionic liquid) block copolymers. <i>Nature Communications</i> , 2017 , 8, 14057	17.4	62
1102	Biocompatible Polymeric Analogues of DMSO Prepared by Atom Transfer Radical Polymerization. <i>Biomacromolecules</i> , 2017 , 18, 475-482	6.9	41
1101	Wear Protection without Surface Modification Using a Synergistic Mixture of Molecular Brushes and Linear Polymers. <i>ACS Nano</i> , 2017 , 11, 1762-1769	16.7	44
1100	Nitrogen-Doped Nanocarbons Derived from Tetrazine Cross-Linked Poly(4-cyanostyrene)-Silica Hybrids. <i>Macromolecular Chemistry and Physics</i> , 2017 , 218, 1600524	2.6	4
1099	Modeling the formation of layered, amphiphilic gels. <i>Polymer</i> , 2017 , 111, 214-221	3.9	13
1098	Bottlebrush-Guided Polymer Crystallization Resulting in Supersoft and Reversibly Moldable Physical Networks. <i>Macromolecules</i> , 2017 , 50, 2103-2111	5.5	28
1097	Transparent and High Refractive Index Thermoplastic Polymer Glasses Using Evaporative Ligand Exchange of Hybrid Particle Fillers. <i>ACS Applied Materials & District Materials</i> (2017), 9, 7515-7522	9.5	39
1096	Electrochemically mediated atom transfer radical polymerization (eATRP). <i>Progress in Polymer Science</i> , 2017 , 69, 47-78	29.6	226
1095	Kinetics of Atom Transfer Radical Polymerization. European Polymer Journal, 2017, 89, 482-523	5.2	148
1094	Automated Synthesis of Well-Defined Polymers and Biohybrids by Atom Transfer Radical Polymerization Using a DNA Synthesizer. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 2740-274	43 ^{16.4}	87
1093	Automated Synthesis of Well-Defined Polymers and Biohybrids by Atom Transfer Radical Polymerization Using a DNA Synthesizer. <i>Angewandte Chemie</i> , 2017 , 129, 2784-2787	3.6	23
1092	Activation of alkyl halides at the Cu0 surface in SARA ATRP: An assessment of reaction order and surface mechanisms. <i>Journal of Polymer Science Part A</i> , 2017 , 55, 3048-3057	2.5	8
1091	A hypercrosslinking-induced self-assembly strategy for preparation of advanced hierarchical porous polymers with customizable functional components. <i>Chemical Communications</i> , 2017 , 53, 5294-5297	5.8	28
1090	Characterization of ZnO Nanoparticles using Superconducting Tunnel Junction Cryodetection Mass Spectrometry. <i>Journal of the American Society for Mass Spectrometry</i> , 2017 , 28, 1160-1165	3.5	6

(2017-2017)

1089	Dynamic Heterogeneity in Random Copolymers of Polymethacrylates Bearing Different Polyhedral Oligomeric Silsesquioxane Moieties (POSS). <i>Macromolecules</i> , 2017 , 50, 4043-4053	5.5	9	
1088	Synthesis of Well-Defined Polymer Brushes from Silicon Wafers via Surface-Initiated seATRP. <i>Macromolecular Chemistry and Physics</i> , 2017 , 218, 1700106	2.6	25	
1087	Harnessing the interaction between surfactant and hydrophilic catalyst to control ATRP in miniemulsion. <i>Macromolecules</i> , 2017 , 50, 3726-2732	5.5	77	
1086	Temporal Control in Mechanically Controlled Atom Transfer Radical Polymerization Using Low ppm of Cu Catalyst. <i>ACS Macro Letters</i> , 2017 , 6, 546-549	6.6	108	
1085	Fabrication and nanostructure control of super-hierarchical carbon materials from heterogeneous bottlebrushes. <i>Chemical Science</i> , 2017 , 8, 2101-2106	9.4	56	
1084	Synthesis of Nanoparticle Copolymer Brushes via Surface-Initiated seATRP. <i>Macromolecules</i> , 2017 , 50, 4151-4159	5.5	43	
1083	A Fatty Acid-Inspired Tetherable Initiator for Surface-Initiated Atom Transfer Radical Polymerization. <i>Chemistry of Materials</i> , 2017 , 29, 4963-4969	9.6	42	
1082	Mesoporous nitrogen-doped carbons from PAN-based molecular bottlebrushes. <i>Polymer</i> , 2017 , 126, 352-359	3.9	21	
1081	ATRP in Water: Kinetic Analysis of Active and Super-Active Catalysts for Enhanced Polymerization Control. <i>Macromolecules</i> , 2017 , 50, 2696-2705	5.5	73	
1080	Metal-Free Photoinduced Electron Transfer-Atom Transfer Radical Polymerization Integrated with Bioinspired Polydopamine Chemistry as a Green Strategy for Surface Engineering of Magnetic Nanoparticles. <i>ACS Applied Materials & Discreta (Materials & Discreta (Materi</i>	9.5	45	
1079	Toughening PMMA with fillers containing polymer brushes synthesized via atom transfer radical polymerization (ATRP). <i>Polymer</i> , 2017 , 117, 48-53	3.9	22	
1078	Polyacrylonitrile-b-poly(butyl acrylate) Block Copolymers as Precursors to Mesoporous Nitrogen-Doped Carbons: Synthesis and Nanostructure. <i>Macromolecules</i> , 2017 , 50, 2759-2767	5.5	43	
1077	Heterografted Molecular Brushes as Stabilizers for Water-in-Oil Emulsions. <i>Macromolecules</i> , 2017 , 50, 2942-2950	5.5	47	
1076	Linear and Star Poly(ionic liquid) Assemblies: Surface Monolayers and Multilayers. <i>Langmuir</i> , 2017 , 33, 3187-3199	4	18	
1075	Phenyl Benzo[b]phenothiazine as a Visible Light Photoredox Catalyst for Metal-Free Atom Transfer Radical Polymerization. <i>Chemistry - A European Journal</i> , 2017 , 23, 5972-5977	4.8	85	
1074	Kinetics of the temperature-induced volume phase transition in poly(2-(2-methoxyethoxy)ethyl methacrylate) hydrogels of various topologies. <i>Polymer</i> , 2017 , 110, 25-35	3.9	9	
1073	A Simplified Fe-Based PhotoATRP Using Only Monomers and Solvent. <i>Macromolecular Rapid Communications</i> , 2017 , 38, 1600651	4.8	29	
1072	Atom Transfer Radical Polymerization with Different Halides (F, Cl, Br, and I): Is the Process Living in the Presence of Fluorinated Initiators?. <i>Macromolecules</i> , 2017 , 50, 192-202	5.5	55	

1071	Thermomechanical Properties and Glass Dynamics of Polymer-Tethered Colloidal Particles and Films. <i>Macromolecules</i> , 2017 , 50, 8658-8669	5.5	27
1070	Polymerization-induced self-assembly of acrylonitrile via ICAR ATRP. <i>Polymer</i> , 2017 , 129, 57-67	3.9	32
1069	Synthesis and characterization of Ag NPs templated via polymerization induced self-assembly. Polymer, 2017 , 129, 144-150	3.9	21
1068	Disproportionation or Combination? The Termination of Acrylate Radicals in ATRP. <i>Macromolecules</i> , 2017 , 50, 7920-7929	5.5	57
1067	Enhancing Mechanically Induced ATRP by Promoting Interfacial Electron Transfer from Piezoelectric Nanoparticles to Cu Catalysts. <i>Macromolecules</i> , 2017 , 50, 7940-7948	5.5	82
1066	Unraveling the Correlations between Conformation, Lubrication, and Chemical Stability of Bottlebrush Polymers at Interfaces. <i>Biomacromolecules</i> , 2017 , 18, 4002-4010	6.9	21
1065	Synergic Effect between Nucleophilic Monomers and Cu(II) Metal®rganic Framework for Visible-Light-Triggered Controlled Photopolymerization. <i>Chemistry of Materials</i> , 2017 , 29, 9445-9455	9.6	43
1064	Photoinduced Iron-Catalyzed Atom Transfer Radical Polymerization with ppm Levels of Iron Catalyst under Blue Light Irradiation. <i>Macromolecules</i> , 2017 , 50, 7967-7977	5.5	51
1063	Photocatalytic Active Mesoporous Carbon/ZnO Hybrid Materials from Block Copolymer Tethered ZnO Nanocrystals. <i>Langmuir</i> , 2017 , 33, 12276-12284	4	17
1062	Electrochemically Mediated Reversible Addition-Fragmentation Chain-Transfer Polymerization. Macromolecules, 2017 , 50, 7872-7879	5.5	74
1061	Growth of polymer brushes by grafting from Dia ATRP Monte Carlo simulations. <i>Polymer</i> , 2017 , 130, 267-279	3.9	13
1060	Individual Nanoporous Carbon Spheres with High Nitrogen Content from Polyacrylonitrile Nanoparticles with Sacrificial Protective Layers. <i>ACS Applied Materials & amp; Interfaces</i> , 2017 , 9, 37804-37	₹§12	18
1059	Monomolecular films of arborescent polystyrene@raftpoly(2-vinylpyridine) copolymers: Precursors to nanostructured carbon materials. <i>European Polymer Journal</i> , 2017 , 95, 575-580	5.2	1
1058	Catalyzed Radical Termination in the Presence of Tellanyl Radicals. <i>Chemistry - A European Journal</i> , 2017 , 23, 13879-13882	4.8	10
1057	Photoactivated Structurally Tailored and Engineered Macromolecular (STEM) gels as precursors for materials with spatially differentiated mechanical properties. <i>Polymer</i> , 2017 , 126, 224-230	3.9	20
1056	Facile Aqueous Route to Nitrogen-Doped Mesoporous Carbons. <i>Journal of the American Chemical Society</i> , 2017 , 139, 12931-12934	16.4	73
1055	Mechanism of Supplemental Activator and Reducing Agent Atom Transfer Radical Polymerization Mediated by Inorganic Sulfites: Experimental Measurements and Kinetic Simulations. <i>Polymer Chemistry</i> , 2017 , 8, 6506-6519	4.9	18
1054	Iron and copper based catalysts containing anionic phenolate ligands for atom transfer radical polymerization. <i>Macromolecular Research</i> , 2017 , 25, 504-512	1.9	7

1053	Enhanced interfacial activity of multi-arm poly(ethylene oxide) star polymers relative to linear poly(ethylene oxide) at fluid interfaces. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 23854-23868	3.6	10
1052	Tertiary Structure-Based Prediction of How ATRP Initiators React with Proteins. <i>ACS Biomaterials Science and Engineering</i> , 2017 , 3, 2086-2097	5.5	34
1051	Synthesis and characterization of gibbsite nanoplatelet brushes by surface-initiated atom transfer radical polymerization. <i>Polymer</i> , 2017 , 126, 126-132	3.9	8
1050	Polymer-Based Protein Engineering: Synthesis and Characterization of Armored, High Graft Density Polymer-Protein Conjugates. <i>Methods in Enzymology</i> , 2017 , 590, 347-380	1.7	10
1049	Polymer Brushes by Atom Transfer Radical Polymerization 2017 , 29-95		1
1048	Controlled Architecture of Hybrid Polymer Nanocapsules with Tunable Morphologies by Manipulating Surface-Initiated ARGET ATRP from Hydrothermally Modified Polydopamine. <i>Chemistry of Materials</i> , 2017 , 29, 10212-10219	9.6	27
1047	Polymer Chemistry: Current Status and Perspective. Chemistry International, 2017, 39,	1.6	4
1046	Miniemulsion ARGET ATRP via Interfacial and Ion-Pair Catalysis: From ppm to ppb of Residual Copper. <i>Macromolecules</i> , 2017 , 50, 8417-8425	5.5	56
1045	Electron Transfer Reactions in Atom Transfer Radical Polymerization. <i>Synthesis</i> , 2017 , 49, 3311-3322	2.9	49
1044	Raman spectroscopy study on influence of network architecture on hydration of poly(2-(2-methoxyethoxy)ethyl methacrylate) hydrogels. <i>Journal of Raman Spectroscopy</i> , 2017 , 48, 465-	4 7 3	15
1043	Controlled Polymerization of Multivinyl Monomers: Formation of Cyclized/Knotted Single-Chain Polymer Architectures. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 450-460	16.4	39
1042	Kontrollierte Polymerisation von Multivinyl-Monomeren: Bildung einer cyclischen/verknoteten Einzelketten-Polymerarchitektur. <i>Angewandte Chemie</i> , 2017 , 129, 462-473	3.6	5
1041	Bottlebrush Elastomers: A New Platform for Freestanding Electroactuation. <i>Advanced Materials</i> , 2017 , 29, 1604209	24	108
1040	Aqueous SARA ATRP using Inorganic Sulfites. <i>Polymer Chemistry</i> , 2017 , 8, 375-387	4.9	38
1039	Combining ATRP and FRP Gels: Soft Gluing of Polymeric Materials for the Fabrication of Stackable Gels. <i>Polymers</i> , 2017 , 9,	4.5	9
1038	Inherently pre-strained elastomers with self-healing property: new generation of freestanding electroactuators (Conference Presentation) 2017 ,		2
1037	Mimicking biological stress-strain behaviour with synthetic elastomers. <i>Nature</i> , 2017 , 549, 497-501	50.4	184
1036	Degradable copolymers with incorporated ester groups by radical ring-opening polymerization using atom transfer radical polymerization. <i>Polimery</i> , 2017 , 62, 262-271	3.4	1

1035	A brush-polymer conjugate of exendin-4 reduces blood glucose for up to five days and eliminates poly(ethylene glycol) antigenicity. <i>Nature Biomedical Engineering</i> , 2016 , 1,	19	75
1034	Modification of Silica Nanoparticles with Miktoarm Polymer Brushes via ATRP. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2016 , 26, 1292-1300	3.2	12
1033	Influence of Spacers in Tetherable Initiators on Surface-Initiated Atom Transfer Radical Polymerization (SI-ATRP). <i>Macromolecules</i> , 2016 , 49, 9283-9286	5.5	17
1032	Preparation of ZnO hybrid nanoparticles by ATRP. <i>Polymer</i> , 2016 , 107, 492-502	3.9	24
1031	In-Situ Platinum Deposition on Nitrogen-Doped Carbon Films as a Source of Catalytic Activity in a Hydrogen Evolution Reaction. <i>ACS Applied Materials & District Reaction</i> , 8, 21531-8	9.5	45
1030	Bioinspired Polydopamine (PDA) Chemistry Meets Ordered Mesoporous Carbons (OMCs): A Benign Surface Modification Strategy for Versatile Functionalization. <i>Chemistry of Materials</i> , 2016 , 28, 5013-502	29.6 29.6	71
1029	Photomediated controlled radical polymerization. <i>Progress in Polymer Science</i> , 2016 , 62, 73-125	29.6	407
1028	Polymer-based protein engineering grown ferrocene-containing redox polymers improve current generation in an enzymatic biofuel cell. <i>Biosensors and Bioelectronics</i> , 2016 , 86, 446-453	11.8	49
1027	Controlled Preparation of Well-Defined Mesoporous Carbon/Polymer Hybrids via Surface-Initiated ICAR ATRP with a High Dilution Strategy Assisted by Facile Polydopamine Chemistry. Macromolecules, 2016, 49, 8943-8950	5.5	23
1026	Electrochemical Atom Transfer Radical Polymerization in Miniemulsion with a Dual Catalytic System. <i>Macromolecules</i> , 2016 , 49, 8838-8847	5.5	55
1025	Polymerization-Induced Self-Assembly (PISA) Using ICAR ATRP at Low Catalyst Concentration. <i>Macromolecules</i> , 2016 , 49, 8605-8615	5.5	106
1024	From precision polymers to complex materials and systems. <i>Nature Reviews Materials</i> , 2016 , 1,	73.3	555
1023	Kinetics of FelMesohemin (MPEG500) 2-Mediated RDRP in Aqueous Solution. <i>Macromolecules</i> , 2016 , 49, 8088-8097	5.5	10
1022	Atom Transfer Radical Polymerization of Methacrylic Acid: A Won Challenge. <i>Journal of the American Chemical Society</i> , 2016 , 138, 7216-9	16.4	102
1021	Mechanism of Photoinduced Metal-Free Atom Transfer Radical Polymerization: Experimental and Computational Studies. <i>Journal of the American Chemical Society</i> , 2016 , 138, 2411-25	16.4	313
1020	Sonication-induced scission of molecular bottlebrushes: Implications of the Bairy hrchitecture. <i>Polymer</i> , 2016 , 84, 178-184	3.9	23
1019	Relation between Overall Rate of ATRP and Rates of Activation of Dormant Species. <i>Macromolecules</i> , 2016 , 49, 2467-2476	5.5	26
1018	Synthesis of tyclodextrin-based star polymers via a simplified electrochemically mediated ATRP. <i>Polymer</i> , 2016 , 88, 36-42	3.9	59

(2016-2016)

34
44
31
27
318
15
27
22
25
60
25
18
88
39
90
29

999	Enhancing thermal transport in nanocomposites by polymer-graft modification of particle fillers. <i>Polymer</i> , 2016 , 93, 72-77	3.9	16
998	Facile Arm-First Synthesis of Star Block Copolymers via ARGET ATRP with ppm Amounts of Catalyst. <i>Macromolecules</i> , 2016 , 49, 6752-6760	5.5	34
997	Miktoarm star copolymers as interfacial connectors for stackable amphiphilic gels. <i>Polymer</i> , 2016 , 101, 406-414	3.9	13
996	The Borderline between Simultaneous Reverse and Normal Initiation and Initiators for Continuous Activator Regeneration ATRP. <i>Macromolecules</i> , 2016 , 49, 7793-7803	5.5	22
995	Effect of Ligand Structure on the Cull R OMRP Dormant Species and Its Consequences for Catalytic Radical Termination in ATRP. <i>Macromolecules</i> , 2016 , 49, 7749-7757	5.5	52
994	Aqueous RAFT Polymerization of Acrylonitrile. <i>Macromolecules</i> , 2016 , 49, 5877-5883	5.5	19
993	Radicals and Dormant Species in Biology and Polymer Chemistry. <i>ChemPlusChem</i> , 2016 , 81, 11-29	2.8	14
992	Photoinduced Metal-Free Atom Transfer Radical Polymerization of Acrylonitrile. <i>ACS Macro Letters</i> , 2015 , 4, 192-196	6.6	265
991	A silver bullet: elemental silver as an efficient reducing agent for atom transfer radical polymerization of acrylates. <i>Journal of the American Chemical Society</i> , 2015 , 137, 1428-31	16.4	65
990	Synthesis of bio-based poly(N-phenylitaconimide) by atom transfer radical polymerization. <i>Journal of Polymer Science Part A</i> , 2015 , 53, 822-827	2.5	24
989	Cationic Nanogel-mediated Runx2 and Osterix siRNA Delivery Decreases Mineralization in MC3T3 Cells. <i>Clinical Orthopaedics and Related Research</i> , 2015 , 473, 2139-49	2.2	17
988	Kinetics of Fe-Mediated ATRP with Triarylphosphines. <i>Macromolecules</i> , 2015 , 48, 4431-4437	5.5	26
987	PEO-b-PNIPAM copolymers via SARA ATRP and eATRP in aqueous media. <i>Polymer</i> , 2015 , 71, 143-147	3.9	60
986	Molecular Bottlebrushes with Bimodal Length Distribution of Side Chains. <i>Macromolecules</i> , 2015 , 48, 4813-4822	5.5	26
985	Speciation Analysis in Iron-Mediated ATRP Studied via FT-Near-IR and M\(\bar{\text{B}}\)sbauer Spectroscopy. Macromolecules, 2015 , 48, 1981-1990	5.5	17
984	Well-defined biohybrids using reversible-deactivation radical polymerization procedures. <i>Journal of Controlled Release</i> , 2015 , 205, 45-57	11.7	49
983	Evolution of high-temperature molecular relaxations in poly(2-(2-methoxyethoxy)ethyl methacrylate) upon network formation. <i>Colloid and Polymer Science</i> , 2015 , 293, 1357-1367	2.4	9
982	Syntheses of Monosubstituted Rhodocenium Derivatives, Monomers, and Polymers. Macromolecules, 2015, 48, 1644-1650	5.5	20

(2015-2015)

98:	Photoinduced Fe-Based Atom Transfer Radical Polymerization in the Absence of Additional Ligands, Reducing Agents, and Radical Initiators. <i>Macromolecules</i> , 2015 , 48, 6948-6954	5.5	86	
98	Bright Fluorescent Nanotags from Bottlebrush Polymers with DNA-Tipped Bristles. <i>ACS Central Science</i> , 2015 , 1, 431-8	16.8	50	
979	Influence of intramolecular crosslinking on gelation in living copolymerization of monomer and divinyl cross-linker. Monte Carlo simulation studies. <i>Polymer</i> , 2015 , 79, 171-178	3.9	15	
97	Water-Dispersible, Responsive, and Carbonizable Hairy Microporous Polymeric Nanospheres. Journal of the American Chemical Society, 2015 , 137, 13256-9	16.4	70	
977	Synthesis of Poly(OEOMA) Using Macromonomers via Carafting-Through (ATRP. <i>Macromolecules</i> , 2015 , 48, 6385-6395	5.5	47	
97'	Expanding the ATRP Toolbox: Methacrylate Polymerization with an Elemental Silver Reducing Agent. <i>Macromolecules</i> , 2015 , 48, 6457-6464	5.5	14	
97.	A simplified electrochemically mediated ATRP synthesis of PEO-b-PMMA copolymers. <i>Polymer</i> , 2015 , 77, 266-271	3.9	42	
97.	Understanding the Fundamentals of Aqueous ATRP and Defining Conditions for Better Control. Macromolecules, 2015 , 48, 6862-6875	5.5	142	
973	Model Studies of Alkyl Halide Activation and Comproportionation Relevant to RDRP in the Presence of Cu0. <i>Macromolecules</i> , 2015 , 48, 8428-8436	5.5	17	
97:	Synthesis of poly(meth)acrylates with thioether and tertiary sulfonium groups by ARGET ATRP and their use as siRNA delivery agents. <i>Biomacromolecules</i> , 2015 , 16, 236-45	6.9	34	
97	Designing Hydrogels by ATRP. <i>Series in Bioengineering</i> , 2015 , 69-105	0.7	3	
979	ABA triblock copolymers from two mechanistic techniques: Polycondensation and atom transfer radical polymerization. <i>Journal of Polymer Science Part A</i> , 2015 , 53, 228-238	2.5	13	
96	Ductility, toughness and strain recovery in self-healing dual cross-linked nanoparticle networks studied by computer simulations. <i>Progress in Polymer Science</i> , 2015 , 40, 121-137	29.6	28	
96	Nanogel-Mediated RNAi Against Runx2 and Osx Inhibits Osteogenic Differentiation in Constitutively Active BMPR1A Osteoblasts. <i>ACS Biomaterials Science and Engineering</i> , 2015 , 1, 1139-1	150 ^{5.5}	12	
96	Colloidal Crystals: Multifunctional Hydrogels with Reversible 3D Ordered Macroporous Structures (Adv. Sci. 5/2015). <i>Advanced Science</i> , 2015 , 2,	13.6	78	
96	Multifunctional Hydrogels with Reversible 3D Ordered Macroporous Structures. <i>Advanced Science</i> , 2015 , 2, 1500069	13.6	19	
96	Low glass transition temperature poly(ionic liquid) prepared from a new quaternary ammonium cationic monomer. <i>Polymers for Advanced Technologies</i> , 2015 , 26, 823-828	3.2	8	
96.	GFP Knockdown by Cationic Nanogel-siRNA Polyplexes. <i>Bioengineering</i> , 2015 , 2, 160-175	5.3	4	

963	Catalyst Activity in ATRP, Determining Conditions for Well-Controlled Polymerizations. <i>ACS Symposium Series</i> , 2015 , 87-103	0.4	2
962	Surface-Initiated Atom Transfer Radical Polymerization. <i>Advances in Polymer Science</i> , 2015 , 29-76	1.3	40
961	Polymethacrylates with Polyhedral Oligomeric Silsesquioxane (POSS) Moieties: Influence of Spacer Length on Packing, Thermodynamics, and Dynamics. <i>Macromolecules</i> , 2015 , 48, 3376-3385	5.5	33
960	Controlled Radical Polymerization: State-of-the-Art in 2014. ACS Symposium Series, 2015, 1-17	0.4	14
959	Photoinduced Atom Transfer Radical Polymerization with ppm-Level Cu Catalyst by Visible Light in Aqueous Media. <i>Journal of the American Chemical Society</i> , 2015 , 137, 15430-3	16.4	188
958	Matrix-free Particle Brush System with Bimodal Molecular Weight Distribution Prepared by SI-ATRP. <i>Macromolecules</i> , 2015 , 48, 8208-8218	5.5	48
957	Copolymer-templated nitrogen-enriched nanocarbons as a low charge-transfer resistance and highly stable alternative to platinum cathodes in dye-sensitized solar cells. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 4413-4419	13	36
956	Simplified Electrochemically Mediated Atom Transfer Radical Polymerization using a Sacrificial Anode. <i>Angewandte Chemie</i> , 2015 , 127, 2418-2422	3.6	16
955	Stackable, Covalently Fused Gels: Repair and Composite Formation. <i>Macromolecules</i> , 2015 , 48, 1169-11	7§ .5	25
954	Properties and ATRP activity of copper complexes with substituted tris(2-pyridylmethyl)amine-based ligands. <i>Inorganic Chemistry</i> , 2015 , 54, 1474-86	5.1	60
953	Electrochemically mediated ATRP of acrylamides in water. <i>Polymer</i> , 2015 , 60, 302-307	3.9	73
952	Emulsification synergism in mixtures of polyelectrolyte brush-grafted nanoparticles and surfactants. <i>Journal of Colloid and Interface Science</i> , 2015 , 449, 152-9	9.3	11
951	Simplified electrochemically mediated atom transfer radical polymerization using a sacrificial anode. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 2388-92	16.4	109
950	Modeling polymer grafted nanoparticle networks reinforced by high-strength chains. <i>Soft Matter</i> , 2014 , 10, 1374-83	3.6	23
949	Templated synthesis of nitrogen-enriched nanoporous carbon materials from porogenic organic precursors prepared by ATRP. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 3957-60	16.4	87
948	Bioinspired bottle-brush polymer exhibits low friction and Amontons-like behavior. <i>Journal of the American Chemical Society</i> , 2014 , 136, 6199-202	16.4	184
947	Solid-phase incorporation of an ATRP initiator for polymer-DNA biohybrids. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 2739-44	16.4	65
946	Macromolecular engineering by atom transfer radical polymerization. <i>Journal of the American Chemical Society</i> , 2014 , 136, 6513-33	16.4	902

945	Towards sustainable polymer chemistry with homogeneous metal-based catalysts. <i>Green Chemistry</i> , 2014 , 16, 1673-1686	10	68	
944	Porous polymers prepared via high internal phase emulsion polymerization for reversible CO2 capture. <i>Polymer</i> , 2014 , 55, 385-394	3.9	67	
943	Multifunctional photo-crosslinked polymeric ionic hydrogel films. <i>Polymer Chemistry</i> , 2014 , 5, 2824-283	354.9	18	
942	Exploring quality in gradient copolymers. <i>Macromolecular Rapid Communications</i> , 2014 , 35, 133-140	4.8	27	
941	High-transparency polymer nanocomposites enabled by polymer-graft modification of particle fillers. <i>Langmuir</i> , 2014 , 30, 14434-42	4	49	
940	Vinyl-triazolium monomers: Versatile and new class of radically polymerizable ionic monomers. Journal of Polymer Science Part A, 2014 , 52, 417-423	2.5	55	
939	Cooperative, Reversible Self-Assembly of Covalently Pre-Linked Proteins into Giant Fibrous Structures. <i>Angewandte Chemie</i> , 2014 , 126, 8188-8193	3.6	1	
938	Block copolymer-templated nitrogen-enriched nanocarbons with morphology-dependent electrocatalytic activity for oxygen reduction. <i>Chemical Science</i> , 2014 , 5, 3315	9.4	37	
937	Synthesis and arm dissociation in molecular stars with a spoked wheel core and bottlebrush arms. Journal of the American Chemical Society, 2014 , 136, 12762-70	16.4	36	
936	Contribution of Photochemistry to Activator Regeneration in ATRP. <i>Macromolecules</i> , 2014 , 47, 6316-63	3 2] .5	72	
935	Shifting Electronic Structure by Inherent Tension in Molecular Bottlebrushes with Polythiophene Backbones <i>ACS Macro Letters</i> , 2014 , 3, 738-742	6.6	14	
934	Improvement of the control over SARA ATRP of 2-(diisopropylamino)ethyl methacrylate by slow and continuous addition of sodium dithionite. <i>Polymer Chemistry</i> , 2014 , 5, 4617-4626	4.9	27	
933	Modular polymerized ionic liquid block copolymer membranes for CO2/N2 separation. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 7967-7972	13	44	
932	Fabrication of novel polymeric and carbonaceous nanoscale networks by the union of self-assembly and hypercrosslinking. <i>Energy and Environmental Science</i> , 2014 , 7, 3006	35.4	89	
931	Copolymer Composition Deviations from Mayollewis Conventional Free Radical Behavior in Nitroxide Mediated Copolymerization. <i>Macromolecular Theory and Simulations</i> , 2014 , 23, 245-265	1.5	19	
930	How are radicals (re)generated in photochemical ATRP?. <i>Journal of the American Chemical Society</i> , 2014 , 136, 13303-12	16.4	216	
929	Electrostatically controlled swelling and adsorption of polyelectrolyte brush-grafted nanoparticles to the solid/liquid interface. <i>Langmuir</i> , 2014 , 30, 4056-65	4	19	
928	Synthesis of poly(N-vinyl carbazole)-based block copolymers by sequential polymerizations of RAFTIATRP. <i>Polymer</i> , 2014 , 55, 6051-6057	3.9	25	

927	Initiators for Continuous Activator Regeneration Atom Transfer Radical Polymerization of Methyl Methacrylate and Styrene with N-Heterocyclic Carbene as Ligands for Fe-Based Catalysts. <i>ACS Macro Letters</i> , 2014 , 3, 944-947	6.6	30
926	Aqueous RDRP in the Presence of Cu0: The Exceptional Activity of CuI Confirms the SARA ATRP Mechanism. <i>Macromolecules</i> , 2014 , 47, 560-570	5.5	165
925	Synthesis of well-defined microporous carbons by molecular-scale templating with polyhedral oligomeric silsesquioxane moieties. <i>Journal of the American Chemical Society</i> , 2014 , 136, 4805-8	16.4	164
924	Effect of Thermal Self-Initiation on the Synthesis, Composition, and Properties of Particle Brush Materials. <i>Macromolecules</i> , 2014 , 47, 5501-5508	5.5	15
923	Modeling Atom-Transfer Radical Polymerization of Butyl Acrylate. <i>Macromolecular Theory and Simulations</i> , 2014 , 23, 279-287	1.5	10
922	Straightforward ARGET ATRP for the Synthesis of Primary Amine Polymethacrylate with Improved Chain-End Functionality under Mild Reaction Conditions. <i>Macromolecules</i> , 2014 , 47, 4615-4621	5.5	30
921	Synthesis of Poly(ionic liquid)s by Atom Transfer Radical Polymerization with ppm of Cu Catalyst. <i>Macromolecules</i> , 2014 , 47, 6601-6609	5.5	44
920	Explaining unexpected data via competitive equilibria and processes in radical reactions with reversible deactivation. <i>Accounts of Chemical Research</i> , 2014 , 47, 3028-36	24.3	33
919	Synthesis of High Molecular Weight Polymethacrylates with Polyhedral Oligomeric Silsesquioxane Moieties by Atom Transfer Radical Polymerization <i>ACS Macro Letters</i> , 2014 , 3, 799-802	6.6	31
918	Effects of Core Microstructure on Structure and Dynamics of Star Polymer Melts: From Polymeric to Colloidal Response. <i>Macromolecules</i> , 2014 , 47, 5347-5356	5.5	44
917	Synthesis of triblock and multiblock methacrylate polymers and self-assembly of stimuli responsive triblock polymers. <i>Journal of Polymer Science Part A</i> , 2014 , 52, 2548-2555	2.5	8
916	Synthesis of cationic poly((3-acrylamidopropyl)trimethylammonium chloride) by SARA ATRP in ecofriendly solvent mixtures. <i>Polymer Chemistry</i> , 2014 , 5, 5829-5836	4.9	36
915	Overview of Controlled/Living polymerization Methods of Vinyl Monomers 2014 , 29-44		1
914	Clickable poly(ionic liquid)s for modification of glass and silicon surfaces. <i>Polymer</i> , 2014 , 55, 3330-3338	3.9	26
913	Templated Synthesis of Nitrogen-Enriched Nanoporous Carbon Materials from Porogenic Organic Precursors Prepared by ATRP. <i>Angewandte Chemie</i> , 2014 , 126, 4038-4041	3.6	18
912	Preparation and Analysis of Bicyclic Polystyrene. <i>Macromolecules</i> , 2014 , 47, 3791-3796	5.5	32
911	SARA ATRP or SET-LRP. End of controversy?. <i>Polymer Chemistry</i> , 2014 , 5, 4409	4.9	231
910	Biologically derived soft conducting hydrogels using heparin-doped polymer networks. <i>ACS Nano</i> , 2014 , 8, 4348-57	16.7	99

(2013-2014)

909	Synthesis of star polymers by Bore-firstlbnepot method via ATRP: Monte Carlo simulations. <i>Polymer</i> , 2014 , 55, 2552-2561	3.9	17
908	Nanoanesthesia: a novel, intravenous approach to ankle block in the rat by magnet-directed concentration of ropivacaine-associated nanoparticles. <i>Anesthesia and Analgesia</i> , 2014 , 118, 1355-62	3.9	12
907	Solid-Phase Incorporation of an ATRP Initiator for Polymer D NA Biohybrids. <i>Angewandte Chemie</i> , 2014 , 126, 2777-2782	3.6	21
906	Role of Polymer Graft Architecture on the Acoustic Eigenmode Formation in Densely Polymer-Tethered Colloidal Particles. <i>ACS Macro Letters</i> , 2014 , 3, 1059-1063	6.6	20
905	Atom transfer radical polymerization of ionic liquid monomer: The influence of salt/counterion on polymerization. <i>Journal of Polymer Science Part A</i> , 2014 , 52, 2175-2184	2.5	25
904	Cooperative, reversible self-assembly of covalently pre-linked proteins into giant fibrous structures. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 8050-5	16.4	29
903	Phototunable Supersoft Elastomers using Coumarin Functionalized Molecular Bottlebrushes for Cell-Surface Interactions Study. <i>Macromolecules</i> , 2014 , 47, 7852-7857	5.5	20
902	Pressure Dependence of Iron-Mediated Methyl Methacrylate ATRP in Different Solvent Environments. <i>Macromolecular Chemistry and Physics</i> , 2014 , 215, 44-53	2.6	19
901	Performance of dielectric nanocomposites: matrix-free, hairy nanoparticle assemblies and amorphous polymer-nanoparticle blends. <i>ACS Applied Materials & Dielectric Applied Materials & Di</i>	9.5	67
900	Design and fabrication strategies for high transparency polymer nanocomposites with dynamic tunable optical response 2014 ,		1
899	Introduction of self-healing properties into covalent polymer networks via the photodissociation of alkoxyamine junctions. <i>Polymer Chemistry</i> , 2014 , 5, 921-930	4.9	63
898	Preparation of porous nanocarbons with tunable morphology and pore size from copolymer templated precursors. <i>Materials Horizons</i> , 2014 , 1, 121-124	14.4	27
897	Atom transfer radical polymerization of dimethyl (methacryloyloxymethyl) phosphonate. <i>European Polymer Journal</i> , 2014 , 56, 11-16	5.2	13
896	Surface-Initiated Polymerization as an Enabling Tool for Multifunctional (Nano-)Engineered Hybrid Materials. <i>Chemistry of Materials</i> , 2014 , 26, 745-762	9.6	289
895	Synthesis of well-defined functionalized poly(2-(diisopropylamino)ethyl methacrylate) using ATRP with sodium dithionite as a SARA agent. <i>Polymer Chemistry</i> , 2014 , 5, 3919-3928	4.9	32
894	Cationic nanostructured polymers for siRNA delivery in murine calvarial pre-osteoblasts. <i>Journal of Biomedical Nanotechnology</i> , 2014 , 10, 1130-6	4	17
893	Synthesis of degradable polyHIPEs by AGET ATRP. <i>Polymer</i> , 2013 , 54, 4480-4485	3.9	25
892	Strain recovery and self-healing in dual cross-linked nanoparticle networks. <i>Polymer Chemistry</i> , 2013 , 4, 4927	4.9	30

891	Ambient temperature rapid SARA ATRP of acrylates and methacrylates in alcoholwater solutions mediated by a mixed sulfite/Cu(II)Br2 catalytic system. <i>Polymer Chemistry</i> , 2013 , 4, 5629	4.9	60
890	Soft Elastomers via Introduction of Poly(butyl acrylate) "Diluent" to Poly(hydroxyethyl acrylate)-Based Gel Networks <i>ACS Macro Letters</i> , 2013 , 2, 23-26	6.6	33
889	Proteinpolymer hybrids: Conducting ARGET ATRP from a genetically encoded cleavable ATRP initiator. <i>European Polymer Journal</i> , 2013 , 49, 2919-2924	5.2	24
888	Reversible-Deactivation Radical Polymerization of Methyl Methacrylate and Styrene Mediated by Alkyl Dithiocarbamates and Copper Acetylacetonates. <i>Macromolecules</i> , 2013 , 46, 5512-5519	5.5	19
887	Star Synthesis Using Macroinitiators via Electrochemically Mediated Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2013 , 46, 5856-5860	5.5	57
886	Autotransfecting short interfering RNA through facile covalent polymer escorts. <i>Journal of the American Chemical Society</i> , 2013 , 135, 12508-11	16.4	36
885	Molecular Tensile Machines: Anti-Arrhenius Cleavage of Disulfide Bonds. <i>Macromolecules</i> , 2013 , 46, 71	96 5 .7520	141
884	Activators Regenerated by Electron Transfer Atom Transfer Radical Polymerization in Miniemulsion with 50 ppm of Copper Catalyst. <i>ACS Macro Letters</i> , 2013 , 2, 822-825	6.6	25
883	Stable emulsions with thermally responsive microstructure and rheology using poly(ethylene oxide) star polymers as emulsifiers. <i>Journal of Colloid and Interface Science</i> , 2013 , 394, 284-92	9.3	25
882	Harnessing interfacially-active nanorods to regenerate severed polymer gels. <i>Nano Letters</i> , 2013 , 13, 6269-74	11.5	57
881	Reversible-Deactivation Radical Polymerization in the Presence of Metallic Copper. A Critical Assessment of the SARA ATRP and SET-LRP Mechanisms. <i>Macromolecules</i> , 2013 , 46, 8749-8772	5.5	249
880	Bioinspired iron-based catalyst for atom transfer radical polymerization. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 12148-51	16.4	88
879	Reversible-Deactivation Radical Polymerization in the Presence of Metallic Copper. Kinetic Simulation. <i>Macromolecules</i> , 2013 , 46, 3816-3827	5.5	72
878	Reversible-Deactivation Radical Polymerization in the Presence of Metallic Copper. Comproportionation Disproportionation Equilibria and Kinetics. <i>Macromolecules</i> , 2013 , 46, 3793-3802	5.5	83
877	Reversible-Deactivation Radical Polymerization in the Presence of Metallic Copper. Activation of Alkyl Halides by Cu0. <i>Macromolecules</i> , 2013 , 46, 3803-3815	5.5	74
876	Modeling the response of dual cross-linked nanoparticle networks to mechanical deformation. <i>Soft Matter</i> , 2013 , 9, 109-121	3.6	44
875	Reversible CO2 capture with porous polymers using the humidity swing. <i>Energy and Environmental Science</i> , 2013 , 6, 488-493	35.4	89
874	Improving the Livingness Lof ATRP by Reducing Cu Catalyst Concentration. <i>Macromolecules</i> , 2013 , 46, 683-691	5.5	118

873	Molecular dynamics in PBA/PEO miktoarm star copolymers. <i>Polymer</i> , 2013 , 54, 3341-3349	3.9	4
872	High-pressure atom transfer radical polymerization of n-butyl acrylate. <i>Macromolecular Rapid Communications</i> , 2013 , 34, 604-9	4.8	21
871	How far can we push polymer architectures?. Journal of the American Chemical Society, 2013, 135, 1142	1 - 46.4	78
870	Smart heparin-based bioconjugates synthesized by a combination of ATRP and click chemistry. <i>Polymer Chemistry</i> , 2013 , 4, 2800	4.9	19
869	Synthesis of well-defined poly(2-(dimethylamino)ethyl methacrylate) under mild conditions and its co-polymers with cholesterol and PEG using Fe(0)/Cu(II) based SARA ATRP. <i>Polymer Chemistry</i> , 2013 , 4, 3088	4.9	58
868	Computational Evaluation of the Sulfonyl Radical as a Universal Leaving Group for RAFT Polymerisation. <i>Australian Journal of Chemistry</i> , 2013 , 66, 308	1.2	7
867	Three-Dimensionally Ordered Macroporous Polymeric Materials by Colloidal Crystal Templating for Reversible CO2 Capture. <i>Advanced Functional Materials</i> , 2013 , 23, n/a-n/a	15.6	13
866	Star polymers with a cationic core prepared by ATRP for cellular nucleic acids delivery. <i>Biomacromolecules</i> , 2013 , 14, 1262-7	6.9	61
865	Solvent Effects on the Activation Rate Constant in Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2013 , 46, 3350-3357	5.5	88
864	Investigation of Electrochemically Mediated Atom Transfer Radical Polymerization. Macromolecules		
	, 2013 , 46, 4346-4353	5.5	130
863	, 2013, 46, 4346-4353 Perfect mixing of immiscible macromolecules at fluid interfaces. <i>Nature Materials</i> , 2013, 12, 735-40	5·5 27	50
863			
	Perfect mixing of immiscible macromolecules at fluid interfaces. <i>Nature Materials</i> , 2013 , 12, 735-40 Carbon black functionalized with hyperbranched polymers: synthesis, characterization, and	27	50
862	Perfect mixing of immiscible macromolecules at fluid interfaces. <i>Nature Materials</i> , 2013 , 12, 735-40 Carbon black functionalized with hyperbranched polymers: synthesis, characterization, and application in reversible CO2 capture. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 6810	27	50
862	Perfect mixing of immiscible macromolecules at fluid interfaces. <i>Nature Materials</i> , 2013 , 12, 735-40 Carbon black functionalized with hyperbranched polymers: synthesis, characterization, and application in reversible CO2 capture. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 6810 CHAPTER 8:Atom Transfer Radical Polymerization (ATRP). <i>RSC Polymer Chemistry Series</i> , 2013 , 287-357 The Importance of Controlled/Living Radical Polymerization Techniques in the Design of Tailor Made Nanoparticles for Drug Delivery Systems. <i>Advances in Predictive, Preventive and Personalised</i>	²⁷ 13 1.3	50 41 21
862 861 860	Perfect mixing of immiscible macromolecules at fluid interfaces. <i>Nature Materials</i> , 2013 , 12, 735-40 Carbon black functionalized with hyperbranched polymers: synthesis, characterization, and application in reversible CO2 capture. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 6810 CHAPTER 8:Atom Transfer Radical Polymerization (ATRP). <i>RSC Polymer Chemistry Series</i> , 2013 , 287-357 The Importance of Controlled/Living Radical Polymerization Techniques in the Design of Tailor Made Nanoparticles for Drug Delivery Systems. <i>Advances in Predictive, Preventive and Personalised Medicine</i> , 2013 , 315-357 A simple and universal gel permeation chromatography technique for precise molecular weight characterization of well-defined poly(ionic liquid)s. <i>Journal of the American Chemical Society</i> , 2013 ,	27 13 1.3	50 41 21
862 861 860 859	Perfect mixing of immiscible macromolecules at fluid interfaces. <i>Nature Materials</i> , 2013 , 12, 735-40 Carbon black functionalized with hyperbranched polymers: synthesis, characterization, and application in reversible CO2 capture. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 6810 CHAPTER 8:Atom Transfer Radical Polymerization (ATRP). <i>RSC Polymer Chemistry Series</i> , 2013 , 287-357 The Importance of Controlled/Living Radical Polymerization Techniques in the Design of Tailor Made Nanoparticles for Drug Delivery Systems. <i>Advances in Predictive, Preventive and Personalised Medicine</i> , 2013 , 315-357 A simple and universal gel permeation chromatography technique for precise molecular weight characterization of well-defined poly(ionic liquid)s. <i>Journal of the American Chemical Society</i> , 2013 , 135, 4227-30 Star polymer synthesis and gelation in ATRP copolymerization: Monte Carlo simulations. <i>Polymer</i> ,	27 13 1.3 0.4	50 41 21 2 130

855	Poly(ethylene oxide) star polymer adsorption at the silica/aqueous interface and displacement by linear poly(ethylene oxide). <i>Langmuir</i> , 2013 , 29, 3999-4007	4	16
854	Spreading and Dewetting of Single Bottle-Brush Macromolecules on Nanofacetted SrTiO3 Substrate as Induced by Different Vapours. <i>Macromolecular Chemistry and Physics</i> , 2013 , 214, 761-775	2.6	1
853	Thermal Properties of Particle Brush Materials: Effect of Polymer Graft Architecture on the Glass Transition Temperature in Polymer-Grafted Colloidal Systems. <i>Macromolecular Symposia</i> , 2013 , 331-332, 9-16	0.8	20
852	Bioinspired Iron-Based Catalyst for Atom Transfer Radical Polymerization. <i>Angewandte Chemie</i> , 2013 , 125, 12370-12373	3.6	6
851	Colloidal Crystals: Three-Dimensionally Ordered Macroporous Polymeric Materials by Colloidal Crystal Templating for Reversible CO2 Capture (Adv. Funct. Mater. 37/2013). <i>Advanced Functional Materials</i> , 2013 , 23, 4719-4719	15.6	35
850	Enhancing the fraction of grafted polystyrene on silica hybrid nanoparticles. <i>Polymer</i> , 2012 , 53, 79-86	3.9	27
849	ATRP in the design of functional materials for biomedical applications. <i>Progress in Polymer Science</i> , 2012 , 37, 18-37	29.6	447
848	Critical evaluation of the microwave effect on radical (co)polymerizations. <i>Macromolecular Rapid Communications</i> , 2012 , 33, 80-6	4.8	13
847	Kinetic Modeling of ICAR ATRP. <i>Macromolecular Theory and Simulations</i> , 2012 , 21, 52-69	1.5	77
846	Synthesis and Characterization of Molecular Bottlebrushes Prepared by Iron-Based ATRP. <i>Macromolecules</i> , 2012 , 45, 9243-9249	5.5	34
845	Determination of ATRP Equilibrium Constants under Polymerization Conditions. <i>ACS Macro Letters</i> , 2012 , 1, 1367-1370	6.6	74
844	Atom Transfer Radical Polymerization (ATRP) and Addition (ATRA) and Applications 2012,		1
843	Tuning Dispersity in Diblock Copolymers Using ARGET ATRP. <i>Macromolecular Chemistry and Physics</i> , 2012 , 213, 2659-2668	2.6	51
842	Copolymer-templated nitrogen-enriched porous nanocarbons for CO2 capture. <i>Chemical Communications</i> , 2012 , 48, 11516-8	5.8	98
841	Nanomechanical mapping of a high curvature polymer brush grafted from a rigid nanoparticle. <i>Soft Matter</i> , 2012 , 8, 8312	3.6	29
840	Self-Healing Polymer Films Based on Thiol D isulfide Exchange Reactions and Self-Healing Kinetics Measured Using Atomic Force Microscopy. <i>Macromolecules</i> , 2012 , 45, 142-149	5.5	360
839	Efficient Polymerization Inhibition Systems for Acrylic Acid Distillation: Vapor-Phase Inhibitors. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 4467-4471	3.9	1
838	Efficient Polymerization Inhibition Systems for Acrylic Acid Distillation: New Liquid-Phase Inhibitors. <i>Industrial & Distillation</i> (1997) <i>Inhibitors. Industrial & Distillation</i> (1997) <i>Inhibitors. Inhibitors. Inhibitors</i> (1997) <i>Inhibitors. Inhibitors</i> (1997) <i>Inhibitors</i> (1	3.9	15

(2012-2012)

837	Active Ligand for Low PPM Miniemulsion Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2012 , 45, 7356-7363	5.5	31
836	A protein-polymer hybrid mediated by DNA. <i>Langmuir</i> , 2012 , 28, 1954-8	4	33
835	Preparation of cationic nanogels for nucleic acid delivery. <i>Biomacromolecules</i> , 2012 , 13, 3445-9	6.9	60
834	Formation and Possible Reactions of Organometallic Intermediates with Active Copper(I) Catalysts in ATRP. <i>Organometallics</i> , 2012 , 31, 7994-7999	3.8	50
833	Linear Gradient Quality of ATRP Copolymers. <i>Macromolecules</i> , 2012 , 45, 8519-8531	5.5	120
832	PEO-Based Star Copolymers as Stabilizers for Water-in-Oil or Oil-in-Water Emulsions. <i>Macromolecules</i> , 2012 , 45, 9419-9426	5.5	69
831	Controlled Radical Polymerization: State-of-the-Art in 2011. ACS Symposium Series, 2012, 1-13	0.4	6
830	Iron-Based ICAR ATRP of Styrene with ppm Amounts of FeIIIBr3 and 1,1?-Azobis(cyclohexanecarbonitrile). <i>ACS Macro Letters</i> , 2012 , 1, 599-602	6.6	67
829	Halogen Conservation in Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2012 , 45, 8929-8932	5.5	40
828	Activation Deactivation Equilibrium Associated With Iron-Mediated Atom-Transfer Radical Polymerization up to High Pressure. <i>Macromolecular Chemistry and Physics</i> , 2012 , 213, 2019-2026	2.6	27
827	Effect of Pressure on ActivationDeactivation Equilibrium Constants for ATRP of Methyl Methacrylate. <i>Macromolecular Chemistry and Physics</i> , 2012 , 213, 2287-2292	2.6	26
826	CuAAC: The Quintessential Click Reaction 2012 , 247-277		19
825	Changes in Network Structure of Chemical Gels Controlled by Solvent Quality through Photoinduced Radical Reshuffling Reactions of Trithiocarbonate Units ACS Macro Letters, 2012, 1, 478-	-489	69
824	Inorganic Sulfites: Efficient Reducing Agents and Supplemental Activators for Atom Transfer Radical Polymerization. <i>ACS Macro Letters</i> , 2012 , 1, 1308-1311	6.6	84
823	Electrochemically active nitrogen-enriched nanocarbons with well-defined morphology synthesized by pyrolysis of self-assembled block copolymer. <i>Journal of the American Chemical Society</i> , 2012 , 134, 14846-57	16.4	327
822	Synthesis of Amphiphilic Poly(-vinylpyrrolidone)poly(vinyl acetate) Molecular Bottlebrushes <i>ACS Macro Letters</i> , 2012 , 1, 227-231	6.6	56
821	Preparation of polymeric nanoscale networks from cylindrical molecular bottlebrushes. <i>ACS Nano</i> , 2012 , 6, 6208-14	16.7	8o
820	Morphology and NMR Self-Diffusion in PBA/PEO Miktoarm Star Copolymers. <i>Zeitschrift Fur Physikalische Chemie</i> , 2012 , 226, 1271-1292	3.1	2

819	End-linked, amphiphilic, degradable polymer conetworks: synthesis by sequential atom transfer radical polymerization using a bifunctional, cleavable initiator. <i>Polymer Chemistry</i> , 2012 , 3, 105-116	4.9	36
818	Copper-Mediated CRP of Methyl Acrylate in the Presence of Metallic Copper: Effect of Ligand Structure on Reaction Kinetics. <i>Macromolecules</i> , 2012 , 45, 78-86	5.5	111
817	Modification of the surfaces of silicon wafers with temperature-responsive cross-linkable poly[oligo(ethylene oxide) methacrylate]-based star polymers. <i>ACS Applied Materials & amp; Interfaces</i> , 2012 , 4, 5949-55	9.5	10
816	ATRP under Biologically Relevant Conditions: Grafting from a Protein ACS Macro Letters, 2012, 1, 6-10	6.6	196
815	Synthesis, Characterization and Thermolysis of Hyperbranched Homo- and Amphiphilic Co-Polymers Prepared Using an Inimer Bearing a Thermolyzable Acylal Group. <i>Macromolecules</i> , 2012 , 45, 1313-1320	5.5	31
814	Toughening fragile matter: mechanical properties of particle solids assembled from polymer-grafted hybrid particles synthesized by ATRP. <i>Soft Matter</i> , 2012 , 8, 4072	3.6	132
813	ICAR ATRP with ppm Cu Catalyst in Water. <i>Macromolecules</i> , 2012 , 45, 4461-4468	5.5	205
812	Highly Active Bipyridine-Based Ligands for Atom Transfer Radical Polymerization <i>ACS Macro Letters</i> , 2012 , 1, 508-512	6.6	48
811	Visible Light and Sunlight Photoinduced ATRP with ppm of Cu Catalyst. ACS Macro Letters, 2012, 1, 1219	961 @ 23	458
810			
010	Fundamentals of Controlled/Living Radical Polymerization 2012 ,		2
809	Effect of block molecular weight distribution on the structure formation in block copolymer/homopolymer blends. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2012 , 50, 106-116	2.6	12
	Effect of block molecular weight distribution on the structure formation in block	2.6	
809	Effect of block molecular weight distribution on the structure formation in block copolymer/homopolymer blends. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2012 , 50, 106-116		12 49
809 808	Effect of block molecular weight distribution on the structure formation in block copolymer/homopolymer blends. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2012 , 50, 106-116 Standing arrays of gold nanorods end-tethered with polymer ligands. <i>Small</i> , 2012 , 8, 731-7	11	12 49
809 808 807	Effect of block molecular weight distribution on the structure formation in block copolymer/homopolymer blends. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2012 , 50, 106-116 Standing arrays of gold nanorods end-tethered with polymer ligands. <i>Small</i> , 2012 , 8, 731-7 Design and preparation of porous polymers. <i>Chemical Reviews</i> , 2012 , 112, 3959-4015 AGET ATRP of oligo(ethylene glycol) monomethyl ether methacrylate in inverse microemulsion.	11 68.1	12 49 1282
809 808 807 806	Effect of block molecular weight distribution on the structure formation in block copolymer/homopolymer blends. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2012 , 50, 106-116 Standing arrays of gold nanorods end-tethered with polymer ligands. <i>Small</i> , 2012 , 8, 731-7 Design and preparation of porous polymers. <i>Chemical Reviews</i> , 2012 , 112, 3959-4015 AGET ATRP of oligo(ethylene glycol) monomethyl ether methacrylate in inverse microemulsion. <i>Polymer Chemistry</i> , 2012 , 3, 1813-1819	68.1 4.9	12 49 1282
809 808 807 806	Effect of block molecular weight distribution on the structure formation in block copolymer/homopolymer blends. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2012 , 50, 106-116 Standing arrays of gold nanorods end-tethered with polymer ligands. <i>Small</i> , 2012 , 8, 731-7 Design and preparation of porous polymers. <i>Chemical Reviews</i> , 2012 , 112, 3959-4015 AGET ATRP of oligo(ethylene glycol) monomethyl ether methacrylate in inverse microemulsion. <i>Polymer Chemistry</i> , 2012 , 3, 1813-1819 SP-PLP-EPR Measurement of ATRP Deactivation Rate. <i>Macromolecules</i> , 2012 , 45, 3797-3801 Enhanced Activity of ATRP Fe Catalysts with Phosphines Containing Electron Donating Groups.	68.1 4.9 5.5	12 49 1282 19

801	Aqueous ARGET ATRP. Macromolecules, 2012, 45, 6371-6379	5.5	281
800	Block Copolymer Templating as a Path to Porous Nanostructured Carbons with Highly Accessible Nitrogens for Enhanced (Electro)chemical Performance. <i>Macromolecular Chemistry and Physics</i> , 2012 , 213, 1078-1090	2.6	66
799	Dynamic Homogeneity by Architectural Design Bottlebrush Polymers. <i>Macromolecular Chemistry and Physics</i> , 2012 , 213, 1311-1320	2.6	25
798	Atom Transfer Radical Polymerization: From Mechanisms to Applications. <i>Israel Journal of Chemistry</i> , 2012 , 52, 206-220	3.4	103
797	Tuning Polymer Properties through Competitive Processes. ACS Symposium Series, 2012, 145-169	0.4	3
796	Atom Transfer Radical Polymerization (ATRP): Current Status and Future Perspectives. <i>Macromolecules</i> , 2012 , 45, 4015-4039	5.5	1961
795	Self-healing of covalently cross-linked polymers by reshuffling thiuram disulfide moieties in air under visible light. <i>Advanced Materials</i> , 2012 , 24, 3975-80	24	489
794	Anti-Arrhenius cleavage of covalent bonds in bottlebrush macromolecules on substrate. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 9276-80	11.5	37
793	Macromolecular engineering by tempering radical behavior. <i>Akademie Der Wissenschaften Zu Goettingen Jahrbuch</i> , 2012 , 2012,		1
792	Novel Nanoporous Carbons from Well-Defined Poly(styrene-co-acrylonitrile)-Grafted Silica Nanoparticles. <i>Chemistry of Materials</i> , 2011 , 23, 2024-2026	9.6	44
791	Polymerization under Light and Other External Stimuli 2011 , 643-672		5
791 790	Polymerization under Light and Other External Stimuli 2011 , 643-672 Polymers with Star-Related Structures 2011 , 909-972		5 7
790	Polymers with Star-Related Structures 2011 , 909-972		7
790 789	Polymers with Star-Related Structures 2011, 909-972 From Stars to Microgels 2011, 1007-1056		7
79° 789 788	Polymers with Star-Related Structures 2011, 909-972 From Stars to Microgels 2011, 1007-1056 Scattering from Polymer Systems 2011, 1575-1604		3
79° 789 788 787	Polymers with Star-Related Structures 2011, 909-972 From Stars to Microgels 2011, 1007-1056 Scattering from Polymer Systems 2011, 1575-1604 From Linear to (Hyper) Branched Polymers: Dynamics and Rheology 2011, 1605-1648		7 3

783	Polyelectrolyte Multilayer Films 🖟 General Approach to (Bio)functional Coatings 2011 , 1249-1305		3
782	Mechanism of Halogen Exchange in ATRP. <i>Macromolecules</i> , 2011 , 44, 7546-7557	5.5	81
781	Polymerizations in Aqueous Dispersed Media 2011 , 605-642		4
780	Recyclable antibacterial magnetic nanoparticles grafted with quaternized poly(2-(dimethylamino)ethyl methacrylate) brushes. <i>Biomacromolecules</i> , 2011 , 12, 1305-11	6.9	171
779	Synthesis of biocompatible PEG-Based star polymers with cationic and degradable core for siRNA delivery. <i>Biomacromolecules</i> , 2011 , 12, 3478-86	6.9	108
778	Segmented Copolymers by Mechanistic Transformations 2011 , 541-604		3
777	Synthesis of Macromonomers and Telechelic Oligomers by Living Polymerizations 2011 , 775-812		4
776	Macromolecular Engineering of Polypeptides Using the Ring-Opening Polymerization of Amino Acid N-Carboxyanhydrides 2011 , 519-540		5
775	Radical Polymerization 2011 , 161-215		2
	Conhambiania Dalumaniantian 2011, F7 101		
774	Carbocationic Polymerization 2011 , 57-101		5
774	Biosynthesis of Protein-Based Polymeric Materials 2011 , 479-517		5
			3
773	Biosynthesis of Protein-Based Polymeric Materials 2011 , 479-517		
773 772	Biosynthesis of Protein-Based Polymeric Materials 2011 , 479-517 Polycondensation 2011 , 295-349 Coordination Polymerization: Synthesis of New Homo- and Copolymer Architectures from Ethylene		3
773 772 771	Biosynthesis of Protein-Based Polymeric Materials 2011, 479-517 Polycondensation 2011, 295-349 Coordination Polymerization: Synthesis of New Homo- and Copolymer Architectures from Ethylene and Propylene Using Homogeneous Ziegler Natta Polymerization Catalysts 2011, 217-247		3
773 772 771 770	Biosynthesis of Protein-Based Polymeric Materials 2011, 479-517 Polycondensation 2011, 295-349 Coordination Polymerization: Synthesis of New Homo- and Copolymer Architectures from Ethylene and Propylene Using Homogeneous Ziegler Natta Polymerization Catalysts 2011, 217-247 Macromolecular Engineering 2011, 1-6		364
773 772 771 770 769	Biosynthesis of Protein-Based Polymeric Materials 2011, 479-517 Polycondensation 2011, 295-349 Coordination Polymerization: Synthesis of New Homo- and Copolymer Architectures from Ethylene and Propylene Using Homogeneous Ziegler Natta Polymerization Catalysts 2011, 217-247 Macromolecular Engineering 2011, 1-6 Ionic and Coordination Ring-Opening Polymerization 2011, 103-159		3 6 4 6

765 Inorganic Polymers with Precise Structures **2011**, 673-730

764	Supramolecular Polymer Engineering 2011 , 351-399		2
763	Tacticity 2011 , 731-773		О
762	Complex Functional Macromolecules 2011 , 1341-1385		
761	Linear Versus (Hyper)branched Polymers 2011 , 973-1005		3
760	Multisegmental Block/Graft Copolymers 2011 , 839-873		
759	Molecular Brushes Densely Grafted Copolymers 2011 , 1103-1135		4
758	Statistical, Alternating and Gradient Copolymers 2011 , 813-838		3
757	Controlled Synthesis and Properties of Cyclic Polymers 2011 , 875-908		14
756	Bio-Inspired Complex Block Copolymers/Polymer Conjugates and Their Assembly 2011 , 1307-1339		2
755	CoreBhell Particles 2011 , 1209-1247		4
754	Chemistry. Architecturally complex polymers with controlled heterogeneity. Science, 2011 , 333, 1104-5 $_3$	3.3	234
753	Nanoporous Polystyrene and Carbon Materials with CoreBhell Nanosphere-Interconnected Network Structure. <i>Macromolecules</i> , 2011 , 44, 5846-5849	.5	75
75 ²	Clickable Stars by Combination of AROP and Aqueous AGET ATRP. <i>Macromolecules</i> , 2011 , 44, 1920-1926 ₅	.5	24
751	Molecular Imaging and Analysis of Branching Topology in Polyacrylates by Atomic Force Microscopy. <i>Macromolecules</i> , 2011 , 44, 5928-5936	.5	41
750	Molecular tensile machines: intrinsic acceleration of disulfide reduction by dithiothreitol. <i>Journal of the American Chemical Society</i> , 2011 , 133, 17479-84	6.4	43
749	Photocontrol over the disorder-to-order transition in thin films of polystyrene-block-poly(methyl methacrylate) block copolymers containing photodimerizable anthracene functionality. <i>Journal of the American Chemical Society</i> , 2011 , 133, 17217-24	6.4	21
748	Atom Transfer Radical Copolymerization of Monomer and Cross-Linker under Highly Dilute Conditions. <i>Macromolecules</i> , 2011 , 44, 3270-3275	.5	19

747	How Fast Can a CRP Be Conducted with Preserved Chain End Functionality?. <i>Macromolecules</i> , 2011 , 44, 2668-2677	5.5	135
746	Direct DNA conjugation to star polymers for controlled reversible assemblies. <i>Bioconjugate Chemistry</i> , 2011 , 22, 2030-7	6.3	51
745	ARGET ATRP of Methyl Acrylate with Inexpensive Ligands and ppm Concentrations of Catalyst. <i>Macromolecules</i> , 2011 , 44, 811-819	5.5	128
744	Dual Concurrent ATRP/RAFT of Methyl Acrylate Co-initiated by Alkyl Halides. <i>Macromolecules</i> , 2011 , 44, 1752-1754	5.5	24
743	ATRP of MMA with ppm Levels of Iron Catalyst. <i>Macromolecules</i> , 2011 , 44, 4022-4025	5.5	90
742	Covalently incorporated proteinflanogels using AGET ATRP in an inverse miniemulsion. <i>Polymer Chemistry</i> , 2011 , 2, 1476	4.9	60
74 ¹	Synthesis of Cyclic (Co)polymers by Atom Transfer Radical Cross-Coupling and Ring Expansion by Nitroxide-Mediated Polymerization. <i>Macromolecules</i> , 2011 , 44, 240-247	5.5	47
740	pH-Responsive Fluorescent Molecular Bottlebrushes Prepared by Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2011 , 44, 5905-5910	5.5	51
739	Simulations 2011 , 1431-1469		
738	Applications of Controlled Macromolecular Architectures to Lithography 2011 , 2295-2330		1
73 ⁸	Applications of Controlled Macromolecular Architectures to Lithography 2011 , 2295-2330 BaBa-xy16: robust and broadband homonuclear DQ recoupling for applications in rigid and soft solids up to the highest MAS frequencies. <i>Journal of Magnetic Resonance</i> , 2011 , 212, 204-15	3	116
	BaBa-xy16: robust and broadband homonuclear DQ recoupling for applications in rigid and soft	3.9	
737	BaBa-xy16: robust and broadband homonuclear DQ recoupling for applications in rigid and soft solids up to the highest MAS frequencies. <i>Journal of Magnetic Resonance</i> , 2011 , 212, 204-15 Effect of dilution on branching and gelation in living copolymerization of monomer and divinyl cross-linker: Modeling using dynamic lattice liquid model (DLL) and FloryBtockmayer (FS) model.		116
737	BaBa-xy16: robust and broadband homonuclear DQ recoupling for applications in rigid and soft solids up to the highest MAS frequencies. <i>Journal of Magnetic Resonance</i> , 2011 , 212, 204-15 Effect of dilution on branching and gelation in living copolymerization of monomer and divinyl cross-linker: Modeling using dynamic lattice liquid model (DLL) and FloryBtockmayer (FS) model. <i>Polymer</i> , 2011 , 52, 5092-5101 Structural studies of poly(butyl acrylate) [poly(ethylene oxide) miktoarm star polymers. <i>Polymer</i> ,	3.9	116 40
737 736 735	BaBa-xy16: robust and broadband homonuclear DQ recoupling for applications in rigid and soft solids up to the highest MAS frequencies. <i>Journal of Magnetic Resonance</i> , 2011 , 212, 204-15 Effect of dilution on branching and gelation in living copolymerization of monomer and divinyl cross-linker: Modeling using dynamic lattice liquid model (DLL) and FloryBtockmayer (FS) model. <i>Polymer</i> , 2011 , 52, 5092-5101 Structural studies of poly(butyl acrylate) [boly(ethylene oxide) miktoarm star polymers. <i>Polymer</i> , 2011 , 52, 5513-5520 Cationic Surface-Active Monomers as Reactive Surfactants for AGET Emulsion ATRP of n-Butyl	3.9	116 40 4
737 736 735 734	BaBa-xy16: robust and broadband homonuclear DQ recoupling for applications in rigid and soft solids up to the highest MAS frequencies. <i>Journal of Magnetic Resonance</i> , 2011 , 212, 204-15 Effect of dilution on branching and gelation in living copolymerization of monomer and divinyl cross-linker: Modeling using dynamic lattice liquid model (DLL) and FloryBtockmayer (FS) model. <i>Polymer</i> , 2011 , 52, 5092-5101 Structural studies of poly(butyl acrylate) [poly(ethylene oxide) miktoarm star polymers. <i>Polymer</i> , 2011 , 52, 5513-5520 Cationic Surface-Active Monomers as Reactive Surfactants for AGET Emulsion ATRP of n-Butyl Methacrylate. <i>Macromolecules</i> , 2011 , 44, 5578-5585 Thermoresponsive hydrogel scaffolds with tailored hydrophilic pores. <i>Chemistry - an Asian Journal</i> ,	3·9 3·9 5·5	116 40 4 34
737 736 735 734 733	BaBa-xy16: robust and broadband homonuclear DQ recoupling for applications in rigid and soft solids up to the highest MAS frequencies. <i>Journal of Magnetic Resonance</i> , 2011 , 212, 204-15 Effect of dilution on branching and gelation in living copolymerization of monomer and divinyl cross-linker: Modeling using dynamic lattice liquid model (DLL) and FloryBtockmayer (FS) model. <i>Polymer</i> , 2011 , 52, 5092-5101 Structural studies of poly(butyl acrylate) [poly(ethylene oxide) miktoarm star polymers. <i>Polymer</i> , 2011 , 52, 5513-5520 Cationic Surface-Active Monomers as Reactive Surfactants for AGET Emulsion ATRP of n-Butyl Methacrylate. <i>Macromolecules</i> , 2011 , 44, 5578-5585 Thermoresponsive hydrogel scaffolds with tailored hydrophilic pores. <i>Chemistry - an Asian Journal</i> , 2011 , 6, 128-36	3·9 3·9 5·5 4·5	116 40 4 34 31

729	Activation Deactivation Equilibrium of Atom Transfer Radical Polymerization of Styrene up to High Pressure. <i>Macromolecular Chemistry and Physics</i> , 2011 , 212, 2423-2428	2.6	28
728	Uniform PEO star polymers synthesized in water via free radical polymerization or atom transfer radical polymerization. <i>Macromolecular Rapid Communications</i> , 2011 , 32, 74-81	4.8	24
727	Silica-polymethacrylate hybrid particles synthesized using high-pressure atom transfer radical polymerization. <i>Macromolecular Rapid Communications</i> , 2011 , 32, 295-301	4.8	61
726	Repeatable Photoinduced Self-Healing of Covalently Cross-Linked Polymers through Reshuffling of Trithiocarbonate Units. <i>Angewandte Chemie</i> , 2011 , 123, 1698-1701	3.6	125
7 ² 5	Controlled Aqueous Atom Transfer Radical Polymerization with Electrochemical Generation of the Active Catalyst. <i>Angewandte Chemie</i> , 2011 , 123, 11593-11596	3.6	48
724	Repeatable photoinduced self-healing of covalently cross-linked polymers through reshuffling of trithiocarbonate units. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 1660-3	16.4	430
723	Controlled aqueous atom transfer radical polymerization with electrochemical generation of the active catalyst. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 11391-4	16.4	186
722	Effect of residual copper on stability of molecular brushes prepared by atom transfer radical polymerization. <i>European Polymer Journal</i> , 2011 , 47, 1198-1202	5.2	13
721	Ultrahigh surface area hierarchical porous carbons based on natural well-defined macropores in sisal fibers. <i>Journal of Materials Chemistry</i> , 2011 , 21, 14424		27
720	Microbial bioavailability of covalently bound polymer coatings on model engineered nanomaterials. <i>Environmental Science & Environmental Science & Env</i>	10.3	76
719	Focusing bond tension in bottle-brush macromolecules during spreading. <i>Journal of Materials Chemistry</i> , 2011 , 21, 8448		26
718	Polymeric Dispersants 2011 , 2135-2180		0
717	Structure of Polymer Tethered Highly Grafted Nanoparticles. <i>Macromolecules</i> , 2011 , 44, 8129-8135	5.5	66
716	ATRP of MMA Catalyzed by FeIIBr2in the Presence of Triflate Anions. <i>Macromolecules</i> , 2011 , 44, 1226-1	2 <u>3.8</u>	52
715	Origin of the Difference between Branching in Acrylates Polymerization under Controlled and Free Radical Conditions: A Computational Study of Competitive Processes. <i>Macromolecules</i> , 2011 , 44, 8361-8	33753	78
714	Using mesoscopic models to design strong and tough biomimetic polymer networks. <i>Langmuir</i> , 2011 , 27, 13796-805	4	18
713	Linear-Free Energy Relationships for Modeling StructureReactivity Trends in Controlled Radical Polymerization. <i>Macromolecules</i> , 2011 , 44, 7568-7583	5.5	59
712	UV-enhanced Ordering in Azobenzene-Containing Polystyrene-block-Poly(n-Butyl Methacrylate) Copolymer Blends. <i>Macromolecules</i> , 2011 , 44, 278-285	5.5	8

711	Comparison of Thermoresponsive Deswelling Kinetics of Poly(oligo(ethylene oxide) methacrylate)-Based Thermoresponsive Hydrogels Prepared by Ciraft-from ATRP. <i>Macromolecules</i> , 2011, 44, 2261-2268	5.5	57
710	Robust control of microdomain orientation in thin films of block copolymers by zone casting. Journal of the American Chemical Society, 2011 , 133, 11802-9	16.4	68
709	Anisotropic elasticity of quasi-one-component polymer nanocomposites. ACS Nano, 2011 , 5, 5746-54	16.7	39
708	Phase Behavior and Photoresponse of Azobenzene-Containing Polystyrene-block-poly(n-butyl methacrylate) Block Copolymers. <i>Macromolecules</i> , 2011 , 44, 1125-1131	5.5	16
707	Synthesis of Binary Polymer Brushes via Two-Step Reverse Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2011 , 44, 2253-2260	5.5	50
706	ATRP of Methyl Acrylate with Metallic Zinc, Magnesium, and Iron as Reducing Agents and Supplemental Activators. <i>Macromolecules</i> , 2011 , 44, 683-685	5.5	161
705	Role of parallel reformable bonds in the self-healing of cross-linked nanogel particles. <i>Langmuir</i> , 2011 , 27, 3991-4003	4	23
704	Melt rheology of star polymers with large number of small arms, prepared by crosslinking poly(n-butyl acrylate) macromonomers via ATRP. <i>European Polymer Journal</i> , 2011 , 47, 746-751	5.2	27
703	Synthesis of high molecular weight polystyrene using AGET ATRP under high pressure. <i>European Polymer Journal</i> , 2011 , 47, 730-734	5.2	65
702	Effect of chain topology on the self-organization and the mechanical properties of poly(n-butyl acrylate)-b-polystyrene block copolymers. <i>Polymer</i> , 2011 , 52, 2576-2583	3.9	23
701	Spontaneous core-sheath formation in electrospun nanofibers. <i>Polymer</i> , 2011 , 52, 2869-2876	3.9	12
700	Polymeric Surfactants 2011 , 2181-2223		
699	Modeling the nanoscratching of self-healing materials. <i>Journal of Chemical Physics</i> , 2011 , 134, 084901	3.9	10
698	Conjugated Conducting Polymers as Components in Block Copolymer Systems. <i>Molecular Crystals and Liquid Crystals</i> , 2010 , 521, 1-55	0.5	24
697	Synthesis, Characterization, and Properties of Starlike Poly(n-butyl acrylate)-b-poly(methyl methacrylate) Block Copolymers. <i>Macromolecules</i> , 2010 , 43, 1227-1235	5.5	65
696	Linear Viscoelasticity of Spherical SiO2 Nanoparticle-Tethered Poly(butyl acrylate) Hybrids. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 11985-11990	3.9	18
695	Thermodynamic Properties of Copper Complexes Used as Catalysts in Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2010 , 43, 9257-9267	5.5	115
694	Thermally Responsive P(M(EO)2MA-co-OEOMA) Copolymers via AGET ATRP in Miniemulsion. <i>Macromolecules</i> , 2010 , 43, 4623-4628	5.5	72

(2010-2010)

693	Pickering emulsions stabilized by nanoparticles with thermally responsive grafted polymer brushes. <i>Langmuir</i> , 2010 , 26, 15200-9	4	180
692	Size separation of macromolecules during spreading. <i>Langmuir</i> , 2010 , 26, 15339-44	4	6
691	Excimer Emission from Self-Assembly of Fluorescent Diblock Copolymer Prepared by Atom Transfer Radical Polymerization. <i>Chemistry of Materials</i> , 2010 , 22, 4426-4434	9.6	37
690	Synthesis of Poly(vinyl acetate) Molecular Brushes by a Combination of Atom Transfer Radical Polymerization (ATRP) and Reversible Addition Bragmentation Chain Transfer (RAFT) Polymerization. <i>Macromolecules</i> , 2010 , 43, 4016-4019	5.5	50
689	Thermocurable hyperbranched polystyrenes for ultrathin polymer dielectrics. <i>ACS Applied Materials & Acs Applied & A</i>	9.5	8
688	Photo-cross-linkable thermoresponsive star polymers designed for control of cell-surface interactions. <i>Biomacromolecules</i> , 2010 , 11, 2647-52	6.9	34
687	Flexible particle array structures by controlling polymer graft architecture. <i>Journal of the American Chemical Society</i> , 2010 , 132, 12537-9	16.4	118
686	Comparison of the Thermoresponsive Deswelling Kinetics of Poly(2-(2-methoxyethoxy)ethyl methacrylate) Hydrogels Prepared by ATRP and FRP. <i>Macromolecules</i> , 2010 , 43, 4791-4797	5.5	75
685	Impact of polymer graft characteristics and evaporation rate on the formation of 2-D nanoparticle assemblies. <i>Langmuir</i> , 2010 , 26, 13210-5	4	25
684	ATRP of Methacrylates Utilizing CullX2/L and Copper Wire. <i>Macromolecules</i> , 2010 , 43, 9682-9689	5.5	70
683	Responsive Gels Based on a Dynamic Covalent Trithiocarbonate Cross-Linker. <i>Macromolecules</i> , 2010 , 43, 4355-4361	5.5	186
682	Genetically encoded initiator for polymer growth from proteins. <i>Journal of the American Chemical Society</i> , 2010 , 132, 13575-7	16.4	115
681	Spontaneous and specific activation of chemical bonds in macromolecular fluids. <i>Journal of the American Chemical Society</i> , 2010 , 132, 12487-91	16.4	23
680	Synthesis of Star Polymers Using ARGET ATRP. <i>Macromolecules</i> , 2010 , 43, 9227-9229	5.5	51
679	ATRP of MMA in Polar Solvents Catalyzed by FeBr2 without Additional Ligand. <i>Macromolecules</i> , 2010 , 43, 4003-4005	5.5	84
678	Post-transcriptional gene silencing using siRNA delivered from Star Nanostructured Polymer. <i>Bone</i> , 2010 , 46, S49-S50	4.7	2
677	Photoirradiated Atom Transfer Radical Polymerization with an Alkyl Dithiocarbamate at Ambient Temperature. <i>Macromolecules</i> , 2010 , 43, 5180-5183	5.5	122
676	Marrying click chemistry with polymerization: expanding the scope of polymeric materials. <i>Chemical Society Reviews</i> , 2010 , 39, 1338-54	58.5	693

675	Fundamentals of Atom Transfer Radical Polymerization. <i>Journal of Chemical Education</i> , 2010 , 87, 916-97	12.4	32
674	Redox Responsive Behavior of Thiol/Disulfide-Functionalized Star Polymers Synthesized via Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2010 , 43, 4133-4139	5.5	138
673	Dual-reactive surfactant used for synthesis of functional nanocapsules in miniemulsion. <i>Journal of the American Chemical Society</i> , 2010 , 132, 7823-5	16.4	91
672	Comparative study of polymeric stabilizers for magnetite nanoparticles using ATRP. <i>Langmuir</i> , 2010 , 26, 16890-900	4	58
671	Rapid cellular internalization of multifunctional star polymers prepared by atom transfer radical polymerization. <i>Biomacromolecules</i> , 2010 , 11, 2199-203	6.9	44
670	Synthesis of N-vinylcarbazoleN-vinylpyrrolidone amphiphilic block copolymers by xanthate-mediated controlled radical polymerization. <i>Canadian Journal of Chemistry</i> , 2010 , 88, 228-235	0.9	24
669	Modular Approaches to Star and Miktoarm Star Polymers by ATRP of Cross-Linkers. <i>Macromolecular Symposia</i> , 2010 , 291-292, 12-16	0.8	18
668	Reducing Copper Concentration in Polymers Prepared via Atom Transfer Radical Polymerization. <i>Macromolecular Reaction Engineering</i> , 2010 , 4, 180-185	1.5	56
667	Linear Free-Energy Relationships for the Alkyl Radical Affinities of Nitroxides: A Theoretical Study. <i>Macromolecules</i> , 2010 , 43, 3728-3743	5.5	43
666	Superhydrophilic surfaces via polymer-SiO2 nanocomposites. <i>Langmuir</i> , 2010 , 26, 15567-73	4	87
665	A Green Route to Well-Defined High-Molecular-Weight (Co)polymers Using ARGET ATRP with Alkyl Pseudohalides and Copper Catalysis. <i>Angewandte Chemie</i> , 2010 , 122, 551-554	3.6	41
664	A green route to well-defined high-molecular-weight (Co)polymers using ARGET ATRP with alkyl pseudohalides and copper catalysis. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 541-4	16.4	84
663	ATRP of Styrene and Methyl Methacrylate with Less Efficient Catalysts and with Alkyl Pseudohalides as Initiators/Chain Transfer Agents. <i>Macromolecular Chemistry and Physics</i> , 2010 , 211, 493-500	2.6	15
662	Stimuli-responsive molecular brushes. <i>Progress in Polymer Science</i> , 2010 , 35, 24-44	29.6	541
661	Transition metal catalysts for controlled radical polymerization. <i>Progress in Polymer Science</i> , 2010 , 35, 959-1021	29.6	421
660	Star-like poly (n-butyl acrylate)-b-poly (Emethylene-Ebutyrolactone) block copolymers for high temperature thermoplastic elastomers applications. <i>Polymer</i> , 2010 , 51, 4806-4813	3.9	54
659	Modeling of branching and gelation in living copolymerization of monomer and divinyl cross-linker using dynamic lattice liquid model (DLL) and FloryBtockmayer model. <i>Polymer</i> , 2010 , 51, 6084-6092	3.9	42
658	End-linked amphiphilic polymer conetworks: Synthesis by sequential atom transfer radical polymerization and swelling characterization. <i>Journal of Polymer Science Part A</i> , 2010 , 48, 1878-1886	2.5	24

(2009-2010)

657	Effect of crosslinker multiplicity on the gel point in ATRP. <i>Journal of Polymer Science Part A</i> , 2010 , 48, 2016-2023	2.5	16
656	Gelation in Atom Transfer Radical Copolymerization with a Divinyl Cross-linker. <i>ACS Symposium Series</i> , 2009 , 203-213	0.4	2
655	High-yield synthesis of uniform star polymersis controlled radical polymerization always needed?. <i>Chemistry - A European Journal</i> , 2009 , 15, 6107-11	4.8	8
654	Influence of cross-linker chemistry on release kinetics of PEG-co-PGA hydrogels. <i>Journal of Biomedical Materials Research - Part A</i> , 2009 , 90, 142-53	5.4	34
653	Methacryloyl and/or Hydroxyl End-Functional Star Polymers Synthesized by ATRP Using the Arm-First Method. <i>Macromolecular Chemistry and Physics</i> , 2009 , 210, 421-430	2.6	18
652	Synthesis of Photoisomerizable Block Copolymers by Atom Transfer Radical Polymerization. <i>Macromolecular Chemistry and Physics</i> , 2009 , 210, 1484-1492	2.6	10
651	Chain Transfer to Polymer and Branching in Controlled Radical Polymerizations of n-Butyl Acrylate. <i>Macromolecular Rapid Communications</i> , 2009 , 30, 2002-21	4.8	126
650	Synthesis of large-pore SBA-15 silica using poly(ethylene oxide)-poly(methyl acrylate) diblock copolymers. <i>Adsorption</i> , 2009 , 15, 156-166	2.6	10
649	ARGET ATRP of methyl methacrylate in the presence of nitrogen-based ligands as reducing agents. <i>Polymer International</i> , 2009 , 58, 242-247	3.3	122
648	AGET ATRP in water and inverse miniemulsion: A facile route for preparation of high-molecular-weight biocompatible brush-like polymers. <i>Journal of Polymer Science Part A</i> , 2009 , 47, 1771-1781	2.5	53
647	Incorporation of poly(2-acrylamido-2-methyl-N-propanesulfonic acid) segments into block and brush copolymers by ATRP. <i>Journal of Polymer Science Part A</i> , 2009 , 47, 5386-5396	2.5	25
646	Synthesis of hyperbranched degradable polymers by atom transfer radical (Co)polymerization of inimers with ester or disulfide groups. <i>Journal of Polymer Science Part A</i> , 2009 , 47, 6839-6851	2.5	57
645	Nanostructured functional materials prepared by atom transfer radical polymerization. <i>Nature Chemistry</i> , 2009 , 1, 276-88	17.6	1074
644	Synthesis, morphology and mechanical properties of linear triblock copolymers based on poly(Emethylene-Ebutyrolactone). <i>Polymer</i> , 2009 , 50, 2087-2094	3.9	75
643	Atom transfer radical polymerization in inverse miniemulsion: A versatile route toward preparation and functionalization of microgels/nanogels for targeted drug delivery applications. <i>Polymer</i> , 2009 , 50, 4407-4423	3.9	117
642	Synthesis of functional polymers with controlled architecture by CRP of monomers in the presence of cross-linkers: From stars to gels. <i>Progress in Polymer Science</i> , 2009 , 34, 317-350	29.6	68o
641	Nanostructured hybrid hydrogels prepared by a combination of atom transfer radical polymerization and free radical polymerization. <i>Biomaterials</i> , 2009 , 30, 5270-8	15.6	110
640	End-group effects on the properties of PEG-co-PGA hydrogels. <i>Acta Biomaterialia</i> , 2009 , 5, 1872-83	10.8	42

639	Synergistic Interaction Between ATRP and RAFT: Taking the Best of Each World. <i>Australian Journal of Chemistry</i> , 2009 , 62, 1384	1.2	46
638	Atom transfer radical polymerization in aqueous dispersed media. <i>Open Chemistry</i> , 2009 , 7, 657-674	1.6	65
637	Polymer micelles from tadpole-shaped amphiphilic block-graft copolymers prepared by Grafting-through ATRP. <i>Polymer Science - Series A</i> , 2009 , 51, 1210-1217	1.2	9
636	Effect of Shell Architecture on the Static and Dynamic Properties of Polymer-Coated Particles in Solution. <i>Macromolecules</i> , 2009 , 42, 2721-2728	5.5	42
635	Molecular Tensile Testing Machines: Breaking a Specific Covalent Bond by Adsorption-Induced Tension in Brushlike Macromolecules. <i>Macromolecules</i> , 2009 , 42, 1805-1807	5.5	78
634	Harnessing labile bonds between nanogel particles to create self-healing materials. <i>ACS Nano</i> , 2009 , 3, 885-92	16.7	70
633	ICAR ATRP of Styrene and Methyl Methacrylate with Ru(Cp*)Cl(PPh3)2. Macromolecules, 2009, 42, 2330-	- 3 3332	66
632	One-Pot Synthesis of Hairy Nanoparticles by Emulsion ATRP. <i>Macromolecules</i> , 2009 , 42, 1597-1603	5.5	94
631	Comprehensive Modeling Study of Nitroxide-Mediated Controlled/Living Radical Copolymerization of Methyl Methacrylate with a Small Amount of Styrene. <i>Macromolecules</i> , 2009 , 42, 4470-4478	5.5	83
630	Thermodynamic Components of the Atom Transfer Radical Polymerization Equilibrium: Quantifying Solvent Effects. <i>Macromolecules</i> , 2009 , 42, 6348-6360	5.5	180
629	A Simple and Efficient Synthesis of RAFT Chain Transfer Agents via Atom Transfer Radical Addition Bragmentation. <i>Macromolecules</i> , 2009 , 42, 3738-3742	5.5	32
628	Influence of Initiation Efficiency and Polydispersity of Primary Chains on Gelation during Atom Transfer Radical Copolymerization of Monomer and Cross-Linker. <i>Macromolecules</i> , 2009 , 42, 927-932	5.5	51
627	Homopolymerization and Block Copolymerization of N-Vinylpyrrolidone by ATRP and RAFT with Haloxanthate Inifers. <i>Macromolecules</i> , 2009 , 42, 8198-8210	5.5	68
626	Polyaniline and Polypyrrole Templated on Self-Assembled Acidic Block Copolymers. <i>Macromolecules</i> , 2009 , 42, 8129-8137	5.5	29
625	Reactive Surfactants for Polymeric Nanocapsules via Interfacially Confined Miniemulsion ATRP. <i>Macromolecules</i> , 2009 , 42, 8228-8233	5.5	83
624	Gelation in Living Copolymerization of Monomer and Divinyl Cross-Linker: Comparison of ATRP Experiments with Monte Carlo Simulations. <i>Macromolecules</i> , 2009 , 42, 5925-5932	5.5	77
623	Crystallization of Molecular Brushes with Block Copolymer Side Chains. <i>Macromolecules</i> , 2009 , 42, 9008-	-90;17	65
622	Temperature Effect on Activation Rate Constants in ATRP: New Mechanistic Insights into the Activation Process. <i>Macromolecules</i> , 2009 , 42, 6050-6055	5.5	98

(2008-2009)

621	Gelation in ATRP Using Structurally Different Branching Reagents: Comparison of Inimer, Divinyl and Trivinyl Cross-Linkers. <i>Macromolecules</i> , 2009 , 42, 8039-8043	5.5	21
620	Dangling chain elastomers as repeatable fibrillar adhesives. <i>ACS Applied Materials & Damp; Interfaces</i> , 2009 , 1, 2277-87	9.5	32
619	Star polymers via cross-linking amphiphilic macroinitiators by AGET ATRP in aqueous media. <i>Journal of the American Chemical Society</i> , 2009 , 131, 10378-9	16.4	67
618	Cellular uptake of functional nanogels prepared by inverse miniemulsion ATRP with encapsulated proteins, carbohydrates, and gold nanoparticles. <i>Biomacromolecules</i> , 2009 , 10, 2300-9	6.9	79
617	Effect of adsorbed polyelectrolytes on nanoscale zero valent iron particle attachment to soil surface models. <i>Environmental Science & Environmental S</i>	10.3	118
616	Cell-adhesive star polymers prepared by ATRP. <i>Biomacromolecules</i> , 2009 , 10, 1795-803	6.9	37
615	All-Star Polymer Multilayers as pH-Responsive Nanofilms. <i>Macromolecules</i> , 2009 , 42, 368-375	5.5	87
614	Investigation of metal ligand affinities of atom transfer radical polymerization catalysts with a quadrupole ion trap. <i>Dalton Transactions</i> , 2009 , 8878-84	4.3	5
613	Motion of single wandering diblock-macromolecules directed by a PTFE nano-fence: real time SFM observations. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 5591-7	3.6	4
612	Controlled Radical Polymerization: State of the Art in 2008. ACS Symposium Series, 2009, 3-13	0.4	14
611	The Atom Transfer Radical Polymerization Equilibrium: Structural and Medium Effects. <i>ACS Symposium Series</i> , 2009 , 85-96	0.4	8
610	Linear Viscoelasticity of Polymer Tethered Highly Grafted Nanoparticles. <i>ACS Symposium Series</i> , 2009 , 257-267	0.4	4
609	Synthesis by AGET ATRP of degradable nanogel precursors for in situ formation of nanostructured hyaluronic acid hydrogel. <i>Biomacromolecules</i> , 2009 , 10, 2499-507	6.9	89
608	Thermally Responsive PM(EO)2MA Magnetic Microgels via Activators Generated by Electron Transfer Atom Transfer Radical Polymerization in Miniemulsion. <i>Chemistry of Materials</i> , 2009 , 21, 3965.	-3 <i>97</i> 2	68
607	Structural and Mechanistic Aspects of Copper Catalyzed Atom Transfer Radical Polymerization. <i>Topics in Organometallic Chemistry</i> , 2009 , 221	0.6	
606	Structural and Mechanistic Aspects of Copper Catalyzed Atom Transfer Radical Polymerization. <i>Topics in Organometallic Chemistry</i> , 2009 , 221-251	0.6	32
605	From Mechanism and Kinetics to Precise ATRP Synthesis. <i>NATO Science for Peace and Security Series A: Chemistry and Biology</i> , 2009 , 3-16	0.1	2
604	Polar Three-Arm Star Block Copolymer Thermoplastic Elastomers Based on Polyacrylonitrile. <i>Macromolecules</i> , 2008 , 41, 2451-2458	5.5	58

603	High Molecular Weight Polymethacrylates by AGET ATRP under High Pressure. <i>Macromolecules</i> , 2008 , 41, 1067-1069	5.5	125
602	Effect of Initiator and Ligand Structures on ATRP of Styrene and Methyl Methacrylate Initiated by Alkyl Dithiocarbamate. <i>Macromolecules</i> , 2008 , 41, 6627-6635	5.5	61
601	Synthesis of Polyacrylate Networks by ATRP: Parameters Influencing Experimental Gel Points. <i>Macromolecules</i> , 2008 , 41, 2335-2340	5.5	106
600	ARGET ATRP of 2-(Dimethylamino)ethyl Methacrylate as an Intrinsic Reducing Agent. <i>Macromolecules</i> , 2008 , 41, 6868-6870	5.5	164
599	Nonleaching antibacterial glass surfaces via "Grafting Onto": the effect of the number of quaternary ammonium groups on biocidal activity. <i>Langmuir</i> , 2008 , 24, 6785-95	4	186
598	Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns. <i>Environmental Science & Environmental Science & Env</i>	10.3	437
597	Effect of Cross-Linker Reactivity on Experimental Gel Points during ATRcP of Monomer and Cross-Linker. <i>Macromolecules</i> , 2008 , 41, 7843-7849	5.5	69
596	Concurrent ATRP/RAFT of Styrene and Methyl Methacrylate with Dithioesters Catalyzed by Copper(I) Complexes. <i>Macromolecules</i> , 2008 , 41, 6602-6604	5.5	78
595	Dibromotrithiocarbonate Iniferter for Concurrent ATRP and RAFT Polymerization. Effect of Monomer, Catalyst, and Chain Transfer Agent Structure on the Polymerization Mechanism. <i>Macromolecules</i> , 2008 , 41, 4585-4596	5.5	84
594	Hetero-Grafted Block Brushes with PCL and PBA Side Chains. <i>Macromolecules</i> , 2008 , 41, 6073-6080	5.5	82
593	Atom transfer radical addition and polymerization reactions catalyzed by ppm amounts of copper complexes. <i>Chemical Society Reviews</i> , 2008 , 37, 1087-97	58.5	572
592	Ab initio evaluation of the thermodynamic and electrochemical properties of alkyl halides and radicals and their mechanistic implications for atom transfer radical polymerization. <i>Journal of the American Chemical Society</i> , 2008 , 130, 12762-74	16.4	237
591	One-pot synthesis of robust core/shell gold nanoparticles. <i>Journal of the American Chemical Society</i> , 2008 , 130, 12852-3	16.4	124
590	Synthesis of Star Polymers by A New Core-First Method: Sequential Polymerization of Cross-Linker and Monomer. <i>Macromolecules</i> , 2008 , 41, 1118-1125	5.5	116
589	Copolymerization of (Meth)acrylates with Olefins Using Activators Regenerated by Electron Transfer for Atom Transfer Radical Polymerization (ARGET ATRP). <i>Macromolecular Symposia</i> , 2008 , 261, 1-9	0.8	26
588	Rapid screening of atom transfer radical polymerization catalysts by electrospray ionization mass spectrometry. <i>Chemical Communications</i> , 2008 , 6306-8	5.8	9
587	Temperature- and pH-Responsive Dense Copolymer Brushes Prepared by ATRP. <i>Macromolecules</i> , 2008 , 41, 7013-7020	5.5	157
586	Allyl Halide (Macro)initiators in ATRP: Synthesis of Block Copolymers with Polyisobutylene Segments. <i>Macromolecules</i> , 2008 , 41, 2318-2323	5.5	55

(2008-2008)

585	Conformation of Arborescent Polymers in Solution by Small-Angle Neutron Scattering: Segment Density and CoreBhell Morphology. <i>Macromolecules</i> , 2008 , 41, 175-183	5.5	19
584	Effect of Symmetry of Molecular Weight Distribution in Block Copolymers on Formation of Metastable Morphologies. <i>Macromolecules</i> , 2008 , 41, 5919-5927	5.5	133
583	Understanding atom transfer radical polymerization: effect of ligand and initiator structures on the equilibrium constants. <i>Journal of the American Chemical Society</i> , 2008 , 130, 10702-13	16.4	450
582	PEO-Based Block Copolymers and Homopolymers as Reactive Surfactants for AGET ATRP of Butyl Acrylate in Miniemulsion. <i>Macromolecules</i> , 2008 , 41, 6387-6392	5.5	95
581	"Fatal adsorption" of brushlike macromolecules: high sensitivity of C-C bond cleavage rates to substrate surface energy. <i>Journal of the American Chemical Society</i> , 2008 , 130, 4228-9	16.4	55
580	Grafting Monodisperse Polymer Chains from Concave Surfaces of Ordered Mesoporous Silicas. <i>Macromolecules</i> , 2008 , 41, 8584-8591	5.5	121
579	Synthesis of Poly(vinylacetylene) Block Copolymers by Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2008 , 41, 9522-9524	5.5	13
578	Atom Transfer Radical Polymerization of Tulipalin A: A Naturally Renewable Monomer. <i>Macromolecules</i> , 2008 , 41, 5509-5511	5.5	105
577	Synthesis of poly(vinyl acetate) block copolymers by successive RAFT and ATRP with a bromoxanthate iniferter. <i>Chemical Communications</i> , 2008 , 5336-8	5.8	71
576	Viscoelastic and dielectric studies on comb- and brush-shaped poly(n-butyl acrylate). <i>Polymer</i> , 2008 , 49, 3533-3540	3.9	18
575	The effect of structure on the thermoresponsive nature of well-defined poly(oligo(ethylene oxide) methacrylates) synthesized by ATRP. <i>Journal of Polymer Science Part A</i> , 2008 , 46, 194-202	2.5	98
574	Tripodal imidazole containing ligands for copper catalyzed ATRP. <i>Journal of Polymer Science Part A</i> , 2008 , 46, 2015-2024	2.5	19
573	Polystyrene with Improved Chain-End Functionality and Higher Molecular Weight by ARGET ATRP. <i>Macromolecular Chemistry and Physics</i> , 2008 , 209, 32-39	2.6	124
572	PBA B MMA 3-Arm Star Block Copolymer Thermoplastic Elastomers. <i>Macromolecular Chemistry and Physics</i> , 2008 , 209, 1686-1693	2.6	39
571	Biotin-, Pyrene-, and GRGDS-Functionalized Polymers and Nanogels via ATRP and End Group Modification. <i>Macromolecular Chemistry and Physics</i> , 2008 , 209, 2179-2193	2.6	55
570	Structure R eactivity Correlation in C lick C hemistry: Substituent Effect on Azide Reactivity. Macromolecular Rapid Communications, 2008 , 29, 1167-1171	4.8	65
569	Kinetic Modeling of Normal ATRP, Normal ATRP with [CuII]0, Reverse ATRP and SR&NI ATRP. <i>Macromolecular Theory and Simulations</i> , 2008 , 17, 359-375	1.5	73
568	Synthesis, characterization, and in vitro cell culture viability of degradable poly(N-isopropylacrylamide-co-5,6-benzo-2-methylene-1,3-dioxepane)-based polymers and crosslinked gels. <i>Journal of Biomedical Materials Research - Part A</i> , 2008 , 87, 345-58	5.4	56

567	Nanoporous Carbon Films from Hairy Polyacrylonitrile-Grafted Colloidal Silica Nanoparticles. <i>Advanced Materials</i> , 2008 , 20, 1516-1522	24	73
566	Comparison of thermomechanical properties of statistical, gradient and block copolymers of isobornyl acrylate and n-butyl acrylate with various acrylate homopolymers. <i>Polymer</i> , 2008 , 49, 1567-15	78 9	63
565	pH-induced conformational changes of loosely grafted molecular brushes containing poly(acrylic acid) side chains. <i>Polymer</i> , 2008 , 49, 5490-5496	3.9	69
564	The development of microgels/nanogels for drug delivery applications. <i>Progress in Polymer Science</i> , 2008 , 33, 448-477	29.6	1269
563	Cylindrical molecular brushes: Synthesis, characterization, and properties. <i>Progress in Polymer Science</i> , 2008 , 33, 759-785	29.6	919
562	Influence of the degree of methacrylation on hyaluronic acid hydrogels properties. <i>Biomaterials</i> , 2008 , 29, 1739-49	15.6	195
561	ARGET ATRP Synthesis of Thermally Responsive Polymers with Oligo(ethylene oxide) Units. <i>Polymer Journal</i> , 2008 , 40, 496-497	2.7	19
560	Synthesis of Low-Polydispersity Miktoarm Star Copolymers via a Simple Arm-First Method: Macromonomers as Arm Precursors. <i>Macromolecules</i> , 2008 , 41, 4250-4257	5.5	77
559	Origin of Activity in Cu-, Ru-, and Os-Mediated Radical Polymerization. <i>Macromolecules</i> , 2007 , 40, 8576-8	8§85	88
558	Rheooscillations of a Bottlebrush Polymer Solution Due to Shear-Induced Phase Transitions between a Shear Molten State and a Line Hexatic Phase. <i>Macromolecules</i> , 2007 , 40, 7680-7688	5.5	7
557	Preparation of Well-Defined Hybrid Materials by ATRP in Miniemulsion. <i>Macromolecules</i> , 2007 , 40, 7429)- ₹.4 32	82
556	ATRP Synthesis of Thermally Responsive Molecular Brushes from Oligo(ethylene oxide) Methacrylates. <i>Macromolecules</i> , 2007 , 40, 9348-9353	5.5	124
555	Effects of Initiator Structure on Activation Rate Constants in ATRP. Macromolecules, 2007, 40, 1858-186	5 3 5.5	234
554	Use of an Amphiphilic Block Copolymer as a Stabilizer and a Macroinitiator in Miniemulsion Polymerization under AGET ATRP Conditions. <i>Macromolecules</i> , 2007 , 40, 8813-8816	5.5	65
553	Antibacterial polypropylene via surface-initiated atom transfer radical polymerization. <i>Biomacromolecules</i> , 2007 , 8, 1396-9	6.9	275
55 ²	Synthesis and Morphology of Molecular Brushes with Polyacrylonitrile Block Copolymer Side Chains and Their Conversion into Nanostructured Carbons. <i>Macromolecules</i> , 2007 , 40, 6199-6205	5.5	73
551	High capacity, charge-selective protein uptake by polyelectrolyte brushes. <i>Langmuir</i> , 2007 , 23, 4448-54	4	124
550	Synthesis and Evaluation of a Functional, Water- and Organo-Soluble Nitroxide for living Free Radical Polymerization. <i>Macromolecules</i> , 2007 , 40, 6067-6075	5.5	43

(2007-2007)

549	Controlled Copolymerization of n-Butyl Acrylate with Nonpolar 1-Alkenes Using Activators Regenerated by Electron Transfer for Atom-Transfer Radical Polymerization. <i>Macromolecules</i> , 2007 , 40, 5255-5260	5.5	43
548	Methylaluminoxane as a Reducing Agent for Activators Generated by Electron Transfer ATRP. Journal of Macromolecular Science - Pure and Applied Chemistry, 2007 , 44, 1035-1039	2.2	32
547	Synthesis and in situ atomic force microscopy characterization of temperature-responsive hydrogels based on poly(2-(dimethylamino)ethyl methacrylate) prepared by atom transfer radical polymerization. <i>Langmuir</i> , 2007 , 23, 241-9	4	42
546	High Yield Synthesis of Molecular Brushes via ATRP in Miniemulsion. <i>Macromolecules</i> , 2007 , 40, 6557-65	653 5	75
545	Synthesis and biodegradation of nanogels as delivery carriers for carbohydrate drugs. <i>Biomacromolecules</i> , 2007 , 8, 3326-31	6.9	145
544	Successful Chain Extension of Polyacrylate and Polystyrene Macroinitiators with Methacrylates in an ARGET and ICAR ATRP. <i>Macromolecules</i> , 2007 , 40, 6464-6472	5.5	142
543	Role of Cu0 in Controlled/Iliving Radical Polymerization. <i>Macromolecules</i> , 2007 , 40, 7795-7806	5.5	248
542	"Green" atom transfer radical polymerization: from process design to preparation of well-defined environmentally friendly polymeric materials. <i>Chemical Reviews</i> , 2007 , 107, 2270-99	68.1	1132
541	Flory theorem for structurally asymmetric mixtures. <i>Physical Review Letters</i> , 2007 , 99, 137801	7.4	28
540	Surface Modifications Enhance Nanoiron Transport and NAPL Targeting in Saturated Porous Media. <i>Environmental Engineering Science</i> , 2007 , 24, 45-57	2	368
539	Graft Copolymers by a Combination of ATRP and Two Different Consecutive Click Reactions. <i>Macromolecules</i> , 2007 , 40, 4439-4445	5.5	251
538	Effect of electron donors on the radical polymerization of vinyl acetate mediated by [Co(acac)2]: degenerative transfer versus reversible homolytic cleavage of an organocobalt(III) complex. <i>Chemistry - A European Journal</i> , 2007 , 13, 2480-92	4.8	134
537	Synthesis of a linear polyethylene macromonomer and preparation of polystyrene-graft-polyethylene copolymers via grafting-through atom transfer radical polymerization. <i>Journal of Applied Polymer Science</i> , 2007 , 105, 3-13	2.9	29
536	Light-induced reversible formation of polymeric micelles. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 2453-7	16.4	348
535	Light-Induced Reversible Formation of Polymeric Micelles. <i>Angewandte Chemie</i> , 2007 , 119, 2505-2509	3.6	66
534	Solution Behavior of Temperature-Responsive Molecular Brushes Prepared by ATRP. <i>Macromolecular Chemistry and Physics</i> , 2007 , 208, 30-36	2.6	103
533	Synthesis of 3-Arm Star Block Copolymers by Combination of Core-First and Coupling-Onto Methods Using ATRP and Click Reactions. <i>Macromolecular Chemistry and Physics</i> , 2007 , 208, 1370-1378	2.6	78
532	A Novel Route for the Preparation of Discrete Nanostructured Carbons from Block Copolymers with Polystyrene Segments. <i>Macromolecular Chemistry and Physics</i> , 2007 , 208, 2312-2320	2.6	21

531	Macromol. Chem. Phys. 21/2007. Macromolecular Chemistry and Physics, 2007, 208, 2380-2380	2.6	
530	Partially graphitic, high-surface-area mesoporous carbons from polyacrylonitrile templated by ordered and disordered mesoporous silicas. <i>Microporous and Mesoporous Materials</i> , 2007 , 102, 178-187	5.3	80
529	Solvent induced morphologies of poly(methyl methacrylate-b-ethylene oxide-b-methyl methacrylate) triblock copolymers synthesized by atom transfer radical polymerization. <i>Polymer</i> , 2007 , 48, 7279-7290	3.9	24
528	Electron transfer reactions relevant to atom transfer radical polymerization. <i>Journal of Organometallic Chemistry</i> , 2007 , 692, 3212-3222	2.3	137
527	Controlled/living radical polymerization: Features, developments, and perspectives. <i>Progress in Polymer Science</i> , 2007 , 32, 93-146	29.6	2658
526	Click Chemistry and ATRP: A Beneficial Union for the Preparation of Functional Materials. <i>QSAR and Combinatorial Science</i> , 2007 , 26, 1116-1134		138
525	Polymer grafting from CdS quantum dots via AGET ATRP in miniemulsion. <i>Small</i> , 2007 , 3, 1230-6	11	91
524	"Hairy" single-walled carbon nanotubes prepared by atom transfer radical polymerization. <i>Small</i> , 2007 , 3, 1803-10	11	56
523	Synthesis of poly(vinyl acetate)-graft-polystyrene by a combination of cobalt-mediated radical polymerization and atom transfer radical polymerization. <i>Journal of Polymer Science Part A</i> , 2007 , 45, 447-459	2.5	25
522	Preparation of gradient copolymers via ATRP in miniemulsion. II. Forced gradient. <i>Journal of Polymer Science Part A</i> , 2007 , 45, 1413-1423	2.5	73
521	Preparation of nanoparticles of double-hydrophilic PEO-PHEMA block copolymers by AGET ATRP in inverse miniemulsion. <i>Journal of Polymer Science Part A</i> , 2007 , 45, 4764-4772	2.5	75
520	Vapor-induced spreading dynamics of adsorbed linear and brush-like macromolecules as observed by environmental SFM: Polymer chain statistics and scaling exponents. <i>Journal of Polymer Science, Part B: Polymer Physics,</i> 2007 , 45, 2368-2379	2.6	21
519	Biodegradable nanogels prepared by atom transfer radical polymerization as potential drug delivery carriers: synthesis, biodegradation, in vitro release, and bioconjugation. <i>Journal of the American Chemical Society</i> , 2007 , 129, 5939-45	16.4	417
518	Determination of Gel Point during Atom Transfer Radical Copolymerization with Cross-Linker. <i>Macromolecules</i> , 2007 , 40, 7763-7770	5.5	141
517	Use of Ascorbic Acid as Reducing Agent for Synthesis of Well-Defined Polymers by ARGET ATRP. <i>Macromolecules</i> , 2007 , 40, 1789-1791	5.5	309
516	Permanent, non-leaching antibacterial surface2: how high density cationic surfaces kill bacterial cells. <i>Biomaterials</i> , 2007 , 28, 4870-9	15.6	569
515	Structural mobility of molecular bottle-brushes investigated by NMR relaxation dynamics. <i>Polymer</i> , 2007 , 48, 496-501	3.9	29
514	Multisegmented Block Copolymers by 'Click' Coupling of Polymers Prepared by ATRP. <i>Australian Journal of Chemistry</i> , 2007 , 60, 400	1.2	66

(2006-2007)

513	Competitive Equilibria in Atom Transfer Radical Polymerization. <i>Macromolecular Symposia</i> , 2007 , 248, 60-70	0.8	68
512	Well-Defined High-Molecular-Weight Polyacrylonitrile via Activators Regenerated by Electron Transfer ATRP. <i>Macromolecules</i> , 2007 , 40, 2974-2977	5.5	167
511	Grafting from surfaces for "everyone": ARGET ATRP in the presence of air. <i>Langmuir</i> , 2007 , 23, 4528-31	4	544
510	Atom Transfer Radical Dispersion Polymerization of Styrene in Ethanol. <i>Macromolecules</i> , 2007 , 40, 7217	'- 7 2 2 22	42
509	Arm-first method as a simple and general method for synthesis of miktoarm star copolymers. Journal of the American Chemical Society, 2007 , 129, 11828-34	16.4	158
508	Synthesis of Multisegmented Degradable Polymers by Atom Transfer Radical Cross-Coupling. <i>Macromolecules</i> , 2007 , 40, 9217-9223	5.5	66
507	Low-Polydispersity Star Polymers with Core Functionality by Cross-Linking Macromonomers Using Functional ATRP Initiators. <i>Macromolecules</i> , 2007 , 40, 399-401	5.5	80
506	Synthesis of molecular brushes by "grafting onto" method: combination of ATRP and click reactions. <i>Journal of the American Chemical Society</i> , 2007 , 129, 6633-9	16.4	514
505	Ab Initio Study of the Penultimate Effect for the ATRP Activation Step Using Propylene, Methyl Acrylate, and Methyl Methacrylate Monomers. <i>Macromolecules</i> , 2007 , 40, 5985-5994	5.5	78
504	Templating Conducting Polymers via Self-Assembly of Block Copolymers and Supramolecular Recognition. <i>Macromolecules</i> , 2007 , 40, 7745-7747	5.5	38
503	A scanning force microscopy study on the motion of single brush-like macromolecules on a silicon substrate induced by coadsorption of small molecules. <i>Physical Chemistry Chemical Physics</i> , 2007 , 9, 346	3-32	26
502	Bottle-brush macromolecules in solution: Comparison between results obtained from scattering experiments and computer simulations. <i>Polymer</i> , 2006 , 47, 7318-7327	3.9	93
501	Activators regenerated by electron transfer for atom-transfer radical polymerization of (meth)acrylates and related block copolymers. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 448	3 <u>2</u> -6.4	538
500	Synthesis and Characterization of Styrene/Butyl Acrylate Linear and Star Block Copolymers via Atom Transfer Radical Polymerization. <i>Macromolecular Chemistry and Physics</i> , 2006 , 207, 801-811	2.6	33
499	Characterization of Linear and 3-Arm Star Block Copolymers by Liquid Chromatography at Critical Conditions. <i>Macromolecular Chemistry and Physics</i> , 2006 , 207, 1709-1717	2.6	38
498	AGET ATRP in the Presence of Air in Miniemulsion and in Bulk. <i>Macromolecular Rapid Communications</i> , 2006 , 27, 594-598	4.8	210
497	Activators Regenerated by Electron Transfer for Atom-Transfer Radical Polymerization of (Meth)acrylates and Related Block Copolymers. <i>Angewandte Chemie</i> , 2006 , 118, 4594-4598	3.6	127
496	Grafting Chromatographic Stationary Phase Substrates by Atom Transfer Radical Polymerization. ACS Symposium Series, 2006 , 252-268	0.4	16

495	Controlled Synthesis of Polymers with Ionic or Ionizable Groups Using Atom Transfer Radical Polymerization. <i>ACS Symposium Series</i> , 2006 , 79-94	0.4	10
494	New Segmented Copolymers by Combination of Atom Transfer Radical Polymerization and Ring Opening Polymerization. <i>Macromolecular Symposia</i> , 2006 , 240, 213-223	0.8	44
493	Inverse miniemulsion ATRP: a new method for synthesis and functionalization of well-defined water-soluble/cross-linked polymeric particles. <i>Journal of the American Chemical Society</i> , 2006 , 128, 557	8-84	286
492	Densely Heterografted Brush Macromolecules with Crystallizable Grafts. Synthesis and Bulk Properties. <i>Macromolecules</i> , 2006 , 39, 584-593	5.5	126
491	Synthesis of Star Polymers by a Combination of ATRP and the ClicklCoupling Method. <i>Macromolecules</i> , 2006 , 39, 4960-4965	5.5	405
490	Activators Regenerated by Electron Transfer for Atom Transfer Radical Polymerization of Styrene. <i>Macromolecules</i> , 2006 , 39, 39-45	5.5	651
489	Preparation of Nanoparticles of Well-Controlled Water-Soluble Homopolymers and Block Copolymers Using an Inverse Miniemulsion ATRP. <i>Macromolecules</i> , 2006 , 39, 8003-8010	5.5	63
488	Phototunable Temperature-Responsive Molecular Brushes Prepared by ATRP. <i>Macromolecules</i> , 2006 , 39, 3914-3920	5.5	138
487	Preparation of Poly(oligo(ethylene glycol) monomethyl ether methacrylate) by Homogeneous Aqueous AGET ATRP. <i>Macromolecules</i> , 2006 , 39, 3161-3167	5.5	154
486	Synthesis of High Molecular Weight Poly(styrene-co-acrylonitrile) Copolymers with Controlled Architecture. <i>Macromolecules</i> , 2006 , 39, 6384-6390	5.5	112
485	Rational Selection of Initiating/Catalytic Systems for the Copper-Mediated Atom Transfer Radical Polymerization of Basic Monomers in Protic Media: ATRP of 4-Vinylpyridine. <i>Macromolecules</i> , 2006 , 39, 6817-6824	5.5	90
484	Well-Defined Poly(ethylene oxide) P olyacrylonitrile Diblock Copolymers as Templates for Mesoporous Silicas and Precursors for Mesoporous Carbons. <i>Chemistry of Materials</i> , 2006 , 18, 1417-142	49.6	54
483	Cylindrical CoreBhell Brushes Prepared by a Combination of ROP and ATRP. <i>Macromolecules</i> , 2006 , 39, 4983-4989	5.5	121
482	Effect of Ligand Structure on Activation Rate Constants in ATRP. <i>Macromolecules</i> , 2006 , 39, 4953-4959	5.5	222
481	Structural Control in ATRP Synthesis of Star Polymers Using the Arm-First Method. <i>Macromolecules</i> , 2006 , 39, 3154-3160	5.5	146
480	Development of an ab initio emulsion atom transfer radical polymerization: from microemulsion to emulsion. <i>Journal of the American Chemical Society</i> , 2006 , 128, 10521-6	16.4	153
479	Highly active copper-based catalyst for atom transfer radical polymerization. <i>Journal of the American Chemical Society</i> , 2006 , 128, 16277-85	16.4	132
478	Diminishing catalyst concentration in atom transfer radical polymerization with reducing agents. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15309-14	11.5	723

(2006-2006)

477	Synthesis of Miktoarm Star Polymers via ATRP Using the IhDutIMethod: Determination of Initiation Efficiency of Star Macroinitiators. <i>Macromolecules</i> , 2006 , 39, 7216-7223	5.5	80
476	Catalyst Performance in C lick C oupling Reactions of Polymers Prepared by ATRP: Ligand and Metal Effects. <i>Macromolecules</i> , 2006 , 39, 6451-6457	5.5	206
475	Reevaluation of Persistent Radical Effect in NMP. <i>Macromolecules</i> , 2006 , 39, 4332-4337	5.5	67
474	Water-Dispersible Carbon Black Nanocomposites Prepared by Surface-Initiated Atom Transfer Radical Polymerization in Protic Media. <i>Macromolecules</i> , 2006 , 39, 548-556	5.5	71
473	Determination of equilibrium constants for atom transfer radical polymerization. <i>Journal of the American Chemical Society</i> , 2006 , 128, 1598-604	16.4	242
472	Radical (Co)polymerization of Vinyl Chloroacetate and N-Vinylpyrrolidone Mediated by Bis (acetylacetonate) cobalt Derivatives. <i>Macromolecules</i> , 2006 , 39, 2757-2763	5.5	73
471	Flow-enhanced epitaxial ordering of brush-like macromolecules on graphite. <i>Langmuir</i> , 2006 , 22, 1254-9	94	27
470	Controlled/Living Radical Polymerization: State of the Art in 2005. ACS Symposium Series, 2006, 2-12	0.4	5
469	Synthesis of poly(2-hydroxyethyl methacrylate) in protic media through atom transfer radical polymerization using activators generated by electron transfer. <i>Journal of Polymer Science Part A</i> , 2006 , 44, 3787-3796	2.5	67
468	Environmentally benign atom transfer radical polymerization: Towards green[processes and materials. <i>Journal of Polymer Science Part A</i> , 2006 , 44, 5098-5112	2.5	77
467	Controlling grafting density and side chain length in poly(n-butyl acrylate) by ATRP copolymerization of macromonomers. <i>Journal of Polymer Science Part A</i> , 2006 , 44, 5454-5467	2.5	70
466	Viscoelastic properties of silica-grafted poly(styrene\(\text{Bcrylonitrile}\)) nanocomposites. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2006 , 44, 2014-2023	2.6	57
465	Adsorption-induced scission of carbon-carbon bonds. <i>Nature</i> , 2006 , 440, 191-4	50.4	317
464	Recent mechanistic developments in atom transfer radical polymerization. <i>Journal of Molecular Catalysis A</i> , 2006 , 254, 155-164		69
463	Molecular brushes as super-soft elastomers. <i>Polymer</i> , 2006 , 47, 7198-7206	3.9	170
462	Nanoscale structure of SANBEOBAN triblock copolymers synthesized by atom transfer radical polymerization. <i>Polymer</i> , 2006 , 47, 6673-6683	3.9	13
461	Copper-based ATRP catalysts of very high activity derived from dimethyl cross-bridged cyclam. Journal of Molecular Catalysis A, 2006 , 257, 132-140		64
460	Low polydispersity star polymers via cross-linking macromonomers by ATRP. <i>Journal of the American Chemical Society</i> , 2006 , 128, 15111-3	16.4	152

459	Advances in Nanostructured Carbons from Block Copolymers Prepared by Controlled Radical Polymerization Techniques. <i>ACS Symposium Series</i> , 2006 , 295-310	0.4	6
458	Acrylate-Based Block Copolymers Prepared by Atom Transfer Radical Polymerization as Matrices for Drug Delivery Applications. <i>ACS Symposium Series</i> , 2006 , 234-251	0.4	6
457	Click Functionalization of Well-Defined Copolymers Prepared by Atom Transfer Radical Polymerization. <i>ACS Symposium Series</i> , 2006 , 140-152	0.4	12
456	Factors Determining the Performance of Copper-Based Atom Transfer Radical Polymerization Catalysts and Criteria for Rational Catalyst Selection. <i>ACS Symposium Series</i> , 2006 , 56-70	0.4	20
455	Functional Degradable Polymeric Materials Prepared by Atom Transfer Radical Polymerization. <i>ACS Symposium Series</i> , 2006 , 184-200	0.4	16
454	Synthesis of Magnesium Dihydroxide Hybrid Nanocomposites via ATRP. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2006 , 16, 129-137	3.2	14
453	Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface. <i>Nano Letters</i> , 2005 , 5, 2489-94	11.5	282
452	Highly Efficient 🗓 lick[Functionalization of Poly(3-azidopropyl methacrylate) Prepared by ATRP. <i>Macromolecules</i> , 2005 , 38, 7540-7545	5.5	413
451	Oil-in-water emulsions stabilized by highly charged polyelectrolyte-grafted silica nanoparticles. <i>Langmuir</i> , 2005 , 21, 9873-8	4	161
450	Initiation Efficiency in the Synthesis of Molecular Brushes by Grafting from via Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2005 , 38, 702-708	5.5	210
449	On the shape of bottle-brush macromolecules: systematic variation of architectural parameters. Journal of Chemical Physics, 2005 , 122, 124904	3.9	176
448	Controlling Polymer Chain Topology and Architecture by ATRP from Flat Surfaces. <i>ACS Symposium Series</i> , 2005 , 28-42	0.4	8
447	Gradient Polymer Elution Chromatographic Analysis of #Dihydroxypolystyrene Synthesized via ATRP and Click Chemistry. <i>Macromolecules</i> , 2005 , 38, 8979-8982	5.5	137
446	Molecular Brushes with Spontaneous Gradient by Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2005 , 38, 8264-8271	5.5	81
445	Osmium-Mediated Radical Polymerization. <i>Macromolecules</i> , 2005 , 38, 9402-9404	5.5	92
444	Effect of Ligand and n-Butyl Acrylate on Cobalt-Mediated Radical Polymerization of Vinyl Acetate. <i>Macromolecules</i> , 2005 , 38, 8163-8169	5.5	89
443	Comparison of Bond Dissociation Energies of Dormant Species Relevant to Degenerative Transfer and Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2005 , 38, 8093-8100	5.5	56
442	Controlled Radical Polymerization and Copolymerization of 5-Methylene-2-phenyl-1,3-dioxolan-4-one by ATRP. <i>Macromolecules</i> , 2005 , 38, 5581-5586	5.5	34

(2005-2005)

441	Synthesis of Degradable Miktoarm Star Copolymers via Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2005 , 38, 5995-6004	5.5	161
440	Effect of [Cull] on the Rate of Activation in ATRP. <i>Macromolecules</i> , 2005 , 38, 2015-2018	5.5	45
439	Quantifying Vinyl Monomer Coordination to Culin Solution and the Effect of Coordination on Monomer Reactivity in Radical Copolymerization. <i>Macromolecules</i> , 2005 , 38, 4081-4088	5.5	44
438	Atom Transfer Radical Polymerization of Dimethyl(1-ethoxycarbonyl)vinyl Phosphate and Corresponding Block Copolymers. <i>Macromolecules</i> , 2005 , 38, 3577-3583	5.5	49
437	Atom Transfer Radical Polymerization in Microemulsion. <i>Macromolecules</i> , 2005 , 38, 8131-8134	5.5	117
436	Synthesis of Block and Graft Copolymers with Linear Polyethylene Segments by Combination of Degenerative Transfer Coordination Polymerization and Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2005 , 38, 5425-5435	5.5	119
435	PDMS B EO Densely Grafted Copolymers. <i>Macromolecules</i> , 2005 , 38, 8687-8693	5.5	92
434	Long-range ordered thin films of block copolymers prepared by zone-casting and their thermal conversion into ordered nanostructured carbon. <i>Journal of the American Chemical Society</i> , 2005 , 127, 6918-9	16.4	197
433	Step-Growth ClickCoupling of Telechelic Polymers Prepared by Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2005 , 38, 3558-3561	5.5	403
432	Synthesis of mesoporous carbons using ordered and disordered mesoporous silica templates and polyacrylonitrile as carbon precursor. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 9216-25	3.4	186
431	Preparation of homopolymers and block copolymers in miniemulsion by ATRP using activators generated by electron transfer (AGET). <i>Journal of the American Chemical Society</i> , 2005 , 127, 3825-30	16.4	434
430	Kinetics and Molar Mass Evolution during Atom Transfer Radical Polymerization of n-Butyl Acrylate Using Automatic Continuous Online Monitoring. <i>Macromolecules</i> , 2005 , 38, 9556-9563	5.5	21
429	Combining Atom Transfer Radical Polymerization and Disulfide/Thiol Redox Chemistry: A Route to Well-Defined (Bio)degradable Polymeric Materials. <i>Macromolecules</i> , 2005 , 38, 3087-3092	5.5	215
428	Synthesis of uniform protein-polymer conjugates. <i>Biomacromolecules</i> , 2005 , 6, 3380-7	6.9	281
427	Biodegradable Nano- and Microparticles with Controlled Surface Properties. <i>Macromolecular Symposia</i> , 2005 , 226, 239-252	0.8	18
426	Monitoring surface thermal transitions of ABA triblock copolymers with crystalline segments using phase contrast tapping mode atomic force microscopy. <i>Langmuir</i> , 2005 , 21, 1143-8	4	14
425	Activator Generated by Electron Transfer for Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2005 , 38, 4139-4146	5.5	499
424	Self-assembly of pODMA-b-ptBA-b-pODMA triblock copolymers in bulk and on surfaces. A quantitative SAXS/AFM comparison. <i>Langmuir</i> , 2005 , 21, 9721-7	4	17

423	Polymer Brushes by Atom Transfer Radical Polymerization 2005 , 51-68		5
422	Evaluation of acrylate-based block copolymers prepared by atom transfer radical polymerization as matrices for paclitaxel delivery from coronary stents. <i>Biomacromolecules</i> , 2005 , 6, 3410-8	6.9	70
421	Characterization of Ædihydroxypolystyrene by gradient polymer elution chromatography and two-dimensional liquid chromatography. <i>Designed Monomers and Polymers</i> , 2005 , 8, 533-546	3.1	19
420	Macromolecular engineering: From rational design through precise macromolecular synthesis and processing to targeted macroscopic material properties. <i>Progress in Polymer Science</i> , 2005 , 30, 858-875	29.6	350
419	Synthesis and characterization of copolymers of 5,6-benzo-2-methylene-1,3-dioxepane and n-butyl acrylate. <i>Polymer</i> , 2005 , 46, 11698-11706	3.9	52
418	Structural aspects of copper catalyzed atom transfer radical polymerization. <i>Coordination Chemistry Reviews</i> , 2005 , 249, 1155-1184	23.2	251
417	Structure and Properties of Poly(butyl acrylate-block-sulfone-block-butyl acrylate) Triblock Copolymers Prepared by ATRP. <i>Macromolecular Chemistry and Physics</i> , 2005 , 206, 33-42	2.6	33
416	Effect of [Pyridylmethanimine]/[CuI] Ratio, Ligand, Solvent and Temperature on the Activation Rate Constants in Atom Transfer Radical Polymerization. <i>Macromolecular Chemistry and Physics</i> , 2005 , 206, 1171-1177	2.6	44
415	A Commentary on R ole of Initiator-Transfer Agent-Terminator (Iniferter) in Radical Polymerizations: Polymer Design by Organic Disulfides as Iniferters by T. Otsu, M. Yoshida (Macromol. Rapid Commun. 1982, 3, 127 d 32). <i>Macromolecular Rapid Communications</i> , 2005 , 26, 135-142	4.8	14
414	Towards understanding monomer coordination in atom transfer radical polymerization: synthesis of [CuI(PMDETA)(EM)][BPh4] (M = methyl acrylate, styrene, 1-octene, and methyl methacrylate) and structural studies by FT-IR and 1H NMR spectroscopy and X-ray crystallography. <i>Journal of</i>	2.3	59
413	Controlled/living radical polymerization. <i>Materials Today</i> , 2005 , 8, 26-33	21.8	324
412	Nuclear magnetic resonance monitoring of chain-end functionality in the atom transfer radical polymerization of styrene. <i>Journal of Polymer Science Part A</i> , 2005 , 43, 897-910	2.5	160
411	Block and random copolymers as surfactants for dispersion polymerization. I. Synthesis via atom transfer radical polymerization and ring-opening polymerization. <i>Journal of Polymer Science Part A</i> , 2005 , 43, 1498-1510	2.5	105
410	Preparation of gradient copolymers via ATRP using a simultaneous reverse and normal initiation process. I. Spontaneous gradient. <i>Journal of Polymer Science Part A</i> , 2005 , 43, 3616-3622	2.5	107
409	Properties of well-defined alternating and random copolymers of methacrylates and styrene prepared by controlled/living radical polymerization. <i>Journal of Polymer Science Part A</i> , 2005 , 43, 3440-3	3446	34
408	ATRP of butyl acrylates from functionalized carbon black surfaces. <i>Journal of Polymer Science Part A</i> , 2005 , 43, 4695-4709	2.5	71
407	Molecular visualization of conformation-triggered flow instability. <i>Physical Review Letters</i> , 2005 , 94, 23	7 8 0 ₄ 1	26
406	Molecular motion in a spreading precursor film. <i>Physical Review Letters</i> , 2004 , 93, 206103	7.4	78

405	Morphology and thermomechanical properties of well-defined polyethylene-graft-poly(n-butyl acrylate) prepared by atom transfer radical polymerization. <i>Colloid and Polymer Science</i> , 2004 , 282, 844	-85 3	15
404	Preparation of polyethylene block copolymers by a combination of postmetallocene catalysis of ethylene polymerization and atom transfer radical polymerization. <i>Journal of Polymer Science Part A</i> , 2004 , 42, 496-504	2.5	63
403	Preparation and characterization of graft terpolymers with controlled molecular structure. <i>Journal of Polymer Science Part A</i> , 2004 , 42, 1939-1952	2.5	77
402	Effect of variation of [PMDETA]0/[Cu(I)Br]0 ratio on atom transfer radical polymerization of n-butyl acrylate. <i>Journal of Polymer Science Part A</i> , 2004 , 42, 3285-3292	2.5	57
401	Well-defined carbon nanoparticles prepared from water-soluble shell cross-linked micelles that contain polyacrylonitrile cores. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 2783-7	16.4	97
400	Well-Defined Carbon Nanoparticles Prepared from Water-Soluble Shell Cross-linked Micelles that Contain Polyacrylonitrile Cores. <i>Angewandte Chemie</i> , 2004 , 116, 2843-2847	3.6	18
399	Synthesis and Surface Attachment of ABC Triblock Copolymers Containing Glassy and Rubbery Segments. <i>Macromolecular Chemistry and Physics</i> , 2004 , 205, 411-417	2.6	26
398	Synthesis and ATRP Activity of New TREN-Based Ligands. <i>Macromolecular Chemistry and Physics</i> , 2004 , 205, 551-566	2.6	46
397	Controlled/Living Radical Polymerization of Methacrylic Monomers in the Presence of Lewis Acids: Influence on Tacticity. <i>Macromolecular Rapid Communications</i> , 2004 , 25, 486-492	4.8	94
396	Real-Time Scanning Force Microscopy of Macromolecular Conformational Transitions. <i>Macromolecular Rapid Communications</i> , 2004 , 25, 1703-1707	4.8	42
395	Reversible collapse of brushlike macromolecules in ethanol and water vapours as revealed by real-time scanning force microscopy. <i>Chemistry - A European Journal</i> , 2004 , 10, 4599-605	4.8	66
394	Dendrigraft polymers: macromolecular engineering on a mesoscopic scale. <i>Progress in Polymer Science</i> , 2004 , 29, 277-327	29.6	159
393	Super soft elastomers as ionic conductors. <i>Polymer</i> , 2004 , 45, 6333-6339	3.9	54
392	How dense are cylindrical brushes grafted from a multifunctional macroinitiator?. <i>Polymer</i> , 2004 , 45, 8173-8179	3.9	133
391	Synthesis and Characterization of New Liquid-Crystalline Block Copolymers with p-Cyanoazobenzene Moieties and Poly(n-butyl acrylate) Segments Using Atom-Transfer Radical Polymerization. <i>Macromolecules</i> , 2004 , 37, 9355-9365	5.5	57
390	Polystyrene with Designed Molecular Weight Distribution by Atom Transfer Radical Coupling. <i>Macromolecules</i> , 2004 , 37, 3120-3127	5.5	141
389	Effect of (Pseudo)halide Initiators and Copper Complexes with Non-halogen Anions on the Atom Transfer Radical Polymerization. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 2004 , 41, 449-465	2.2	20
388	Conformational Switching of Molecular Brushes in Response to the Energy of Interaction with the Substrate Journal of Physical Chemistry A, 2004 , 108, 9682-9686	2.8	56

387	Electron Spin Resonance Study of Monomeric, Dimeric, and Polymeric Acrylate Radicals Prepared Using the Atom Transfer Radical Polymerization TechniqueDirect Detection of Penultimate-Unit Effects. <i>Macromolecules</i> , 2004 , 37, 1378-1385	5.5	37
386	Tadpole Conformation of Gradient Polymer Brushes. <i>Macromolecules</i> , 2004 , 37, 4235-4240	5.5	105
385	New Amine-Based Tripodal Copper Catalysts for Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2004 , 37, 4014-4021	5.5	46
384	Determination of Rate Constants for the Activation Step in Atom Transfer Radical Polymerization Using the Stopped-Flow Technique. <i>Macromolecules</i> , 2004 , 37, 2679-2682	5.5	81
383	ATRP in Waterborne Miniemulsion via a Simultaneous Reverse and Normal Initiation Process. <i>Macromolecules</i> , 2004 , 37, 2106-2112	5.5	108
382	Synthesis of Hydroxy-Telechelic Poly(methyl acrylate) and Polystyrene by Atom Transfer Radical Coupling. <i>Macromolecules</i> , 2004 , 37, 9694-9700	5.5	129
381	Well-Defined (Co)polymers with 5-Vinyltetrazole Units via Combination of Atom Transfer Radical (Co)polymerization of Acrylonitrile and Click Chemistry Type Postpolymerization Modification. <i>Macromolecules</i> , 2004 , 37, 9308-9313	5.5	148
380	Preparation of Linear and Star-Shaped Block Copolymers by ATRP Using Simultaneous Reverse and Normal Initiation Process in Bulk and Miniemulsion. <i>Macromolecules</i> , 2004 , 37, 2434-2441	5.5	140
379	Deactivation Efficiency and Degree of Control over Polymerization in ATRP in Protic Solvents. <i>Macromolecules</i> , 2004 , 37, 9768-9778	5.5	215
378	Spontaneous Curvature of Comblike Polymers at a Flat Interface. <i>Macromolecules</i> , 2004 , 37, 3918-3923	5.5	62
377	Multiarm molecular brushes: effect of the number of arms on the molecular weight polydispersity and surface ordering. <i>Langmuir</i> , 2004 , 20, 6005-11	4	66
376	Graft Copolymers from Linear Polyethylene via Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2004 , 37, 3651-3658	5.5	108
375	Permanent, nonleaching antibacterial surfaces. 1. Synthesis by atom transfer radical polymerization. <i>Biomacromolecules</i> , 2004 , 5, 877-82	6.9	497
374	Copolymerization 2004,		1
373	Toward Structural and Mechanistic Understanding of Transition Metal-Catalyzed Atom Transfer Radical Processes. <i>ACS Symposium Series</i> , 2003 , 130-147	0.4	35
372	Controlled/Living Radical Polymerization: State of the Art in 2002. ACS Symposium Series, 2003, 2-9	0.4	32
371	ESR Study and Radical Observation in Transition Metal-Mediated Polymerization: Unified View of Atom Transfer Radical Polymerization Mechanism. <i>ACS Symposium Series</i> , 2003 , 161-179	0.4	
370	Synthesis and Properties of Copolymers with Tailored Sequence Distribution by Controlled/Living Radical Polymerization. <i>ACS Symposium Series</i> , 2003 , 268-282	0.4	40

(2003-2003)

369	Polymers, Particles, and Surfaces with Hairy Coatings: Synthesis, Structure, Dynamics, and Resulting Properties. <i>ACS Symposium Series</i> , 2003 , 366-382	0.4	9
368	Heterografted PEO P nBA brush copolymers. <i>Polymer</i> , 2003 , 44, 6863-6871	3.9	103
367	Extended X-ray Absorption Fine Structure Study of Copper(I) and Copper(II) Complexes in Atom Transfer Radical Polymerization. <i>European Journal of Inorganic Chemistry</i> , 2003 , 2003, 2082-2094	2.3	38
366	Concurrent Initiation by Air in the Atom Transfer Radical Polymerization of Methyl Methacrylate. <i>Macromolecular Chemistry and Physics</i> , 2003 , 204, 1151-1159	2.6	39
365	Block Copolymers from Organomodified Siloxane-Containing Macroinitiators by Atom Transfer Radical Polymerization. <i>Macromolecular Chemistry and Physics</i> , 2003 , 204, 1169-1177	2.6	19
364	Synthesis of Polymer Brushes Using Atom Transfer Radical Polymerization. <i>Macromolecular Rapid Communications</i> , 2003 , 24, 1043-1059	4.8	622
363	Small-angle neutron scattering of arborescent polystyrene-graft-poly(2-vinylpyridine) copolymers. <i>Polymer</i> , 2003 , 44, 6579-6587	3.9	11
362	The synthesis of functional star copolymers as an illustration of the importance of controlling polymer structures in the design of new materials. <i>Polymer International</i> , 2003 , 52, 1559-1565	3.3	166
361	Further progress in atom transfer radical polymerizations conducted in a waterborne system. Journal of Polymer Science Part A, 2003, 41, 3606-3614	2.5	60
360	ABA triblock copolymers containing polyhedral oligomeric silsesquioxane pendant groups: synthesis and unique properties. <i>Polymer</i> , 2003 , 44, 2739-2750	3.9	193
359	Use of an Immobilized/Soluble Hybrid ATRP Catalyst System for the Preparation of Block Copolymers, Random Copolymers, and Polymers with High Degree of Chain End Functionality. <i>Macromolecules</i> , 2003 , 36, 1075-1082	5.5	52
358	Controlled/Living Radical Polymerization of Vinyl Acetate by Degenerative Transfer with Alkyl Iodides. <i>Macromolecules</i> , 2003 , 36, 9346-9354	5.5	183
357	Synthesis and Characterization of Organic/Inorganic Hybrid Nanoparticles: Kinetics of Surface-Initiated Atom Transfer Radical Polymerization and Morphology of Hybrid Nanoparticle Ultrathin Films. <i>Macromolecules</i> , 2003 , 36, 5094-5104	5.5	297
356	OrganicIhorganic Hybrid Materials from Polysiloxanes and Polysilsesquioxanes Using Controlled/Living Radical Polymerization. <i>ACS Symposium Series</i> , 2003 , 273-284	0.4	12
355	Densely-Grafted and Double-Grafted PEO Brushes via ATRP. A Route to Soft Elastomers. <i>Macromolecules</i> , 2003 , 36, 6746-6755	5.5	301
354	Effect of [PMDETA]/[Cu(I)] Ratio, Monomer, Solvent, Counterion, Ligand, and Alkyl Bromide on the Activation Rate Constants in Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2003 , 36, 1487-1	49 3 ·5	124
353	Grafting Poly(n-butyl acrylate) from a Functionalized Carbon Black Surface by Atom Transfer Radical Polymerization [] <i>Langmuir</i> , 2003 , 19, 6342-6345	4	105
352	A Dual Catalyst System for Atom Transfer Radical Polymerization Based on a Halogen-Free Neutral Cu(I) Complex. <i>Macromolecules</i> , 2003 , 36, 7432-7438	5.5	36

351	Synthesis of Block, Statistical, and Gradient Copolymers from Octadecyl (Meth)acrylates Using Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2003 , 36, 8969-8977	5.5	128
350	Preparation of Polyacrylonitrile-block-poly(n-butyl acrylate) Copolymers Using Atom Transfer Radical Polymerization and Nitroxide Mediated Polymerization Processes. <i>Macromolecules</i> , 2003 , 36, 1465-1473	5.5	126
349	Stereoblock copolymers and tacticity control in controlled/living radical polymerization. <i>Journal of the American Chemical Society</i> , 2003 , 125, 6986-93	16.4	242
348	Reverse Atom Transfer Radical Polymerization in Miniemulsion. <i>Macromolecules</i> , 2003 , 36, 6028-6035	5.5	62
347	Copolymerization of N,N-Dimethylacrylamide with n-Butyl Acrylate via Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2003 , 36, 2598-2603	5.5	75
346	Measuring molecular weight by atomic force microscopy. <i>Journal of the American Chemical Society</i> , 2003 , 125, 6725-8	16.4	101
345	Effect of [bpy]/[Cu(I)] Ratio, Solvent, Counterion, and Alkyl Bromides on the Activation Rate Constants in Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2003 , 36, 599-604	5.5	79
344	Effect of Penultimate Unit on the Activation Process in ATRP. <i>Macromolecules</i> , 2003 , 36, 8222-8224	5.5	86
343	Preparation of Segmented Copolymers in the Presence of an Immobilized/Soluble Hybrid ATRP Catalyst System. <i>Macromolecules</i> , 2003 , 36, 27-35	5.5	32
342	Synthesis of Degradable Poly(methyl methacrylate) via ATRP: Atom Transfer Radical Ring-Opening Copolymerization of 5-Methylene-2-phenyl-1,3-dioxolan-4-one and Methyl Methacrylate. <i>Macromolecules</i> , 2003 , 36, 2995-2998	5.5	48
341	Synthesis of Well-Defined Alternating Copolymers by Controlled/Living Radical Polymerization in the Presence of Lewis Acids. <i>Macromolecules</i> , 2003 , 36, 3136-3145	5.5	123
340	Isotope Effects and the Mechanism of Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2003 , 36, 8609-8616	5.5	43
339	Effect of Initiation Conditions on the Uniformity of Three-Arm Star Molecular Brushes. <i>Macromolecules</i> , 2003 , 36, 1843-1849	5.5	205
338	Characterization of Cu(II) Bipyridine Complexes in Halogen Atom Transfer Reactions by Electron Spin Resonance. <i>Macromolecules</i> , 2003 , 36, 8291-8296	5.5	13
337	Arborescent Polystyrene-graft-poly(2-vinylpyridine) Copolymers as Unimolecular Micelles. Synthesis from Acetylated Substrates. <i>Macromolecules</i> , 2003 , 36, 2642-2648	5.5	55
336	ATRP synthesis of amphiphilic random, gradient, and block copolymers of 2-(dimethylamino)ethyl methacrylate and n-butyl methacrylate in aqueous media. <i>Biomacromolecules</i> , 2003 , 4, 1386-93	6.9	246
335	Synthesis and Visualization of Densely Grafted Molecular Brushes with Crystallizable Poly(octadecyl methacrylate) Block Segments. <i>Macromolecules</i> , 2003 , 36, 605-612	5.5	138
334	Radical Polymerization 2003 ,		1

Structural Control of Poly(methyl methacrylate)-g-poly(dimethylsiloxane) Copolymers Using Controlled Radical Polymerization: Effect of the Molecular Structure on Morphology and Mechanical Properties. <i>Macromolecules</i> , 2003 , 36, 4772-4778	5.5	85
A DFT Study of RX Bond Dissociation Enthalpies of Relevance to the Initiation Process of Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2003 , 36, 8551-8559	5.5	148
Controlling polymer structures by atom transfer radical polymerization and other controlled/living radical polymerizations. <i>Macromolecular Symposia</i> , 2003 , 195, 25-32	0.8	25
Kinetic modeling of the chain-end functionality in atom transfer radical polymerization. <i>Macromolecular Chemistry and Physics</i> , 2002 , 203, 1385-1395	2.6	97
Polyolefin graft copolymers via living polymerization techniques: Preparation of poly(n-butyl acrylate)-graft-polyethylene through the combination of Pd-mediated living olefin polymerization and atom transfer radical polymerization. <i>Journal of Polymer Science Part A</i> , 2002 , 40, 2736-2749	2.5	93
Atom transfer radical polymerization of styrene in toluene/water mixtures. <i>Journal of Polymer Science Part A</i> , 2002 , 40, 3153-3160	2.5	36
Synthesis and characterization of silica-graft-polystyrene hybrid nanoparticles: Effect of constraint on the glass-transition temperature of spherical polymer brushes. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2002 , 40, 2667-2676	2.6	138
Poly[N -(2-hydroxypropyl)methacrylamide- block - n -butyl acrylate] micelles in water/DMF mixed solvents. <i>Polymer</i> , 2002 , 43, 3735-3741	3.9	48
SYNTHESIS OF POLYPROPYLENE-POLY(METH)ACRYLATE BLOCK COPOLYMERS USING METALLOCENE CATALYZED PROCESSES AND SUBSEQUENT ATOM TRANSFER RADICAL POLYMERIZATION. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 2002 , 39, 901-913	2.2	27
Statistical, Gradient, Block and Graft Copolymers by Controlled/Living Radical Polymerizations. <i>Advances in Polymer Science</i> , 2002 ,	1.3	16
Statistical, Gradient, Block, and Graft Copolymers by Controlled/Living Radical Polymerizations 2002 , 1-13		238
Structure-reactivity correlation in atom transfer radical polymerization. <i>Macromolecular Symposia</i> , 2002 , 182, 209-224	0.8	17
Graft copolymers by atom transfer polymerization. <i>Macromolecular Symposia</i> , 2002 , 177, 1-16	0.8	63
Mechanistic features and radical intermediates in atom transfer radical polymerization. <i>Macromolecular Symposia</i> , 2002 , 183, 71-82	0.8	12
General method for determination of the activation, deactivation, and initiation rate constants in transition metal-catalyzed atom transfer radical processes. <i>Journal of the American Chemical Society</i> , 2002 , 124, 8196-7	16.4	52
Controlled/Living Radical Polymerization of tert-Butyl Acrylate Mediated by Chiral Nitroxides. A Stereochemical Study. <i>Macromolecules</i> , 2002 , 35, 8323-8329	5.5	30
Factors Affecting Rates of Comonomer Consumption in Copolymerization Processes with Intermittent Activation. <i>Macromolecules</i> , 2002 , 35, 6773-6781	5.5	57
	Controlled Radical Polymerization: Effect of the Molecular Structure on Morphology and Mechanical Properties. <i>Macromolecules</i> , 2003, 36, 4772-4778 A DFT Study of R& Bond Dissociation Enthalpies of Relevance to the Initiation Process of Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2003, 36, 8551-8559 Controlling polymer structures by atom transfer radical polymerization and other controlled/living radical polymerizations. <i>Macromolecular Symposia</i> , 2003, 195, 25-32 Kinetic modeling of the chain-end functionality in atom transfer radical polymerization. <i>Macromolecular Chemistry and Physics</i> , 2002, 203, 1385-1395 Polyolefin graft copolymers via living polymerization techniques. Preparation of poly(n-buty) acrylate)-graft-polyethylene through the combination of Polymer Science Part A, 2002, 40, 2736-2749 Atom transfer radical polymerization of styrene in toluene/water mixtures. <i>Journal of Polymer Science Part A</i> , 2002, 40, 3153-3160 Synthesis and characterization of silica-graft-polystyrene hybrid nanoparticles: Effect of constraint on the glass-transition temperature of spherical polymer brushes. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2002, 40, 2667-2676 Poly (N-(2-hydroxypropyt))methacrylamide-block-n-butyl acrylate] micelles in water/DMF mixed solvents. <i>Polymer</i> , 2002, 43, 3735-3741 SYNTHESIS OF POLYROPYLENE-POLY(METH)ACRYLATE BLOCK COPOLYMERS USING METALLOCENE CATALYZED PROCESSES AND SUBSEQUENT ATOM TRANSFER RADICAL POLYMERIZATION. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 2002, 39, 901-913 Statistical, Gradient, Block and Graft Copolymers by Controlled/Living Radical Polymerizations. <i>Advances in Polymer Science</i> , 2002, 132, 71-82 General method for determination of the activation, deactivation, and initiation rate constants in transition metal-catalyzed atom transfer radical processes. <i>Journal of the American Chemical Society</i> , 2002, 148, 8196-7 Controlled/Living Radical Polymerization of tert-Butyl Acrylate Mediated by Chiral Nitroxides. A St	Controlled Radical Polymerization: Effect of the Molecular Structure on Morphology and Mechanical Properties. Macromolecules, 2003, 36, 4772-4778 A DFT Study of RR Bond Dissociation Enthalpies of Relevance to the Initiation Process of Atom Transfer Radical Polymerization. Macromolecules, 2003, 36, 8551-8559 Controlling polymer structures by atom transfer radical polymerization and other controlled/living radical polymerizations. Macromolecular Symposia, 2003, 195, 25-32 Kinetic modeling of the chain-end functionality in atom transfer radical polymerization. Macromolecular Chemistry and Physics, 2002, 203, 1385-1395 Polyolefin graft copolymers via living polymerization techniques: Preparation of poly(n-butyl acrylate)-graft-polyethylene through the combination of Pd-mediated living olefin polymerization and atom transfer radical polymerization. Journal of Polymer Science Part A, 2002, 40, 2736-2749 Atom transfer radical polymerization of syrene in toluene/water mixtures. Journal of Polymer Science Part A, 2002, 40, 3153-3160 Synthesis and characterization of silica-graft-polystyrene hybrid nanoparticles: Effect of constraint on the glass-transition temperature of spherical polymer brushes. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 2667-2676 Poly N -(2-hydroxypropyl)methacrylamide- block - n-butyl acrylate] micelles in water/DMF mixed solvents. Polymer, 2002, 43, 3755-3741 SYNTHESIS OF POLYPROPYLENE-POLY(METH)ACRYLATE BLOCK COPOLYMERS USING METALLOCENE CATALYZED PROCESSES AND SUBSEQUENT ATOM TRANSFER RADICAL POLYMERTATION. Journal of Macromolecular Science Pure and Applied Chemistry, 2002, 39, 901-913 Statistical, Gradient, Block and Graft Copolymers by Controlled/Living Radical Polymerizations. Advances in Polymer Science, 2002, 133, 713-82 General method for determination of the activation, deactivation, and initiation rate constants in transliton metal-catalyzed atom transfer radical processes. Journal of the American Chemical Society 12002, 124, 8196-7 Controlled/Living Radical

315	Using Atom Transfer Radical Polymerization in Environmentally Benign Processes. <i>ACS Symposium Series</i> , 2002 , 113-126	0.4	3
314	Nanostructured carbon arrays from block copolymers of polyacrylonitrile. <i>Journal of the American Chemical Society</i> , 2002 , 124, 10632-3	16.4	224
313	Synthesis of Molecular Brushes with Gradient in Grafting Density by Atom Transfer Polymerization. <i>Macromolecules</i> , 2002 , 35, 3387-3394	5.5	166
312	Synthesis of StyreneAcrylonitrile Copolymers and Related Block Copolymers by Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2002 , 35, 6142-6148	5.5	110
311	Reversible Redox Cleavage/Coupling of Polystyrene with Disulfide or Thiol Groups Prepared by Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2002 , 35, 9009-9014	5.5	222
310	Measurement of Initial Degree of Polymerization without Reactivation as a New Method To Estimate Rate Constants of Deactivation in ATRP. <i>Macromolecules</i> , 2002 , 35, 6167-6173	5.5	38
309	Structural comparison of Cull complexes in atom transfer radical polymerization. <i>New Journal of Chemistry</i> , 2002 , 26, 462-468	3.6	57
308	Fundamentals of Supported Catalysts for Atom Transfer Radical Polymerization (ATRP) and Application of an Immobilized/Soluble Hybrid Catalyst System to ATRP. <i>Macromolecules</i> , 2002 , 35, 7592	<i>-7</i> ⁄805	104
307	Synthesis of Well-Defined Alternating Copolymers Poly(methyl methacrylate-alt-styrene) by RAFT Polymerization in the Presence of Lewis Acid. <i>Macromolecules</i> , 2002 , 35, 2448-2451	5.5	72
306	From Atom Transfer Radical Addition to Atom Transfer Radical Polymerization. <i>Current Organic Chemistry</i> , 2002 , 6, 67-82	1.7	65
305	Improving the Structural Control of Graft Copolymers. Copolymerization of Poly(dimethylsiloxane) Macromonomer with Methyl Methacrylate Using RAFT Polymerization. <i>Macromolecular Rapid Communications</i> , 2001 , 22, 1176	4.8	81
304	ATRP of Methyl Methacrylate in the Presence of Ionic Liquids with Ferrous and Cuprous Anions. <i>Macromolecular Chemistry and Physics</i> , 2001 , 202, 3379-3391	2.6	194
303	Preparation of Polyisobutene-graft-Poly(methyl methacrylate) and Polyisobutene-graft-Polystyrene with Different Compositions and Side Chain Architectures through Atom Transfer Radical Polymerization (ATRP). <i>Macromolecular Chemistry and Physics</i> , 2001 ,	2.6	56
302	202, 3392-3402 ABC Triblock Copolymers Prepared Using Atom Transfer Radical Polymerization Techniques. Macromolecules, 2001, 34, 2101-2107	5.5	121
301	Functional polymers by atom transfer radical polymerization. <i>Progress in Polymer Science</i> , 2001 , 26, 337	- 3 376	1128
300	Controlled/living radical polymerization in aqueous media: homogeneous and heterogeneous systems. <i>Progress in Polymer Science</i> , 2001 , 26, 2083-2134	29.6	525
299	Synthesis of well-defined block copolymers tethered to polysilsesquioxane nanoparticles and their nanoscale morphology on surfaces. <i>Journal of the American Chemical Society</i> , 2001 , 123, 9445-6	16.4	159
298	Block Copolymers of Poly(styrene) and Poly(acrylic acid) of Various Molar Masses, Topologies, and Compositions Prepared via Controlled/Living Radical Polymerization. Application as Stabilizers in	5.5	139

(2001-2001)

297	Single Molecule Rod©lobule Phase Transition for Brush Molecules at a Flat Interface. <i>Macromolecules</i> , 2001 , 34, 8354-8360	5.5	182
296	Tridentate Nitrogen-Based Ligands in Cu-Based ATRP: A StructureActivity Study. <i>Macromolecules</i> , 2001 , 34, 430-440	5.5	170
295	Atom transfer radical polymerization. <i>Chemical Reviews</i> , 2001 , 101, 2921-90	68.1	6742
294	Free-Radical Intermediates in Atom Transfer Radical Addition and Polymerization: Study of Racemization, Halogen Exchange, and Trapping Reactions. <i>Macromolecules</i> , 2001 , 34, 3127-3129	5.5	42
293	Controlled/Living Radical Polymerization in the Undergraduate Laboratories. 1. Using ATRP to Prepare Block and Statistical Copolymers of n-Butyl Acrylate and Styrene. <i>Journal of Chemical Education</i> , 2001 , 78, 544	2.4	29
292	Determination of Activation and Deactivation Rate Constants of Model Compounds in Atom Transfer Radical Polymerization1. <i>Macromolecules</i> , 2001 , 34, 5125-5131	5.5	165
291	Extended X-ray absorption fine structure analysis of the bipyridine copper complexes in atom transfer radical polymerization. <i>Inorganic Chemistry</i> , 2001 , 40, 6-8	5.1	34
290	Synthesis of Molecular Brushes with Block Copolymer Side Chains Using Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2001 , 34, 4375-4383	5.5	365
289	Structural Control of Poly(Methyl Methacrylate)-g-poly(Lactic Acid) Graft Copolymers by Atom Transfer Radical Polymerization (ATRP). <i>Macromolecules</i> , 2001 , 34, 6243-6248	5.5	165
288	Atom Transfer Radical Copolymerization of Methyl Methacrylate and n-Butyl Acrylate. <i>Macromolecules</i> , 2001 , 34, 415-424	5.5	152
287	Controlled/Living Radical Polymerization in the Undergraduate Laboratories. 2. Using ATRP in Limited Amounts of Air to Prepare Block and Statistical Copolymers of n-Butyl Acrylate and Styrene. <i>Journal of Chemical Education</i> , 2001 , 78, 547	2.4	36
286	Improving the Structural Control of Graft Copolymers by Combining ATRP with the Macromonomer Method. <i>Macromolecules</i> , 2001 , 34, 3186-3194	5.5	138
285	Synthesis of Nanocomposite Organic/Inorganic Hybrid Materials Using Controlled/Living Radical Polymerization. <i>Chemistry of Materials</i> , 2001 , 13, 3436-3448	9.6	631
284	An Immobilized/Soluble Hybrid Catalyst System for Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2001 , 34, 5099-5102	5.5	75
283	THE ATOM TRANSFER RADICAL POLYMERIZATION OF LAURYL ACRYLATE. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 2001 , 38, 731-739	2.2	51
282	Synthesis, characterization, and bromine substitution by 4,4'-di(5-nonyl)-2,2'-bipyridine in Cu(II)(4,4'-di(5-nonyl)-2,2'-bipyridine)Br(2). <i>Inorganic Chemistry</i> , 2001 , 40, 2818-24	5.1	28
281	Atom Transfer Radical Polymerization of Methyl Methacrylate in Water-Borne System. <i>Macromolecules</i> , 2001 , 34, 6641-6648	5.5	73
280	Simultaneous Reverse and Normal Initiation in Atom Transfer Radical Polymerization. Macromolecules, 2001, 34, 7664-7671	5.5	191

279	Macromolecular engineering by controlled/living ionic and radical polymerizations. <i>Macromolecular Symposia</i> , 2001 , 174, 51-68	0.8	49
278	Controlled/IlivingIRadical Polymerization Applied to Water-Borne Systems. <i>Macromolecular Symposia</i> , 2000 , 155, 15-29	0.8	40
277	Molecular events in atom transfer radical polymerization of styrene and methyl acrylate. <i>Macromolecular Symposia</i> , 2000 , 161, 1-10	0.8	3
276	Amphiphilic block copolymers prepared via controlled radical polymerization as surfactants for emulsion polymerization. <i>Macromolecular Symposia</i> , 2000 , 150, 39-44	0.8	42
275	Functionalization of polymers prepared by ATRP using radical addition reactions. <i>Macromolecular Rapid Communications</i> , 2000 , 21, 103-109	4.8	103
274	Controlled polymerization of (meth)acrylamides by atom transfer radical polymerization. <i>Macromolecular Rapid Communications</i> , 2000 , 21, 190-194	4.8	167
273	Polychloroalkane initiators in copper-catalyzed atom transfer radical polymerization of (meth)acrylates. <i>Macromolecular Chemistry and Physics</i> , 2000 , 201, 265-272	2.6	59
272	Electrospray ionization mass spectrometric study of Cu(I) and Cu(II) bipyridine complexes employed in atom transfer radical polymerization. <i>Journal of Mass Spectrometry</i> , 2000 , 35, 1295-9	2.2	14
271	Simple and effective one-pot synthesis of (meth)acrylic block copolymers through atom transfer radical polymerization 2000 , 38, 2023-2031		136
270	Preparation of block copolymers of polystyrene and poly (t-butyl acrylate) of various molecular weights and architectures by atom transfer radical polymerization 2000 , 38, 2274-2283		119
269	Diimino- and diaminopyridine complexes of CuBr and FeBr2 as catalysts in atom transfer radical polymerization (ATRP). <i>Macromolecular Chemistry and Physics</i> , 2000 , 201, 1619-1624	2.6	68
268	Cyclic voltammetric studies of copper complexes catalyzing atom transfer radical polymerization. <i>Macromolecular Chemistry and Physics</i> , 2000 , 201, 1625-1631	2.6	206
267	Graft copolymers of polyethylene by atom transfer radical polymerization. <i>Journal of Polymer Science Part A</i> , 2000 , 38, 2440-2448	2.5	65
266	Atom transfer radical polymerization of n-butyl methacrylate in an aqueous dispersed system: A miniemulsion approach. <i>Journal of Polymer Science Part A</i> , 2000 , 38, 4724-4734	2.5	96
265	Gradient copolymers by atom transfer radical copolymerization. <i>Journal of Physical Organic Chemistry</i> , 2000 , 13, 775-786	2.1	381
264	Functionalized Polymers by Atom Transfer Radical Polymerization. ACS Symposium Series, 2000, 347-360	00.4	10
263	Electron Paramagnetic Resonance Study of Conventional and Controlled Radical Polymerizations. <i>ACS Symposium Series</i> , 2000 , 68-81	0.4	9
262	The Copper Catalyst in Atom Transfer Radical Polymerizations: Structural Observations. <i>ACS Symposium Series</i> , 2000 , 211-222	0.4	13

(2000-2000)

261	Copolymerization of n-Butyl Acrylate with Methyl Methacrylate and PMMA Macromonomers by Conventional and Atom Transfer Radical Copolymerization. <i>ACS Symposium Series</i> , 2000 , 361-371	0.4	14
260	Comparison and Classification of Controlled/Living Radical Polymerizations. <i>ACS Symposium Series</i> , 2000 , 2-26	0.4	42
259	Organic-Inorganic Hybrid Polymers from Atom Transfer Radical Polymerization and Poly(dimethylsiloxane). <i>ACS Symposium Series</i> , 2000 , 270-283	0.4	4
258	Atom Transfer Radical Polymerization of tert-Butyl Acrylate and Preparation of Block Copolymers. <i>Macromolecules</i> , 2000 , 33, 4039-4047	5.5	265
257	Polychloroalkanes as ATRP Initiators: Fundamentals and Application to the Synthesis of Block Copolymers from the Combination of Conventional Radical Polymerization and ATRP. <i>ACS Symposium Series</i> , 2000 , 234-247	0.4	7
256	End-Functional Poly(tert-butyl acrylate) Star Polymers by Controlled Radical Polymerization. <i>Macromolecules</i> , 2000 , 33, 2340-2345	5.5	242
255	FREE RADICAL POLYMERIZATION 2000 , 929-977		13
254	Atom Transfer Radical Polymerization Initiated with Vinylidene Fluoride Telomers. <i>Macromolecules</i> , 2000 , 33, 4613-4615	5.5	97
253	The Effect of Ligands on Copper-Mediated Atom Transfer Radical Polymerization. <i>ACS Symposium Series</i> , 2000 , 207-223	0.4	46
252	Removal of Copper-Based Catalyst in Atom Transfer Radical Polymerization Using Ion Exchange Resins. <i>Macromolecules</i> , 2000 , 33, 1476-1478	5.5	129
251	Water-Borne Block and Statistical Copolymers Synthesized Using Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2000 , 33, 2296-2298	5.5	43
250	Kinetic Analysis of Controlled/Living Radical Polymerizations by Simulations. 2. Apparent External Orders of Reactants in Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2000 , 33, 1553-1559	5.5	72
249	The Synthesis of Hybrid Polymers Using Atom Transfer Radical Polymerization: Homopolymers and Block Copolymers from Polyhedral Oligomeric Silsesquioxane Monomers. <i>Macromolecules</i> , 2000 , 33, 217-220	5.5	194
248	Mechanistic Aspect of Reverse Atom Transfer Radical Polymerization ofn-Butyl Methacrylate in Aqueous Dispersed System. <i>Macromolecules</i> , 2000 , 33, 7310-7320	5.5	95
247	Optimization of Atom Transfer Radical Polymerization Using Cu(I)/Tris(2-(dimethylamino)ethyl)amine as a Catalyst. <i>Macromolecules</i> , 2000 , 33, 8629-8639	5.5	339
246	Halide Anions as Ligands in Iron-Mediated Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2000 , 33, 2335-2339	5.5	151
245	Novel segmented copolymers by combination of controlled ionic and radical polymerizations. <i>Macromolecular Symposia</i> , 2000 , 157, 183-192	0.8	6
244	Gradient copolymers by atom transfer radical copolymerization 2000 , 13, 775		3

243	Cyclic voltammetric studies of copper complexes catalyzing atom transfer radical polymerization 2000 , 201, 1625		4
242	Synthesis of Well-Defined Amphiphilic Block Copolymers with 2-(Dimethylamino)ethyl Methacrylate by Controlled Radical Polymerization. <i>Macromolecules</i> , 1999 , 32, 1763-1766	5.5	127
241	Transition Metal Catalysis in Controlled Radical Polymerization: Atom Transfer Radical Polymerization. <i>Chemistry - A European Journal</i> , 1999 , 5, 3095-3102	4.8	215
240	Dehalogenation of polymers prepared by atom transfer radical polymerization. <i>Macromolecular Rapid Communications</i> , 1999 , 20, 66-70	4.8	82
239	Synthesis of polymers with hydroxyl end groups by atom transfer radical polymerization. <i>Macromolecular Rapid Communications</i> , 1999 , 20, 127-134	4.8	73
238	4,4?,4?-Tris(5-nonyl)-2,2?: 6?,2?-terpyridine as ligand in atom transfer radical polymerization (ATRP). <i>Macromolecular Rapid Communications</i> , 1999 , 20, 341-346	4.8	66
237	Block copolymers by transformation of living anionic polymerization into controlled/livinglatom transfer radical polymerization. <i>Macromolecular Chemistry and Physics</i> , 1999 , 200, 1094-1100	2.6	75
236	END GROUP TRANSFORMATION OF POLYMERS PREPARED BY ATRP, SUBSTITUTION TO AZIDES. Journal of Macromolecular Science - Pure and Applied Chemistry, 1999, 36, 667-679	2.2	91
235	Copper(I)-Catalyzed Atom Transfer Radical Polymerization. <i>Accounts of Chemical Research</i> , 1999 , 32, 895-903	24.3	364
234	EPR and Kinetic Studies of Atom Transfer Radical Polymerization of (Meth)acrylates. <i>Polymer Journal</i> , 1999 , 31, 70-75	2.7	26
233	SYNTHESIS OF POLYMERS WITH AMINO END GROUPS BY ATOM TRANSFER RADICAL POLYMERIZATION. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 1999 , 36, 811-826	2.2	40
232	Kinetic Investigation of the Atom Transfer Radical Polymerization of Methyl Acrylate. <i>Macromolecules</i> , 1999 , 32, 1767-1776	5.5	149
231	SYNTHESIS OF POLYMERS WITH PHOSPHONIUM END GROUPS BY ATOM TRANSFER RADICAL POLYMERIZATION. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 1999 , 36, 653-666	2.2	33
230	Controlled/Living Radical Polymerization. Atom Transfer Radical Polymerization Catalyzed by Copper(I) and Picolylamine Complexes. <i>Macromolecules</i> , 1999 , 32, 2434-2437	5.5	195
229	Copolymerization of n-Butyl Acrylate with Methyl Methacrylate and PMMA Macromonomers: Comparison of Reactivity Ratios in Conventional and Atom Transfer Radical Copolymerization. <i>Macromolecules</i> , 1999 , 32, 8331-8335	5.5	191
228	Polymers at Interfaces: Using Atom Transfer Radical Polymerization in the Controlled Growth of Homopolymers and Block Copolymers from Silicon Surfaces in the Absence of Untethered Sacrificial Initiator. <i>Macromolecules</i> , 1999 , 32, 8716-8724	5.5	877
227	Synthesis and Characterization of Star Polymers with Varying Arm Number, Length, and Composition from Organic and Hybrid Inorganic/Organic Multifunctional Initiators. <i>Macromolecules</i> , 1999 , 32, 6526-6535	5.5	355
226	Atom Transfer Radical Polymerization of (Meth)acrylates from Poly(dimethylsiloxane) Macroinitiators. <i>Macromolecules</i> , 1999 , 32, 8760-8767	5.5	139

225	Synthesis of Functional Polystyrenes by Atom Transfer Radical Polymerization Using Protected and Unprotected Carboxylic Acid Initiators. <i>Macromolecules</i> , 1999 , 32, 7349-7353	5.5	71
224	Homogeneous Reverse Atom Transfer Radical Polymerization of Styrene Initiated by Peroxides. <i>Macromolecules</i> , 1999 , 32, 5199-5202	5.5	91
223	Atom Transfer Radical Polymerization in Supercritical Carbon Dioxide. <i>Macromolecules</i> , 1999 , 32, 4802-	4 § 05	192
222	Atom Transfer Radical Copolymerization of Styrene and n-Butyl Acrylate. <i>Macromolecules</i> , 1999 , 32, 22	2 1. 323	31 ₁₅₂
221	Emulsion Polymerization of n-Butyl Methacrylate by Reverse Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 1999 , 32, 2872-2875	5.5	154
220	Lifetimes of Polystyrene Chains in Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 1999 , 32, 90	5 ţ.9 05	5324
219	Polymerization of Vinyl Acetate Promoted by Iron Complexes. <i>Macromolecules</i> , 1999 , 32, 8310-8314	5.5	89
218	Kinetic Analysis of Controlled/Iliving Radical Polymerizations by Simulations. 1. The Importance of Diffusion-Controlled Reactions. <i>Macromolecules</i> , 1999 , 32, 2948-2955	5.5	105
217	Synthesis of Star-Shaped Polystyrene by Atom Transfer Radical Polymerization Using an Arm First Approach. <i>Macromolecules</i> , 1999 , 32, 4482-4484	5.5	253
216	Block Copolymerizations of Vinyl Acetate by Combination of Conventional and Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 1999 , 32, 7023-7031	5.5	78
215	Immobilization of the Copper Catalyst in Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 1999 , 32, 2941-2947	5.5	157
214	An Investigation into the CuX/2,2Bipyridine (X = Br or Cl) Mediated Atom Transfer Radical Polymerization of Acrylonitrile. <i>Macromolecules</i> , 1999 , 32, 6431-6438	5.5	170
213	Atom Transfer Radical Polymerization of (Meth)acrylamides. <i>Macromolecules</i> , 1999 , 32, 4826-4831	5.5	302
212	Atom Transfer Radical Polymerization of 4-Vinylpyridine. <i>Macromolecules</i> , 1999 , 32, 3531-3533	5.5	205
211	Bulk Atom Transfer Radical Polymerization. ACS Symposium Series, 1999, 96-112	0.4	2
2 10	Atom Transfer Radical Polymerization of 2-Hydroxyethyl Methacrylate. <i>Macromolecules</i> , 1999 , 32, 5772	?- <i>5</i> ;7576	257
209	Phosphazene Backbones for Siloxanes and Organic Polymers. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 576, 129		1
208	New (Co)polymers by atom transfer radical polymerization. <i>Macromolecular Symposia</i> , 1999 , 143, 257-2	: 68. 8	9

207	Atom Transfer Radical Polymerization and the Synthesis of Polymeric Materials. <i>Advanced Materials</i> , 1998 , 10, 901-915	24	794
206	Hydrogels by atom transfer radical polymerization. I. Poly(N-vinylpyrrolidinone-g-styrene) via the macromonomer method. <i>Journal of Polymer Science Part A</i> , 1998 , 36, 823-830	2.5	108
205	Polymerization of acrylates by atom transfer radical polymerization. Homopolymerization of 2-hydroxyethyl acrylate. <i>Journal of Polymer Science Part A</i> , 1998 , 36, 1417-1424	2.5	187
204	Synthesis of block, graft and star polymers from inorganic macroinitiators. <i>Applied Organometallic Chemistry</i> , 1998 , 12, 667-673	3.1	102
203	Synthesis and characterization of graft copolymers of poly(vinyl chloride) with styrene and (meth)acrylates by atom transfer radical polymerization. <i>Macromolecular Rapid Communications</i> , 1998 , 19, 47-52	4.8	110
202	EPR study of the atom transfer radical polymerization (ATRP) of (meth)acrylates. <i>Macromolecular Rapid Communications</i> , 1998 , 19, 319-321	4.8	39
201	Preparation of hyperbranched polyacrylates by atom transfer radical polymerization, 4. The use of zero-valent copper. <i>Macromolecular Rapid Communications</i> , 1998 , 19, 665-670	4.8	105
200	Atom transfer radical polymerization of styrene catalyzed by copper carboxylate complexes. <i>Macromolecular Chemistry and Physics</i> , 1998 , 199, 2289-2292	2.6	36
199	Synthesis of azido end-functionalized polyacrylates via atom transfer radical polymerization. <i>Polymer Bulletin</i> , 1998 , 40, 135-142	2.4	101
198	Development of novel attachable initiators for atom transfer radical polymerization. Synthesis of block and graft copolymers from poly(dimethylsiloxane) macroinitiators. <i>Polymer</i> , 1998 , 39, 5163-5170	3.9	86
197	Controlled Radical Polymerization in the Presence of Oxygen. <i>Macromolecules</i> , 1998 , 31, 5967-5969	5.5	117
196	Utilizing Halide Exchange To Improve Control of Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 1998 , 31, 6836-6840	5.5	336
195	Synthesis of Acrylate and Methacrylate Block Copolymers Using Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 1998 , 31, 8005-8008	5.5	305
194	Copper Triflate as a Catalyst in Atom Transfer Radical Polymerization of Styrene and Methyl Acrylate. <i>Macromolecules</i> , 1998 , 31, 7999-8004	5.5	57
193	Radical Nature of Cu-Catalyzed Controlled Radical Polymerizations (Atom Transfer Radical Polymerization). <i>Macromolecules</i> , 1998 , 31, 4710-7	5.5	167
192	How to Make Polymer Chains of Various Shapes, Compositions, and Functionalities by Atom Transfer Radical Polymerization. <i>ACS Symposium Series</i> , 1998 , 396-417	0.4	33
191	Interaction of Propagating Radicals with Copper(I) and Copper(II) Species. <i>Macromolecules</i> , 1998 , 31, 4718-23	5.5	46
190	Kinetic Study on the Activation Process in an Atom Transfer Radical Polymerization. Macromolecules, 1998 , 31, 2699-2701	5.5	119

189	Controlled/Living Radical Polymerization Applied to Water-Borne Systems. <i>Macromolecules</i> , 1998 , 31, 5951-5954	5.5	142
188	Stopped-Flow Investigation of Trifluoromethanesulfonic Acid Initiated Cationic Oligomerization of trans-1,3-Diphenyl-1-butene. 2. A Model Kinetic Study of Styrene Cationic Polymerization. <i>Macromolecules</i> , 1998 , 31, 2403-2408	5.5	3
187	Polymerization of n-Butyl Acrylate by Atom Transfer Radical Polymerization. Remarkable Effect of Ethylene Carbonate and Other Solvents. <i>Macromolecules</i> , 1998 , 31, 1535-1541	5.5	239
186	The Synthesis of Densely Grafted Copolymers by Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 1998 , 31, 9413-9415	5.5	495
185	Controlled/LivingLAtom Transfer Radical Polymerization of Methyl Methacrylate Using Various Initiation Systems. <i>Macromolecules</i> , 1998 , 31, 1527-1534	5.5	236
184	Simple and Efficient Synthesis of Various Alkoxyamines for Stable Free Radical Polymerization. <i>Macromolecules</i> , 1998 , 31, 5955-5957	5.5	205
183	Overview: Fundamentals of Controlled/Living Radical Polymerization. ACS Symposium Series, 1998, 2-30	0.4	48
182	Mechanistic Aspects of Atom Transfer Radical Polymerization. ACS Symposium Series, 1998, 258-283	0.4	39
181	Synthesis of Amphiphilic Block Copolymers by Atom Transfer Radical Polymerization (ATRP). <i>Macromolecules</i> , 1998 , 31, 6046-6052	5.5	146
180	Simultaneous EPR and Kinetic Study of Styrene Atom Transfer Radical Polymerization (ATRP). <i>Macromolecules</i> , 1998 , 31, 5695-5701	5.5	71
179	Controlled/Living Radical Polymerization. Atom Transfer Radical Polymerization of Acrylates at Ambient Temperature. <i>Macromolecules</i> , 1998 , 31, 5958-5959	5.5	336
178	Synthesis of Functional Polymers by Atom Transfer Radical Polymerization. <i>ACS Symposium Series</i> , 1998 , 16-27	0.4	36
177	Inner sphere and outer sphere electron transfer reactions in atom transfer radical polymerization. <i>Macromolecular Symposia</i> , 1998 , 134, 105-118	0.8	38
176	Formation of Block Copolymers by Transformation of Cationic Ring-Opening Polymerization to Atom Transfer Radical Polymerization (ATRP). <i>Macromolecules</i> , 1998 , 31, 3489-3493	5.5	86
175	Controlled/"Living" Radical Polymerization of 2-(Dimethylamino)ethyl Methacrylate. <i>Macromolecules</i> , 1998 , 31, 5167-9	5.5	199
174	EPR Study of Atom Transfer Radical Polymerization (ATRP) of Styrene. <i>Macromolecules</i> , 1998 , 31, 548-5	 5 59 5	51
173	Synthesis of Well-Defined Allyl End-Functionalized Polystyrene by Atom Transfer Radical Polymerization with an Allyl Halide Initiator. <i>Polymer Journal</i> , 1998 , 30, 138-141	2.7	57
172	Transformation of I lvingstarbocationic and other polymerizations to controlled/ I lvingstadical polymerization. <i>Macromolecular Symposia</i> , 1998 , 132, 85-101	0.8	22

171	Atom Transfer Radical Polymerization and the Synthesis of Polymeric Materials 1998, 10, 901		8
170	Effect of Water and Oxygen on the Polymerization of Vinyl Acetate Initiated by Aluminum Alkyls, Bipyridyls, and Nitroxyl Radicals. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 1997 , 34, 221-224	2.2	8
169	Comparison of Controlled Living Carbocationic and Radical Polymerizations. <i>ACS Symposium Series</i> , 1997 , 12-24	0.4	14
168	Mechanistic and Synthetic Aspects of Atom Transfer Radical Polymerization. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 1997 , 34, 1785-1801	2.2	128
167	Block Copolymers by Transformation of Living Ring-Opening Metathesis Polymerization into Controlled/Living Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 1997 , 30, 6513-6516	5.5	147
166	Block Copolymers by Transformation of Living Carbocationic into Living Radical Polymerization. <i>Macromolecules</i> , 1997 , 30, 2808-2810	5.5	123
165	Molecular Parameters of Hyperbranched Polymers Made by Self-Condensing Vinyl Polymerization. 2. Degree of Branching <i>Macromolecules</i> , 1997 , 30, 7024-7033	5.5	278
164	Monomolecular Films of Arborescent Graft Polystyrenes. <i>Macromolecules</i> , 1997 , 30, 2343-2349	5.5	65
163	Step-Growth Polymers as Macroinitators for Living Radical Polymerization: Synthesis of ABA Block Copolymers. <i>Macromolecules</i> , 1997 , 30, 4241-4243	5.5	127
162	Preparation of Hyperbranched Polyacrylates by Atom Transfer Radical Polymerization. 3. Effect of Reaction Conditions on the Self-Condensing Vinyl Polymerization of 2-((2-Bromopropionyl)oxy)ethyl Acrylate. <i>Macromolecules</i> , 1997 , 30, 7042-7049	5.5	152
161	Preparation of Hyperbranched Polyacrylates by Atom Transfer Radical Polymerization. 2. Kinetics and Mechanism of Chain Growth for the Self-Condensing Vinyl Polymerization of 2-((2-Bromopropionyl)oxy)ethyl Acrylate. <i>Macromolecules</i> , 1997 , 30, 7034-7041	5.5	175
160	Controlled/ l iving R adical Polymerization. Kinetics of the Homogeneous Atom Transfer Radical Polymerization of Styrene. <i>Journal of the American Chemical Society</i> , 1997 , 119, 674-680	16.4	800
159	Controlled/Living Radical Polymerization. Atom Transfer Radical Polymerization Using Multidentate Amine Ligands. <i>Macromolecules</i> , 1997 , 30, 7697-7700	5.5	417
158	Synthesis of Well-Defined Polyacrylonitrile by Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 1997 , 30, 6398-6400	5.5	190
157	Controlled/Living Radical Polymerization of Styrene and Methyl Methacrylate Catalyzed by Iron Complexes 1. <i>Macromolecules</i> , 1997 , 30, 8161-8164	5.5	346
156	Zerovalent Metals in Controlled/Living Radical Polymerization. <i>Macromolecules</i> , 1997 , 30, 7348-7350	5.5	278
155	Controlled/Living Radical Polymerization. Homogeneous Reverse Atom Transfer Radical Polymerization Using AIBN as the Initiator. <i>Macromolecules</i> , 1997 , 30, 7692-7696	5.5	227
154	Controlled/ [living[Radical Polymerization of Methyl Methacrylate by Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 1997 , 30, 2216-2218	5.5	197

-	153	Polymerization of Substituted Styrenes by Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 1997 , 30, 5643-5648	5.5	148
	152	Preparation of Hyperbranched Polyacrylates by Atom Transfer Radical Polymerization. 1. Acrylic AB* Monomers in [living[Radical Polymerizations. <i>Macromolecules</i> , 1997 , 30, 5192-5194	5.5	301
-	151	Observation and analysis of a slow termination process in the atom transfer radical polymerization of styrene. <i>Tetrahedron</i> , 1997 , 53, 15321-15329	2.4	110
	150	Kinetic Study of the Homogeneous Atom Transfer Radical Polymerization of Methyl Methacrylate. <i>Macromolecules</i> , 1997 , 30, 6507-6512	5.5	186
-	149	Palladium-Mediated Ring-Opening Reactions of Strained Cyclotetrasilanes. <i>Journal of Inorganic and Organometallic Polymers</i> , 1997 , 7, 137-150		
	148	Metal complexes in controlled radical polymerization. <i>Acta Polymerica</i> , 1997 , 48, 169-180		23
-	147	Synthesis and characterization of polyphosphazene homopolymers and copolymers. <i>Macromolecular Chemistry and Physics</i> , 1997 , 198, 665-671	2.6	16
-	146	Polymerization of acrylates by atom transfer radical polymerization. Homopolymerization of glycidyl acrylate. <i>Macromolecular Chemistry and Physics</i> , 1997 , 198, 4011-4017	2.6	42
-	145	Synthesis of well-defined azido and amino end-functionalized polystyrene by atom transfer radical polymerization. <i>Macromolecular Rapid Communications</i> , 1997 , 18, 1057-1066	4.8	163
	144	TEMPO-mediated polymerization of styrene: Rate enhancement with dicumyl peroxide. <i>Journal of Polymer Science Part A</i> , 1997 , 35, 1857-1861	2.5	67
-	143	Block copolymers by transformation of Ilvinglarbocationic into Ilvingladical polymerization. II. ABA-type block copolymers comprising rubbery polyisobutene middle segment. <i>Journal of Polymer Science Part A</i> , 1997 , 35, 3595-3601	2.5	57
-	142	Block copolymers by transformation of <code>I</code> vinglarbocationic into <code>I</code> vingladical polymerization. II. ABA-type block copolymers comprising rubbery polyisobutene middle segment 1997 , 35, 3595		2
-	141	Mechanism of Controlled/LivinglRadical Polymerization of Styrene in the Presence of Nitroxyl Radicals. Kinetics and Simulations. <i>Macromolecules</i> , 1996 , 29, 7661-7670	5.5	218
-	140	Synthesis of Branched and Hyperbranched Polystyrenes. <i>Macromolecules</i> , 1996 , 29, 1079-1081	5.5	419
-	139	Controlled/Living Radical Polymerization with Dendrimers Containing Stable Radicals. <i>Macromolecules</i> , 1996 , 29, 4167-4171	5.5	102
:	138	Comments on the Paper Living Radical Polymerization: Kinetic Results (Catala, J. M.; Bubel, F.; Oulad Hammouch, S.Macromolecules 1995, 28, 8441). <i>Macromolecules</i> , 1996 , 29, 5239-5240	5.5	33
	137	Controlled radical polymerization. Current Opinion in Solid State and Materials Science, 1996 , 1, 769-776	12	75
-	136	Stopped-Flow Investigation of Trifluoromethanesulfonic Acid Initiated Cationic Oligomerization of trans-1,3-Diphenyl-1-butene. 1. Analysis of Products and UVII sible Spectroscopic Study.	5.5	21

135	Effect of initiators, lewis acids, deactivators, additives and medium on controlled/llving carbocationic systems. <i>Macromolecular Symposia</i> , 1996 , 107, 53-63	0.8	12
134	The importance of exchange reactions in controlled/living radical polymerization in the presence of alkoxyamines and transition metals. <i>Macromolecular Symposia</i> , 1996 , 111, 47-61	0.8	22
133	Controlled radical polymerization of styrene in the presence of nitronyl nitroxides. <i>Macromolecular Rapid Communications</i> , 1996 , 17, 347-351	4.8	13
132	Copolymers with controlled distribution of comonomers along the chain, 1. Structure, thermodynamics and dynamic properties of gradient copolymers. Computer simulation. <i>Macromolecular Theory and Simulations</i> , 1996 , 5, 987-1006	1.5	135
131	Synthesis, isomerization, and polymerization of mixed phosphoranimines. <i>Journal of Polymer Science Part A</i> , 1996 , 34, 277-289	2.5	6
130	Ring-opening of 1,2,3,4-tetramethyl-1,2,3,4-tetraphenylcyclotetrasilane in the presence of transition metal catalysts. <i>Journal of Polymer Science Part A</i> , 1996 , 34, 2243-2252	2.5	3
129	Atom Transfer Radical Polymerization Including Degenerative Transfer: Novel and General Pathways Towards Living [] Controlled Radical Polymerization 1996 , 1-9		3
128	Branched polysilanes from tetrafunctional monomers. <i>Journal of Inorganic and Organometallic Polymers</i> , 1995 , 5, 261-279		10
127	Modification of polysilanes: Preparation of comb-like graft copolymers. <i>Journal of Inorganic and Organometallic Polymers</i> , 1995 , 5, 183-193		4
126	Introduction to living polymeriz. Living and/or controlled polymerization. <i>Journal of Physical Organic Chemistry</i> , 1995 , 8, 197-207	2.1	151
125	Living and controlled radical polymerization. Journal of Physical Organic Chemistry, 1995, 8, 306-315	2.1	113
124	Trimethylsilyl triflate as an initiator for cationic polymerization: Improved initiation through the use of promoters. <i>Journal of Polymer Science Part A</i> , 1995 , 33, 285-298	2.5	18
123	Synthesis of branched copolysilanes from trichlorosilanes. <i>Journal of Polymer Science Part A</i> , 1995 , 33, 771-778	2.5	7
122	Controlled/"Living" Radical Polymerization. Halogen Atom Transfer Radical Polymerization Promoted by a Cu(I)/Cu(II) Redox Process. <i>Macromolecules</i> , 1995 , 28, 7901-7910	5.5	1490
121	Controlled/"living" radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes. <i>Journal of the American Chemical Society</i> , 1995 , 117, 5614-5615	16.4	3994
120	Synthesis and Properties of Polysilanes Prepared by Ring-Opening Polymerization. <i>ACS Symposium Series</i> , 1995 , 433-442	0.4	O
119	The Conversion of Phosphoranimines to Polyphosphazenes in the Presence of Electrophiles. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 1995 , 32, 1497-1519	2.2	10
118	Thermal Degradation of Polyphosphazene Homopolymers and Copolymers Prepared by the Anionic Polymerization of Phosphoranimines. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 1995 , 32, 1115-1135	2.2	3

117	Sonochemical Synthesis of Polysilylenes by Reductive Coupling of Disubstituted Dichlorosilanes with Alkali Metals. <i>Macromolecules</i> , 1995 , 28, 59-72	5.5	80
116	Controlled Radical Polymerization by Degenerative Transfer: Effect of the Structure of the Transfer Agent. <i>Macromolecules</i> , 1995 , 28, 8051-8056	5.5	217
115	"Living"/Controlled Radical Polymerization. Transition-Metal-Catalyzed Atom Transfer Radical Polymerization in the Presence of a Conventional Radical Initiator. <i>Macromolecules</i> , 1995 , 28, 7572-7573	3 ^{5.5}	419
114	Controlled Radical Polymerizations: The Use of Alkyl Iodides in Degenerative Transfer. <i>Macromolecules</i> , 1995 , 28, 2093-2095	5.5	285
113	Synthesis of well defined polymers by controlled radical polymerization. <i>Macromolecular Symposia</i> , 1995 , 98, 73-89	0.8	28
112	Unimolecular and bimolecular exchange reactions in controlled radical polymerization. <i>Macromolecular Symposia</i> , 1995 , 95, 217-231	0.8	18
111	Lithium alkylnickelate and alkylpalladate bimetallic leteltomplexes as initiators for anionic polymerization of methyl methacrylate. <i>Macromolecular Chemistry and Physics</i> , 1995 , 196, 399-409	2.6	5
110	Crystalline and disordered state of poly(dihexylsilylene) copolymers. <i>Macromolecular Chemistry and Physics</i> , 1995 , 196, 1181-1194	2.6	2
109	Morphology of (methoxyethoxy/trifluoroethoxy)phosphazene copolymers. <i>Macromolecular Chemistry and Physics</i> , 1995 , 196, 1713-1737	2.6	1
108	Exchange reactions between covalent and carbocationic species in polymerization of vinyl ethers in the presence of lewis acids: dynamic NMR studies. <i>Macromolecular Chemistry and Physics</i> , 1995 , 196, 2149-2160	2.6	3
107	Comments on the paper living cationic polymerization of styrene monomerslby ML. Yang, K. Li and H. D. H. Stller. <i>Macromolecular Rapid Communications</i> , 1995 , 16, 219-221	4.8	2
106	Computer simulation of the aggregation of ion pairs in the polymerization of styrene initiated by RCl/SnCl4/NRClBystems. <i>Macromolecular Theory and Simulations</i> , 1995 , 4, 335-345	1.5	2
105	Fundamentals and Practical Aspects of Living Radical Polymerization 1995, 11-24		
104	Controlled Radical Polymerization. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 1994 , 31, 1561-1578	2.2	50
103	From Living Carbocationic to Living Radical Polymerization. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 1994 , 31, 989-1000	2.2	
102	Polysilanes with various architectures. <i>Macromolecular Symposia</i> , 1994 , 77, 79-92	0.8	15
101	Microstructure in the Ring Opening Polymerization of Cyclotetrasilanes. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 1994 , 93, 129-141	1	3
100	Synthesis of polyphosphazenes from phosphoranimines and phosphine azides. <i>Polymer</i> , 1994 , 35, 5005-	5,0311	15

99	Unified approach to living and non-living cationic polymerization of alkenes. <i>Polymer International</i> , 1994 , 35, 1-26	3.3	62
98	Synthesis of polyphosphazenes bearing alkoxyethoxy and trifluoroethoxy groups. <i>Journal of Polymer Science Part A</i> , 1994 , 32, 465-473	2.5	10
97	Synthesis of poly(Emethoxypropylmethylsilylene) and poly(Emethoxypropylmethylsilylene-co-di-n-hexylsilylene). <i>Journal of Polymer Science Part A</i> , 1994 , 32, 1949-1956	2.5	4
96	Novel structural and thermotropic behavior of poly(diphenylphosphazene). <i>Macromolecular Chemistry and Physics</i> , 1994 , 195, 1823-1842	2.6	6
95	Organoaluminium amides as initiators for polymerization of acrylic monomers, 2 New initiating systems for well-controlled polymerization of methyl methacrylate. <i>Macromolecular Rapid Communications</i> , 1994 , 15, 37-44	4.8	21
94	Synthesis and characterization of poly(phenyl-p-tolylphosphazene), prepared via in situ polymerization of phenyl-p-tolylphosphine azide. <i>Macromolecular Rapid Communications</i> , 1994 , 15, 169-	-148	4
93	"Living" radical polymerization. 1. Possibilities and limitations. <i>Macromolecules</i> , 1994 , 27, 638-644	5.5	220
92	"Living" radical polymerization of vinyl acetate. <i>Macromolecules</i> , 1994 , 27, 645-649	5.5	103
91	Bimodal Molecular Weight Distribution in Carbocationic Systems with Free Ions and Ion Pairs of Equal Reactivities but Different Lifetimes. <i>Macromolecules</i> , 1994 , 27, 7565-7574	5.5	21
90	Stereostructure of Polysilanes by Ring-Opening Polymerization. <i>ACS Symposium Series</i> , 1994 , 32-42	0.4	1
89	Salt and solvent effects in IlvingLarbocationic polymerization. <i>Macromolecular Symposia</i> , 1994 , 85, 65-78	0.8	10
88	Ranking living systems. <i>Macromolecules</i> , 1993 , 26, 1787-1788	5.5	130
87	Synthesis of polyphosphazene block copolymers bearing alkoxyethoxy and trifluoroethoxy groups. <i>Macromolecules</i> , 1993 , 26, 6741-6748	5.5	43
86	Comparison of living polymerization mechanisms. Acrylates and carbocationic polymerization. <i>Makromolekulare Chemie Macromolecular Symposia</i> , 1993 , 67, 67-82		2
85	Degradation of poly(methylphenylsilylene) and poly(di-n-hexylsilylene). <i>Journal of Polymer Science Part A</i> , 1993 , 31, 299-307	2.5	29
84	New synthetic routes towards polyphosphazenes. <i>Makromolekulare Chemie Macromolecular Symposia</i> , 1992 , 54-55, 13-30		12
83	Catalysts and Initiators for Controlling the Structure of Polymers with Inorganic Backbones. <i>ACS Symposium Series</i> , 1992 , 215-233	0.4	
82	Synthesis of poly(phenyltrifluoroethoxyphosphazene) by direct reaction of trimethylsilyl azide with bis(2,2,2-trifluoroethyl) phenylphosphonite. <i>Journal of Polymer Science Part A</i> , 1992 , 30, 813-818	2.5	19

81	Anionic ring-opening polymerization of cyclotetrasilanes. <i>Makromolekulare Chemie Macromolecular Symposia</i> , 1991 , 42-43, 269-280	12
8o	Exchange reactions in the living cationic polymerization of alkenes. <i>Makromolekulare Chemie Macromolecular Symposia</i> , 1991 , 47, 221-237	35
79	Cationic polymerization of styrenes by activated covalent species. Direct 1H-NMR observation of complexes of 1-phenylethyl acetates with lewis acids. <i>Journal of Polymer Science Part A</i> , 1991 , 29, 1439-1446	10
78	Preparation and degradation of polysilylenes. <i>Journal of Inorganic and Organometallic Polymers</i> , 1991 , 1, 463-485	23
77	Synthesis and Characterization of Polysilanes. <i>Journal of Macromolecular Science Part A, Chemistry</i> , 1991 , 28, 1151-1176	32
76	Anionic ring-opening polymerization of 1,2,3,4-tetramethyl-1,2,3,4-tetraphenylcyclotetrasilane. Journal of the American Chemical Society, 1991, 113, 1046-1047	91
75	Trimethylsilyl trifluoromethanesulfonate as IhitiatorIbf the cationic polymerization of styrenes. Journal of Polymer Science Part A, 1990, 28, 1771-1779 2.5	5
74	Synthesis of poly[bis(trifluoroethoxy)phosphazene] under mild conditions using a fluoride initiator. Journal of the American Chemical Society, 1990, 112, 6721-6723	98
73	Activated esters in the cationic polymerization of styrenes. <i>Makromolekulare Chemie Macromolecular Symposia</i> , 1988 , 13-14, 433-441	23
72	Comments on pseudocationic polymerization after 24 years by P. H. Plesch. <i>Makromolekulare Chemie Macromolecular Symposia</i> , 1988 , 13-14, 389-392	8
71	Theoretical basis and kinetic sense of covalent propagation in cationic polymerization. <i>Journal of Polymer Science Part A</i> , 1987 , 25, 765-773	12
70	CORRELATION OF THE RATE CONSTANTS OF PROPAGATION WITH THE STRUCTURES OF MONOMERS AND ACTIVE CENTERS IN CHAIN-GROWTH POLYMERIZATION. <i>Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics</i> , 1986 , 26, 1-32	11
69	Cationic Ring-Opening Polymerization of Heterocyclic Monomers. <i>Advances in Polymer Science</i> , 1.3	32
68	Kinetics and mechanism of the cationic polymerization of tetrahydrofuran in solution. I. THFICCI4 system. <i>Journal of Polymer Science: Polymer Chemistry Edition</i> , 1975 , 13, 763-784	16
67	Ion ? ester equilibria in the living cationic polymerization of tetrahydrofuran. <i>Journal of Polymer Science: Polymer Chemistry Edition</i> , 1974 , 12, 1333-1336	26
66	The macroester? macroion equilibrium in the cationic polymerization of THF observed directly by 300 MHz1 H NMR. <i>Journal of Polymer Science: Polymer Chemistry Edition</i> , 1974 , 12, 1905-1912	35
65	Radical Polymerization103-166	3
64	Synthesis of Block and Graft Copolymers445-492	4

63	Morphologies in Block Copolymers493-554	2
62	Macromolecular Architectures by Living and Controlled/Living Polymerizations343-443	4
61	Living Ring-Opening Polymerization of Heterocyclic Monomers241-296	2
60	Anionic Vinyl Polymerization1-56	6
59	Carbocationic Polymerization57-102	6
58	Living Ring-Opening Metathesis Polymerization297-342	13
57	Industrial Applications555-603	2
56	Living Transition Metal-Catalyzed Alkene Polymerization: Polyolefin Synthesis and New Polymer Architectur	es1 , 67-239
55	ESR Study of Radicals in Conventional Radical Polymerization Using Radical Precursors Prepared by Atom Transfer Radical Polymerization99-131	
54	Industrial Applications and Processes333-359	7
53	Macromolecular Engineering by Controlled/Living Radical Polymerization775-844	6
52	Control of Stereochemistry of Polymers in Radical Polymerization691-773	14
51	Control of Free-Radical Polymerization by Chain Transfer Methods629-690	32
50	Nitroxide-Mediated Living Radical Polymerizations463-521	28
49	Copolymerization Kinetics263-300	3
48	Heterogeneous Systems301-331	5
47	The Kinetics of Free-Radical Polymerization187-261	21
46	General Chemistry of Radical Polymerization117-186	10

45 Small-Radical Chemistry77-115

44	General Concepts and History of Living Radical Polymerization361-406		21
43	Future Outlook and Perspectives895-900		3
42	Experimental Procedures and Techniques for Radical Polymerization845-893		1
41	Theory of Radical Reactions1-76		2
40	Fundamentals of Atom Transfer Radical Polymerization523-628		31
39	Kinetics of Living Radical Polymerization407-462		13
38	Tandem Living Insertion and Controlled Radical Polymerization for Polyolefin B olyvinyl Block Copolymers. <i>Angewandte Chemie</i> ,e202112742	3.6	1
	Distribution of Alternating Sequences in Methyl Methacrylate/n-Butyl Acrylate Copolymers Prepared by Atom Transfer Radical Polymerization. <i>Macromolecules</i> ,	5.5	5
	Fabrication of novel polymeric and carbonaceous nanoscale networks by the union of self-assembly and hypercrosslinking		1
35	Determination of Bulk and Solution Morphologies by Transmission Electron Microscopy1649-1685		2
34	Further of Interest2827-2827		
33	Nanocomposites2033-2070		
32	From Biomineralization Polymers to Double Hydrophilic Block and Graft Copolymers2597-2643		
31	Microelectronic Materials with Hierarchical Organization2331-2367		
30	Polymers in Tissue Engineering2719-2742		
29	Reactive Blending1753-1782		
28	Utilization of Polymers in Sensor Devices2493-2539		O

27	Polymers for Microelectronics2263-2293	4
26	Transport and Electro-Optical Properties in Polymeric Self-Assembled Systems1471-1514	
25	NMR Spectroscopy1937-1965	2
24	High-Throughput Screening in Combinatorial Polymer Research1967-1999	1
23	Polymer/Layered Filler Nanocomposites: An Overview from Science to Technology2071-2134	2
22	Semiconducting Polymers and Their Optoelectronic Applications2369-2408	6
21	Polymer Encapsulation of Metallic and Semiconductor Nanoparticles: Multifunctional Materials with Novel Optical, Electronic and Magnetic Properties2409-2449	1
20	Atomic Force Microscopy of Polymers: Imaging, Probing and Lithography1515-1574	
19	IUPAC Polymer Terminology and Macromolecular Nomenclature2743-2745	
18	Molecular Design and Self-Assembly of Functional Dendrimers1057-1102	1
17	Self-Assembly and Morphology Diagrams for Solution and Bulk Materials: Experimental Aspects1387-1430	3
16	Hybrid Organic Inorganic Objects1179-1207	1
15	Grafting and Polymer Brushes on Solid Surfaces1137-1178	7
14	Atom transfer radical polymerization of n-butyl methacrylate in an aqueous dispersed system: A miniemulsion approach. <i>Journal of Polymer Science Part A</i> ,38, 4724-4734	3
13	Nanostructured Carbons from Block Copolymers257-274	3
12	Competitive Equilibria in Atom Transfer Radical Polymerization60-70	1
11	Block Copolymers for Adhesive Applications1731-1751	2
10	Scanning Calorimetry1827-1880	6

LIST OF PUBLICATIONS

9	Chromatography of Polymers1881-1936		4
8	Applications of Thermoplastic Elastomers Based on Styrenic Block Copolymers2001-2031		3
7	Molecular and Supramolecular Conjugated Polymers for Electronic Applications2225-2262		6
6	Polymeric Membranes for Gas Separation, Water Purification and Fuel Cell Technology2451-2491		5
5	Polymeric Drugs2541-2595		5
4	Gel: A Potential Material as Artificial Soft Tissue2689-2717		3
3	ATRP: A Versatile Tool toward Uniformly Crosslinked Hydrogels with Controlled Architecture and Multi	ifuncti	onality169
2	Macromolecular Engineering by Atom Transfer Radical Polymerization1-51		
1	Degradable and Recyclable Polymers by Reversible Deactivation Radical Polymerization. <i>CCS Chemistry</i> ,1-36	7.2	6