Krzysztof Matyjaszewski

List of Publications by Citations

 $\textbf{Source:} \ https://exaly.com/author-pdf/8119510/krzysztof-matyjaszewski-publications-by-citations.pdf$

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 1,322
 121,125
 164
 298

 papers
 citations
 h-index
 g-index

 1,376
 129,483
 7
 8.99

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
1322	Atom transfer radical polymerization. <i>Chemical Reviews</i> , 2001 , 101, 2921-90	68.1	6742
1321	Controlled/"living" radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes. <i>Journal of the American Chemical Society</i> , 1995 , 117, 5614-5615	16.4	3994
1320	Controlled/living radical polymerization: Features, developments, and perspectives. <i>Progress in Polymer Science</i> , 2007 , 32, 93-146	29.6	2658
1319	Atom Transfer Radical Polymerization (ATRP): Current Status and Future Perspectives. <i>Macromolecules</i> , 2012 , 45, 4015-4039	5.5	1961
1318	Controlled/"Living" Radical Polymerization. Halogen Atom Transfer Radical Polymerization Promoted by a Cu(I)/Cu(II) Redox Process. <i>Macromolecules</i> , 1995 , 28, 7901-7910	5.5	1490
1317	Design and preparation of porous polymers. <i>Chemical Reviews</i> , 2012 , 112, 3959-4015	68.1	1282
1316	The development of microgels/nanogels for drug delivery applications. <i>Progress in Polymer Science</i> , 2008 , 33, 448-477	29.6	1269
1315	"Green" atom transfer radical polymerization: from process design to preparation of well-defined environmentally friendly polymeric materials. <i>Chemical Reviews</i> , 2007 , 107, 2270-99	68.1	1132
1314	Functional polymers by atom transfer radical polymerization. <i>Progress in Polymer Science</i> , 2001 , 26, 337	- 3 376	1128
1313	Nanostructured functional materials prepared by atom transfer radical polymerization. <i>Nature Chemistry</i> , 2009 , 1, 276-88	17.6	1074
1312	Cylindrical molecular brushes: Synthesis, characterization, and properties. <i>Progress in Polymer Science</i> , 2008 , 33, 759-785	29.6	919
1311	Macromolecular engineering by atom transfer radical polymerization. <i>Journal of the American Chemical Society</i> , 2014 , 136, 6513-33	16.4	902
1310	Polymers at Interfaces: Using Atom Transfer Radical Polymerization in the Controlled Growth of Homopolymers and Block Copolymers from Silicon Surfaces in the Absence of Untethered Sacrificial Initiator. <i>Macromolecules</i> , 1999 , 32, 8716-8724	5.5	877
1309	Controlled/Living Radical Polymerization. Kinetics of the Homogeneous Atom Transfer Radical Polymerization of Styrene. <i>Journal of the American Chemical Society</i> , 1997 , 119, 674-680	16.4	800
1308	Atom Transfer Radical Polymerization and the Synthesis of Polymeric Materials. <i>Advanced Materials</i> , 1998 , 10, 901-915	24	794
1307	Diminishing catalyst concentration in atom transfer radical polymerization with reducing agents. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 15309-14	11.5	723
1306	Marrying click chemistry with polymerization: expanding the scope of polymeric materials. <i>Chemical Society Reviews</i> , 2010 , 39, 1338-54	58.5	693

1305	Synthesis of functional polymers with controlled architecture by CRP of monomers in the presence of cross-linkers: From stars to gels. <i>Progress in Polymer Science</i> , 2009 , 34, 317-350	29.6	680
1304	Activators Regenerated by Electron Transfer for Atom Transfer Radical Polymerization of Styrene. <i>Macromolecules</i> , 2006 , 39, 39-45	5.5	651
1303	Electrochemically mediated atom transfer radical polymerization. <i>Science</i> , 2011 , 332, 81-4	33.3	642
1302	Synthesis of Nanocomposite Organic/Inorganic Hybrid Materials Using Controlled/Living Radical Polymerization. <i>Chemistry of Materials</i> , 2001 , 13, 3436-3448	9.6	631
1301	Synthesis of Polymer Brushes Using Atom Transfer Radical Polymerization. <i>Macromolecular Rapid Communications</i> , 2003 , 24, 1043-1059	4.8	622
1300	Atom transfer radical addition and polymerization reactions catalyzed by ppm amounts of copper complexes. <i>Chemical Society Reviews</i> , 2008 , 37, 1087-97	58.5	572
1299	Permanent, non-leaching antibacterial surface2: how high density cationic surfaces kill bacterial cells. <i>Biomaterials</i> , 2007 , 28, 4870-9	15.6	569
1298	From precision polymers to complex materials and systems. <i>Nature Reviews Materials</i> , 2016 , 1,	73.3	555
1297	Grafting from surfaces for "everyone": ARGET ATRP in the presence of air. <i>Langmuir</i> , 2007 , 23, 4528-31	4	544
1296	Stimuli-responsive molecular brushes. <i>Progress in Polymer Science</i> , 2010 , 35, 24-44	29.6	541
1295	Activators regenerated by electron transfer for atom-transfer radical polymerization of (meth)acrylates and related block copolymers. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 448	3 <u>7</u> 6.4	538
1294	Controlled/living radical polymerization in aqueous media: homogeneous and heterogeneous systems. <i>Progress in Polymer Science</i> , 2001 , 26, 2083-2134	29.6	525
1293	Synthesis of molecular brushes by "grafting onto" method: combination of ATRP and click reactions. <i>Journal of the American Chemical Society</i> , 2007 , 129, 6633-9	16.4	514
1292	Activator Generated by Electron Transfer for Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2005 , 38, 4139-4146	5.5	499
1291	Permanent, nonleaching antibacterial surfaces. 1. Synthesis by atom transfer radical polymerization. <i>Biomacromolecules</i> , 2004 , 5, 877-82	6.9	497
1290	The Synthesis of Densely Grafted Copolymers by Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 1998 , 31, 9413-9415	5.5	495
1289	Self-healing of covalently cross-linked polymers by reshuffling thiuram disulfide moieties in air under visible light. <i>Advanced Materials</i> , 2012 , 24, 3975-80	24	489
1288	Visible Light and Sunlight Photoinduced ATRP with ppm of Cu Catalyst. <i>ACS Macro Letters</i> , 2012 , 1, 1219	961@23	458

1287	Understanding atom transfer radical polymerization: effect of ligand and initiator structures on the equilibrium constants. <i>Journal of the American Chemical Society</i> , 2008 , 130, 10702-13	16.4	450
1286	ATRP in the design of functional materials for biomedical applications. <i>Progress in Polymer Science</i> , 2012 , 37, 18-37	29.6	447
1285	Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns. <i>Environmental Science & Environmental Science & Env</i>	10.3	437
1284	Preparation of homopolymers and block copolymers in miniemulsion by ATRP using activators generated by electron transfer (AGET). <i>Journal of the American Chemical Society</i> , 2005 , 127, 3825-30	16.4	434
1283	Repeatable photoinduced self-healing of covalently cross-linked polymers through reshuffling of trithiocarbonate units. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 1660-3	16.4	430
1282	Transition metal catalysts for controlled radical polymerization. <i>Progress in Polymer Science</i> , 2010 , 35, 959-1021	29.6	421
1281	"Living"/Controlled Radical Polymerization. Transition-Metal-Catalyzed Atom Transfer Radical Polymerization in the Presence of a Conventional Radical Initiator. <i>Macromolecules</i> , 1995 , 28, 7572-7573	3 5.5	419
1280	Synthesis of Branched and Hyperbranched Polystyrenes. <i>Macromolecules</i> , 1996 , 29, 1079-1081	5.5	419
1279	Controlled/Living Radical Polymerization. Atom Transfer Radical Polymerization Using Multidentate Amine Ligands. <i>Macromolecules</i> , 1997 , 30, 7697-7700	5.5	417
1278	Biodegradable nanogels prepared by atom transfer radical polymerization as potential drug delivery carriers: synthesis, biodegradation, in vitro release, and bioconjugation. <i>Journal of the American Chemical Society</i> , 2007 , 129, 5939-45	16.4	417
1277	Highly Efficient [Click[Functionalization of Poly(3-azidopropyl methacrylate) Prepared by ATRP. <i>Macromolecules</i> , 2005 , 38, 7540-7545	5.5	413
1276	Photomediated controlled radical polymerization. <i>Progress in Polymer Science</i> , 2016 , 62, 73-125	29.6	407
1275	Synthesis of Star Polymers by a Combination of ATRP and the ClickCoupling Method. <i>Macromolecules</i> , 2006 , 39, 4960-4965	5.5	405
1274	Step-Growth ClickCoupling of Telechelic Polymers Prepared by Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2005 , 38, 3558-3561	5.5	403
1273	Gradient copolymers by atom transfer radical copolymerization. <i>Journal of Physical Organic Chemistry</i> , 2000 , 13, 775-786	2.1	381
1272	Surface Modifications Enhance Nanoiron Transport and NAPL Targeting in Saturated Porous Media. <i>Environmental Engineering Science</i> , 2007 , 24, 45-57	2	368
1271	Synthesis of Molecular Brushes with Block Copolymer Side Chains Using Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2001 , 34, 4375-4383	5.5	365
1270	Copper(I)-Catalyzed Atom Transfer Radical Polymerization. <i>Accounts of Chemical Research</i> , 1999 , 32, 895-903	24.3	364

(2003-2012)

1269	Self-Healing Polymer Films Based on Thiol D isulfide Exchange Reactions and Self-Healing Kinetics Measured Using Atomic Force Microscopy. <i>Macromolecules</i> , 2012 , 45, 142-149	5.5	360
1268	Synthesis and Characterization of Star Polymers with Varying Arm Number, Length, and Composition from Organic and Hybrid Inorganic/Organic Multifunctional Initiators. <i>Macromolecules</i> , 1999 , 32, 6526-6535	5.5	355
1267	Macromolecular engineering: From rational design through precise macromolecular synthesis and processing to targeted macroscopic material properties. <i>Progress in Polymer Science</i> , 2005 , 30, 858-875	29.6	350
1266	Light-induced reversible formation of polymeric micelles. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 2453-7	16.4	348
1265	Controlled/Living Radical Polymerization of Styrene and Methyl Methacrylate Catalyzed by Iron Complexes 1. <i>Macromolecules</i> , 1997 , 30, 8161-8164	5.5	346
1264	Optimization of Atom Transfer Radical Polymerization Using Cu(I)/Tris(2-(dimethylamino)ethyl)amine as a Catalyst. <i>Macromolecules</i> , 2000 , 33, 8629-8639	5.5	339
1263	Utilizing Halide Exchange To Improve Control of Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 1998 , 31, 6836-6840	5.5	336
1262	Controlled/Living Radical Polymerization. Atom Transfer Radical Polymerization of Acrylates at Ambient Temperature. <i>Macromolecules</i> , 1998 , 31, 5958-5959	5.5	336
1261	Electrochemically active nitrogen-enriched nanocarbons with well-defined morphology synthesized by pyrolysis of self-assembled block copolymer. <i>Journal of the American Chemical Society</i> , 2012 , 134, 14846-57	16.4	327
1260	Controlled/living radical polymerization. <i>Materials Today</i> , 2005 , 8, 26-33	21.8	324
1259	Solvent-free, supersoft and superelastic bottlebrush melts and networks. <i>Nature Materials</i> , 2016 , 15, 183-9	27	318
1258	Adsorption-induced scission of carbon-carbon bonds. <i>Nature</i> , 2006 , 440, 191-4	50.4	317
1257	Mechanism of Photoinduced Metal-Free Atom Transfer Radical Polymerization: Experimental and Computational Studies. <i>Journal of the American Chemical Society</i> , 2016 , 138, 2411-25	16.4	313
1256	Use of Ascorbic Acid as Reducing Agent for Synthesis of Well-Defined Polymers by ARGET ATRP. <i>Macromolecules</i> , 2007 , 40, 1789-1791	5.5	309
1255	Synthesis of Acrylate and Methacrylate Block Copolymers Using Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 1998 , 31, 8005-8008	5.5	305
1254	Atom Transfer Radical Polymerization of (Meth)acrylamides. <i>Macromolecules</i> , 1999 , 32, 4826-4831	5.5	302
1253	Preparation of Hyperbranched Polyacrylates by Atom Transfer Radical Polymerization. 1. Acrylic AB* Monomers in <code>livinglRadical</code> Polymerizations. <i>Macromolecules</i> , 1997 , 30, 5192-5194	5.5	301
1252	Densely-Grafted and Double-Grafted PEO Brushes via ATRP. A Route to Soft Elastomers. Macromolecules, 2003, 36, 6746-6755	5.5	301

1251	Advanced Materials by Atom Transfer Radical Polymerization. <i>Advanced Materials</i> , 2018 , 30, e1706441	24	300
1250	Synthesis and Characterization of Organic/Inorganic Hybrid Nanoparticles: Kinetics of Surface-Initiated Atom Transfer Radical Polymerization and Morphology of Hybrid Nanoparticle Ultrathin Films. <i>Macromolecules</i> , 2003 , 36, 5094-5104	5.5	297
1249	Surface-Initiated Polymerization as an Enabling Tool for Multifunctional (Nano-)Engineered Hybrid Materials. <i>Chemistry of Materials</i> , 2014 , 26, 745-762	9.6	289
1248	Inverse miniemulsion ATRP: a new method for synthesis and functionalization of well-defined water-soluble/cross-linked polymeric particles. <i>Journal of the American Chemical Society</i> , 2006 , 128, 557	8-8 4	286
1247	Controlled Radical Polymerizations: The Use of Alkyl Iodides in Degenerative Transfer. <i>Macromolecules</i> , 1995 , 28, 2093-2095	5.5	285
1246	Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface. <i>Nano Letters</i> , 2005 , 5, 2489-94	11.5	282
1245	Aqueous ARGET ATRP. <i>Macromolecules</i> , 2012 , 45, 6371-6379	5.5	281
1244	Synthesis of uniform protein-polymer conjugates. <i>Biomacromolecules</i> , 2005 , 6, 3380-7	6.9	281
1243	Molecular Parameters of Hyperbranched Polymers Made by Self-Condensing Vinyl Polymerization. 2. Degree of Branching <i>Macromolecules</i> , 1997 , 30, 7024-7033	5.5	278
1242	Zerovalent Metals in Controlled/Living Radical Polymerization. <i>Macromolecules</i> , 1997 , 30, 7348-7350	5.5	278
1241	Antibacterial polypropylene via surface-initiated atom transfer radical polymerization. <i>Biomacromolecules</i> , 2007 , 8, 1396-9	6.9	275
1240	Photoinduced Metal-Free Atom Transfer Radical Polymerization of Acrylonitrile. <i>ACS Macro Letters</i> , 2015 , 4, 192-196	6.6	265
1239	Atom Transfer Radical Polymerization of tert-Butyl Acrylate and Preparation of Block Copolymers. <i>Macromolecules</i> , 2000 , 33, 4039-4047	5.5	265
1238	Atom Transfer Radical Polymerization of 2-Hydroxyethyl Methacrylate. <i>Macromolecules</i> , 1999 , 32, 5772	- 5 7576	257
1237	Synthesis of Star-Shaped Polystyrene by Atom Transfer Radical Polymerization Using an Arm First Approach. <i>Macromolecules</i> , 1999 , 32, 4482-4484	5.5	253
1236	Graft Copolymers by a Combination of ATRP and Two Different Consecutive Click Reactions. <i>Macromolecules</i> , 2007 , 40, 4439-4445	5.5	251
1235	Structural aspects of copper catalyzed atom transfer radical polymerization. <i>Coordination Chemistry Reviews</i> , 2005 , 249, 1155-1184	23.2	251
1234	Reversible-Deactivation Radical Polymerization in the Presence of Metallic Copper. A Critical Assessment of the SARA ATRP and SET-LRP Mechanisms. <i>Macromolecules</i> , 2013 , 46, 8749-8772	5.5	249

1233	Role of Cu0 in Controlled/Living Radical Polymerization. <i>Macromolecules</i> , 2007 , 40, 7795-7806	5.5	248	
1232	ATRP synthesis of amphiphilic random, gradient, and block copolymers of 2-(dimethylamino)ethyl methacrylate in aqueous media. <i>Biomacromolecules</i> , 2003 , 4, 1386-93	6.9	246	
1231	Determination of equilibrium constants for atom transfer radical polymerization. <i>Journal of the American Chemical Society</i> , 2006 , 128, 1598-604	16.4	242	
1230	Stereoblock copolymers and tacticity control in controlled/living radical polymerization. <i>Journal of the American Chemical Society</i> , 2003 , 125, 6986-93	16.4	242	
1229	End-Functional Poly(tert-butyl acrylate) Star Polymers by Controlled Radical Polymerization. <i>Macromolecules</i> , 2000 , 33, 2340-2345	5.5	242	
1228	Polymerization of n-Butyl Acrylate by Atom Transfer Radical Polymerization. Remarkable Effect of Ethylene Carbonate and Other Solvents. <i>Macromolecules</i> , 1998 , 31, 1535-1541	5.5	239	
1227	Statistical, Gradient, Block, and Graft Copolymers by Controlled/Living Radical Polymerizations 2002 , 1-13		238	
1226	Ab initio evaluation of the thermodynamic and electrochemical properties of alkyl halides and radicals and their mechanistic implications for atom transfer radical polymerization. <i>Journal of the American Chemical Society</i> , 2008 , 130, 12762-74	16.4	237	
1225	Controlled/LivingLAtom Transfer Radical Polymerization of Methyl Methacrylate Using Various Initiation Systems. <i>Macromolecules</i> , 1998 , 31, 1527-1534	5.5	236	
1224	Chemistry. Architecturally complex polymers with controlled heterogeneity. <i>Science</i> , 2011 , 333, 1104-5	33.3	234	
1223	Effects of Initiator Structure on Activation Rate Constants in ATRP. <i>Macromolecules</i> , 2007 , 40, 1858-186	5 3 5.5	234	
1222	SARA ATRP or SET-LRP. End of controversy?. <i>Polymer Chemistry</i> , 2014 , 5, 4409	4.9	231	
1221	Controlled/Living Radical Polymerization. Homogeneous Reverse Atom Transfer Radical Polymerization Using AIBN as the Initiator. <i>Macromolecules</i> , 1997 , 30, 7692-7696	5.5	227	
1220	Electrochemically mediated atom transfer radical polymerization (eATRP). <i>Progress in Polymer Science</i> , 2017 , 69, 47-78	29.6	226	
1219	Nanostructured carbon arrays from block copolymers of polyacrylonitrile. <i>Journal of the American Chemical Society</i> , 2002 , 124, 10632-3	16.4	224	
1218	Reversible-deactivation radical polymerization (Controlled/living radical polymerization): From discovery to materials design and applications. <i>Progress in Polymer Science</i> , 2020 , 111, 101311	29.6	223	
1217	Effect of Ligand Structure on Activation Rate Constants in ATRP. <i>Macromolecules</i> , 2006 , 39, 4953-4959	5.5	222	
1216	Reversible Redox Cleavage/Coupling of Polystyrene with Disulfide or Thiol Groups Prepared by Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2002 , 35, 9009-9014	5.5	222	

1215	"Living" radical polymerization. 1. Possibilities and limitations. <i>Macromolecules</i> , 1994 , 27, 638-644	5.5	220
1214	Mechanism of Controlled/[living[Radical Polymerization of Styrene in the Presence of Nitroxyl Radicals. Kinetics and Simulations. <i>Macromolecules</i> , 1996 , 29, 7661-7670	5.5	218
1213	Controlled Radical Polymerization by Degenerative Transfer: Effect of the Structure of the Transfer Agent. <i>Macromolecules</i> , 1995 , 28, 8051-8056	5.5	217
1212	How are radicals (re)generated in photochemical ATRP?. <i>Journal of the American Chemical Society</i> , 2014 , 136, 13303-12	16.4	216
1211	Combining Atom Transfer Radical Polymerization and Disulfide/Thiol Redox Chemistry: A Route to Well-Defined (Bio)degradable Polymeric Materials. <i>Macromolecules</i> , 2005 , 38, 3087-3092	5.5	215
1210	Deactivation Efficiency and Degree of Control over Polymerization in ATRP in Protic Solvents. <i>Macromolecules</i> , 2004 , 37, 9768-9778	5.5	215
1209	Transition Metal Catalysis in Controlled Radical Polymerization: Atom Transfer Radical Polymerization. <i>Chemistry - A European Journal</i> , 1999 , 5, 3095-3102	4.8	215
1208	AGET ATRP in the Presence of Air in Miniemulsion and in Bulk. <i>Macromolecular Rapid Communications</i> , 2006 , 27, 594-598	4.8	210
1207	Initiation Efficiency in the Synthesis of Molecular Brushes by Grafting from via Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2005 , 38, 702-708	5.5	210
1206	Catalyst Performance in Click Coupling Reactions of Polymers Prepared by ATRP: Ligand and Metal Effects. <i>Macromolecules</i> , 2006 , 39, 6451-6457	5.5	206
1205	Cyclic voltammetric studies of copper complexes catalyzing atom transfer radical polymerization. <i>Macromolecular Chemistry and Physics</i> , 2000 , 201, 1625-1631	2.6	206
1204	ICAR ATRP with ppm Cu Catalyst in Water. <i>Macromolecules</i> , 2012 , 45, 4461-4468	5.5	205
1203	Effect of Initiation Conditions on the Uniformity of Three-Arm Star Molecular Brushes. <i>Macromolecules</i> , 2003 , 36, 1843-1849	5.5	205
1202	Simple and Efficient Synthesis of Various Alkoxyamines for Stable Free Radical Polymerization. <i>Macromolecules</i> , 1998 , 31, 5955-5957	5.5	205
1201	Atom Transfer Radical Polymerization of 4-Vinylpyridine. <i>Macromolecules</i> , 1999 , 32, 3531-3533	5.5	205
1200	Controlled/"Living" Radical Polymerization of 2-(Dimethylamino)ethyl Methacrylate. <i>Macromolecules</i> , 1998 , 31, 5167-9	5.5	199
1199	Controlled/Living Radical Polymerization of Methyl Methacrylate by Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 1997 , 30, 2216-2218	5.5	197
1198	Long-range ordered thin films of block copolymers prepared by zone-casting and their thermal conversion into ordered nanostructured carbon. <i>Journal of the American Chemical Society</i> , 2005 , 127, 6918-9	16.4	197

1197	ATRP under Biologically Relevant Conditions: Grafting from a Protein ACS Macro Letters, 2012, 1, 6-10	6.6	196
1196	Polymer-Derived Heteroatom-Doped Porous Carbon Materials. <i>Chemical Reviews</i> , 2020 , 120, 9363-9419	9 68.1	196
1195	Influence of the degree of methacrylation on hyaluronic acid hydrogels properties. <i>Biomaterials</i> , 2008 , 29, 1739-49	15.6	195
1194	Controlled/Living Radical Polymerization. Atom Transfer Radical Polymerization Catalyzed by Copper(I) and Picolylamine Complexes. <i>Macromolecules</i> , 1999 , 32, 2434-2437	5.5	195
1193	ATRP of Methyl Methacrylate in the Presence of Ionic Liquids with Ferrous and Cuprous Anions. <i>Macromolecular Chemistry and Physics</i> , 2001 , 202, 3379-3391	2.6	194
1192	The Synthesis of Hybrid Polymers Using Atom Transfer Radical Polymerization: Homopolymers and Block Copolymers from Polyhedral Oligomeric Silsesquioxane Monomers. <i>Macromolecules</i> , 2000 , 33, 217-220	5.5	194
1191	ABA triblock copolymers containing polyhedral oligomeric silsesquioxane pendant groups: synthesis and unique properties. <i>Polymer</i> , 2003 , 44, 2739-2750	3.9	193
1190	Atom Transfer Radical Polymerization in Supercritical Carbon Dioxide. <i>Macromolecules</i> , 1999 , 32, 4802-	4 § 05	192
1189	Externally controlled atom transfer radical polymerization. <i>Chemical Society Reviews</i> , 2018 , 47, 5457-54	1 99 8.5	191
1188	Simultaneous Reverse and Normal Initiation in Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2001 , 34, 7664-7671	5.5	191
1187	Copolymerization of n-Butyl Acrylate with Methyl Methacrylate and PMMA Macromonomers: Comparison of Reactivity Ratios in Conventional and Atom Transfer Radical Copolymerization. <i>Macromolecules</i> , 1999 , 32, 8331-8335	5.5	191
1186	Synthesis of Well-Defined Polyacrylonitrile by Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 1997 , 30, 6398-6400	5.5	190
1185	Photoinduced Atom Transfer Radical Polymerization with ppm-Level Cu Catalyst by Visible Light in Aqueous Media. <i>Journal of the American Chemical Society</i> , 2015 , 137, 15430-3	16.4	188
1184	Polymerization of acrylates by atom transfer radical polymerization. Homopolymerization of 2-hydroxyethyl acrylate. <i>Journal of Polymer Science Part A</i> , 1998 , 36, 1417-1424	2.5	187
1183	Controlled aqueous atom transfer radical polymerization with electrochemical generation of the active catalyst. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 11391-4	16.4	186
1182	Responsive Gels Based on a Dynamic Covalent Trithiocarbonate Cross-Linker. <i>Macromolecules</i> , 2010 , 43, 4355-4361	5.5	186
1181	Kinetic Study of the Homogeneous Atom Transfer Radical Polymerization of Methyl Methacrylate. <i>Macromolecules</i> , 1997 , 30, 6507-6512	5.5	186
1180	Nonleaching antibacterial glass surfaces via "Grafting Onto": the effect of the number of quaternary ammonium groups on biocidal activity. <i>Langmuir</i> , 2008 , 24, 6785-95	4	186

1179	Synthesis of mesoporous carbons using ordered and disordered mesoporous silica templates and polyacrylonitrile as carbon precursor. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 9216-25	3.4	186	
1178	Bioinspired bottle-brush polymer exhibits low friction and Amontons-like behavior. <i>Journal of the American Chemical Society</i> , 2014 , 136, 6199-202	16.4	184	
1177	Mimicking biological stress-strain behaviour with synthetic elastomers. <i>Nature</i> , 2017 , 549, 497-501	50.4	184	
1176	Controlled/Living Radical Polymerization of Vinyl Acetate by Degenerative Transfer with Alkyl Iodides. <i>Macromolecules</i> , 2003 , 36, 9346-9354	5.5	183	
1175	Single Molecule Rod©lobule Phase Transition for Brush Molecules at a Flat Interface. <i>Macromolecules</i> , 2001 , 34, 8354-8360	5.5	182	
1174	Pickering emulsions stabilized by nanoparticles with thermally responsive grafted polymer brushes. <i>Langmuir</i> , 2010 , 26, 15200-9	4	180	
1173	Thermodynamic Components of the Atom Transfer Radical Polymerization Equilibrium: Quantifying Solvent Effects. <i>Macromolecules</i> , 2009 , 42, 6348-6360	5.5	180	
1172	On the shape of bottle-brush macromolecules: systematic variation of architectural parameters. Journal of Chemical Physics, 2005 , 122, 124904	3.9	176	
1171	Preparation of Hyperbranched Polyacrylates by Atom Transfer Radical Polymerization. 2. Kinetics and Mechanism of Chain Growth for the Self-Condensing Vinyl Polymerization of 2-((2-Bromopropionyl)oxy)ethyl Acrylate. <i>Macromolecules</i> , 1997 , 30, 7034-7041	5.5	175	
1170	Recyclable antibacterial magnetic nanoparticles grafted with quaternized poly(2-(dimethylamino)ethyl methacrylate) brushes. <i>Biomacromolecules</i> , 2011 , 12, 1305-11	6.9	171	
1169	Molecular brushes as super-soft elastomers. <i>Polymer</i> , 2006 , 47, 7198-7206	3.9	170	
1168	Tridentate Nitrogen-Based Ligands in Cu-Based ATRP: A StructureActivity Study. <i>Macromolecules</i> , 2001 , 34, 430-440	5.5	170	
1167	An Investigation into the CuX/2,2EBipyridine (X = Br or Cl) Mediated Atom Transfer Radical Polymerization of Acrylonitrile. <i>Macromolecules</i> , 1999 , 32, 6431-6438	5.5	170	
1166	Radical Nature of Cu-Catalyzed Controlled Radical Polymerizations (Atom Transfer Radical Polymerization). <i>Macromolecules</i> , 1998 , 31, 4710-7	5.5	167	
1165	Well-Defined High-Molecular-Weight Polyacrylonitrile via Activators Regenerated by Electron Transfer ATRP. <i>Macromolecules</i> , 2007 , 40, 2974-2977	5.5	167	
1164	Controlled polymerization of (meth)acrylamides by atom transfer radical polymerization. <i>Macromolecular Rapid Communications</i> , 2000 , 21, 190-194	4.8	167	
1163	The synthesis of functional star copolymers as an illustration of the importance of controlling polymer structures in the design of new materials. <i>Polymer International</i> , 2003 , 52, 1559-1565	3.3	166	
1162	Synthesis of Molecular Brushes with Gradient in Grafting Density by Atom Transfer Polymerization. <i>Macromolecules</i> , 2002 , 35, 3387-3394	5.5	166	

(2006-2014)

1161	Aqueous RDRP in the Presence of Cu0: The Exceptional Activity of CuI Confirms the SARA ATRP Mechanism. <i>Macromolecules</i> , 2014 , 47, 560-570	5.5	165
1160	Determination of Activation and Deactivation Rate Constants of Model Compounds in Atom Transfer Radical Polymerization1. <i>Macromolecules</i> , 2001 , 34, 5125-5131	5.5	165
1159	Structural Control of Poly(Methyl Methacrylate)-g-poly(Lactic Acid) Graft Copolymers by Atom Transfer Radical Polymerization (ATRP). <i>Macromolecules</i> , 2001 , 34, 6243-6248	5.5	165
1158	Synthesis of well-defined microporous carbons by molecular-scale templating with polyhedral oligomeric silsesquioxane moieties. <i>Journal of the American Chemical Society</i> , 2014 , 136, 4805-8	16.4	164
1157	ARGET ATRP of 2-(Dimethylamino)ethyl Methacrylate as an Intrinsic Reducing Agent. <i>Macromolecules</i> , 2008 , 41, 6868-6870	5.5	164
1156	Synthesis of well-defined azido and amino end-functionalized polystyrene by atom transfer radical polymerization. <i>Macromolecular Rapid Communications</i> , 1997 , 18, 1057-1066	4.8	163
1155	ATRP of Methyl Acrylate with Metallic Zinc, Magnesium, and Iron as Reducing Agents and Supplemental Activators. <i>Macromolecules</i> , 2011 , 44, 683-685	5.5	161
1154	Oil-in-water emulsions stabilized by highly charged polyelectrolyte-grafted silica nanoparticles. <i>Langmuir</i> , 2005 , 21, 9873-8	4	161
1153	Synthesis of Degradable Miktoarm Star Copolymers via Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2005 , 38, 5995-6004	5.5	161
1152	Nuclear magnetic resonance monitoring of chain-end functionality in the atom transfer radical polymerization of styrene. <i>Journal of Polymer Science Part A</i> , 2005 , 43, 897-910	2.5	160
1151	Dendrigraft polymers: macromolecular engineering on a mesoscopic scale. <i>Progress in Polymer Science</i> , 2004 , 29, 277-327	29.6	159
1150	Synthesis of well-defined block copolymers tethered to polysilsesquioxane nanoparticles and their nanoscale morphology on surfaces. <i>Journal of the American Chemical Society</i> , 2001 , 123, 9445-6	16.4	159
1149	Arm-first method as a simple and general method for synthesis of miktoarm star copolymers. Journal of the American Chemical Society, 2007 , 129, 11828-34	16.4	158
1148	Temperature- and pH-Responsive Dense Copolymer Brushes Prepared by ATRP. <i>Macromolecules</i> , 2008 , 41, 7013-7020	5.5	157
1147	Immobilization of the Copper Catalyst in Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 1999 , 32, 2941-2947	5.5	157
1146	Preparation of Poly(oligo(ethylene glycol) monomethyl ether methacrylate) by Homogeneous Aqueous AGET ATRP. <i>Macromolecules</i> , 2006 , 39, 3161-3167	5.5	154
1145	Emulsion Polymerization of n-Butyl Methacrylate by Reverse Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 1999 , 32, 2872-2875	5.5	154
1144	Development of an ab initio emulsion atom transfer radical polymerization: from microemulsion to emulsion. <i>Journal of the American Chemical Society</i> , 2006 , 128, 10521-6	16.4	153

1143	Preparation of Hyperbranched Polyacrylates by Atom Transfer Radical Polymerization. 3. Effect of Reaction Conditions on the Self-Condensing Vinyl Polymerization of 2-((2-Bromopropionyl)oxy)ethyl Acrylate. <i>Macromolecules</i> , 1997 , 30, 7042-7049	5.5	152
1142	Low polydispersity star polymers via cross-linking macromonomers by ATRP. <i>Journal of the American Chemical Society</i> , 2006 , 128, 15111-3	16.4	152
1141	Atom Transfer Radical Copolymerization of Methyl Methacrylate and n-Butyl Acrylate. <i>Macromolecules</i> , 2001 , 34, 415-424	5.5	152
1140	Atom Transfer Radical Copolymerization of Styrene and n-Butyl Acrylate. <i>Macromolecules</i> , 1999 , 32, 22	2 1, 2 23	1 ₁₅₂
1139	Halide Anions as Ligands in Iron-Mediated Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2000 , 33, 2335-2339	5.5	151
1138	Introduction to living polymeriz. Living and/or controlled polymerization. <i>Journal of Physical Organic Chemistry</i> , 1995 , 8, 197-207	2.1	151
1137	Kinetic Investigation of the Atom Transfer Radical Polymerization of Methyl Acrylate. <i>Macromolecules</i> , 1999 , 32, 1767-1776	5.5	149
1136	Kinetics of Atom Transfer Radical Polymerization. European Polymer Journal, 2017, 89, 482-523	5.2	148
1135	Polymerization of Substituted Styrenes by Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 1997 , 30, 5643-5648	5.5	148
1134	Well-Defined (Co)polymers with 5-Vinyltetrazole Units via Combination of Atom Transfer Radical (Co)polymerization of Acrylonitrile and Click Chemistry Prype Postpolymerization Modification. <i>Macromolecules</i> , 2004 , 37, 9308-9313	5.5	148
1133	A DFT Study of RX Bond Dissociation Enthalpies of Relevance to the Initiation Process of Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2003 , 36, 8551-8559	5.5	148
1132	Block Copolymers by Transformation of Living Ring-Opening Metathesis Polymerization into Controlled/Living Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 1997 , 30, 6513-6516	5.5	147
1131	Structural Control in ATRP Synthesis of Star Polymers Using the Arm-First Method. <i>Macromolecules</i> , 2006 , 39, 3154-3160	5.5	146
1130	Synthesis of Amphiphilic Block Copolymers by Atom Transfer Radical Polymerization (ATRP). <i>Macromolecules</i> , 1998 , 31, 6046-6052	5.5	146
1129	Synthesis and biodegradation of nanogels as delivery carriers for carbohydrate drugs. <i>Biomacromolecules</i> , 2007 , 8, 3326-31	6.9	145
1128	Understanding the Fundamentals of Aqueous ATRP and Defining Conditions for Better Control. <i>Macromolecules</i> , 2015 , 48, 6862-6875	5.5	142
1127	Successful Chain Extension of Polyacrylate and Polystyrene Macroinitiators with Methacrylates in an ARGET and ICAR ATRP. <i>Macromolecules</i> , 2007 , 40, 6464-6472	5.5	142
1126	Controlled/LivingLRadical Polymerization Applied to Water-Borne Systems. <i>Macromolecules</i> , 1998 , 31, 5951-5954	5.5	142

1125	Determination of Gel Point during Atom Transfer Radical Copolymerization with Cross-Linker. <i>Macromolecules</i> , 2007 , 40, 7763-7770	5.5	141	
1124	Polystyrene with Designed Molecular Weight Distribution by Atom Transfer Radical Coupling. <i>Macromolecules</i> , 2004 , 37, 3120-3127	5.5	141	
1123	Preparation of Linear and Star-Shaped Block Copolymers by ATRP Using Simultaneous Reverse and Normal Initiation Process in Bulk and Miniemulsion. <i>Macromolecules</i> , 2004 , 37, 2434-2441	5.5	140	
1122	Block Copolymers of Poly(styrene) and Poly(acrylic acid) of Various Molar Masses, Topologies, and Compositions Prepared via Controlled/Living Radical Polymerization. Application as Stabilizers in Emulsion Polymerization. <i>Macromolecules</i> , 2001 , 34, 4439-4450	5.5	139	
1121	Atom Transfer Radical Polymerization of (Meth)acrylates from Poly(dimethylsiloxane) Macroinitiators. <i>Macromolecules</i> , 1999 , 32, 8760-8767	5.5	139	
1120	Redox Responsive Behavior of Thiol/Disulfide-Functionalized Star Polymers Synthesized via Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2010 , 43, 4133-4139	5.5	138	
1119	Click Chemistry and ATRP: A Beneficial Union for the Preparation of Functional Materials. <i>QSAR and Combinatorial Science</i> , 2007 , 26, 1116-1134		138	
1118	Phototunable Temperature-Responsive Molecular Brushes Prepared by ATRP. <i>Macromolecules</i> , 2006 , 39, 3914-3920	5.5	138	
1117	Synthesis and characterization of silica-graft-polystyrene hybrid nanoparticles: Effect of constraint on the glass-transition temperature of spherical polymer brushes. <i>Journal of Polymer Science, Part B: Polymer Physics,</i> 2002 , 40, 2667-2676	2.6	138	
1116	Synthesis and Visualization of Densely Grafted Molecular Brushes with Crystallizable Poly(octadecyl methacrylate) Block Segments. <i>Macromolecules</i> , 2003 , 36, 605-612	5.5	138	
1115	Improving the Structural Control of Graft Copolymers by Combining ATRP with the Macromonomer Method. <i>Macromolecules</i> , 2001 , 34, 3186-3194	5.5	138	
1114	Electron transfer reactions relevant to atom transfer radical polymerization. <i>Journal of Organometallic Chemistry</i> , 2007 , 692, 3212-3222	2.3	137	
1113	Gradient Polymer Elution Chromatographic Analysis of #Dihydroxypolystyrene Synthesized via ATRP and Click Chemistry. <i>Macromolecules</i> , 2005 , 38, 8979-8982	5.5	137	
1112	Simple and effective one-pot synthesis of (meth)acrylic block copolymers through atom transfer radical polymerization 2000 , 38, 2023-2031		136	
1111	How Fast Can a CRP Be Conducted with Preserved Chain End Functionality?. <i>Macromolecules</i> , 2011 , 44, 2668-2677	5.5	135	
1110	Copolymers with controlled distribution of comonomers along the chain, 1. Structure, thermodynamics and dynamic properties of gradient copolymers. Computer simulation. <i>Macromolecular Theory and Simulations</i> , 1996 , 5, 987-1006	1.5	135	
1109	Molecular Bottlebrushes as Novel Materials. <i>Biomacromolecules</i> , 2019 , 20, 27-54	6.9	135	
1108	Effect of electron donors on the radical polymerization of vinyl acetate mediated by [Co(acac)2]: degenerative transfer versus reversible homolytic cleavage of an organocobalt(III) complex. Chemistry - A European Journal, 2007, 13, 2480-92	4.8	134	

1107	Effect of Symmetry of Molecular Weight Distribution in Block Copolymers on Formation of Metastable Morphologies. <i>Macromolecules</i> , 2008 , 41, 5919-5927	5.5	133
1106	How dense are cylindrical brushes grafted from a multifunctional macroinitiator?. <i>Polymer</i> , 2004 , 45, 8173-8179	3.9	133
1105	Toughening fragile matter: mechanical properties of particle solids assembled from polymer-grafted hybrid particles synthesized by ATRP. <i>Soft Matter</i> , 2012 , 8, 4072	3.6	132
1104	Highly active copper-based catalyst for atom transfer radical polymerization. <i>Journal of the American Chemical Society</i> , 2006 , 128, 16277-85	16.4	132
1103	Atom Transfer Radical Polymerization: Billion Times More Active Catalysts and New Initiation Systems. <i>Macromolecular Rapid Communications</i> , 2019 , 40, e1800616	4.8	131
1102	Investigation of Electrochemically Mediated Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2013 , 46, 4346-4353	5.5	130
1101	A simple and universal gel permeation chromatography technique for precise molecular weight characterization of well-defined poly(ionic liquid)s. <i>Journal of the American Chemical Society</i> , 2013 , 135, 4227-30	16.4	130
1100	Ranking living systems. <i>Macromolecules</i> , 1993 , 26, 1787-1788	5.5	130
1099	Synthesis of Hydroxy-Telechelic Poly(methyl acrylate) and Polystyrene by Atom Transfer Radical Coupling. <i>Macromolecules</i> , 2004 , 37, 9694-9700	5.5	129
1098	Removal of Copper-Based Catalyst in Atom Transfer Radical Polymerization Using Ion Exchange Resins. <i>Macromolecules</i> , 2000 , 33, 1476-1478	5.5	129
1097	A Breathing Atom-Transfer Radical Polymerization: Fully Oxygen-Tolerant Polymerization Inspired by Aerobic Respiration of Cells. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 933-936	16.4	129
1096	ARGET ATRP of Methyl Acrylate with Inexpensive Ligands and ppm Concentrations of Catalyst. <i>Macromolecules</i> , 2011 , 44, 811-819	5.5	128
1095	Mechanistic and Synthetic Aspects of Atom Transfer Radical Polymerization. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 1997 , 34, 1785-1801	2.2	128
1094	Synthesis of Block, Statistical, and Gradient Copolymers from Octadecyl (Meth)acrylates Using Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2003 , 36, 8969-8977	5.5	128
1093	Step-Growth Polymers as Macroinitators for Living Radical Polymerization: Synthesis of ABA Block Copolymers. <i>Macromolecules</i> , 1997 , 30, 4241-4243	5.5	127
1092	Activators Regenerated by Electron Transfer for Atom-Transfer Radical Polymerization of (Meth)acrylates and Related Block Copolymers. <i>Angewandte Chemie</i> , 2006 , 118, 4594-4598	3.6	127
1091	Synthesis of Well-Defined Amphiphilic Block Copolymers with 2-(Dimethylamino)ethyl Methacrylate by Controlled Radical Polymerization. <i>Macromolecules</i> , 1999 , 32, 1763-1766	5.5	127
1090	Chain Transfer to Polymer and Branching in Controlled Radical Polymerizations of n-Butyl Acrylate. <i>Macromolecular Rapid Communications</i> , 2009 , 30, 2002-21	4.8	126

(2012-2006)

1089	Densely Heterografted Brush Macromolecules with Crystallizable Grafts. Synthesis and Bulk Properties. <i>Macromolecules</i> , 2006 , 39, 584-593	5.5	126
1088	Preparation of Polyacrylonitrile-block-poly(n-butyl acrylate) Copolymers Using Atom Transfer Radical Polymerization and Nitroxide Mediated Polymerization Processes. <i>Macromolecules</i> , 2003 , 36, 1465-1473	5.5	126
1087	Repeatable Photoinduced Self-Healing of Covalently Cross-Linked Polymers through Reshuffling of Trithiocarbonate Units. <i>Angewandte Chemie</i> , 2011 , 123, 1698-1701	3.6	125
1086	High Molecular Weight Polymethacrylates by AGET ATRP under High Pressure. <i>Macromolecules</i> , 2008 , 41, 1067-1069	5.5	125
1085	One-pot synthesis of robust core/shell gold nanoparticles. <i>Journal of the American Chemical Society</i> , 2008 , 130, 12852-3	16.4	124
1084	ATRP Synthesis of Thermally Responsive Molecular Brushes from Oligo(ethylene oxide) Methacrylates. <i>Macromolecules</i> , 2007 , 40, 9348-9353	5.5	124
1083	High capacity, charge-selective protein uptake by polyelectrolyte brushes. <i>Langmuir</i> , 2007 , 23, 4448-54	4	124
1082	Polystyrene with Improved Chain-End Functionality and Higher Molecular Weight by ARGET ATRP. <i>Macromolecular Chemistry and Physics</i> , 2008 , 209, 32-39	2.6	124
1081	Effect of [PMDETA]/[Cu(I)] Ratio, Monomer, Solvent, Counterion, Ligand, and Alkyl Bromide on the Activation Rate Constants in Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2003 , 36, 1487-149	9 3 ·5	124
1080	Block Copolymers by Transformation of Living Carbocationic into Living Radical Polymerization. <i>Macromolecules</i> , 1997 , 30, 2808-2810	5.5	123
1079	Synthesis of Well-Defined Alternating Copolymers by Controlled/Living Radical Polymerization in the Presence of Lewis Acids. <i>Macromolecules</i> , 2003 , 36, 3136-3145	5.5	123
1078	A Liquid-Metal-Elastomer Nanocomposite for Stretchable Dielectric Materials. <i>Advanced Materials</i> , 2019 , 31, e1900663	24	122
1077	Photoirradiated Atom Transfer Radical Polymerization with an Alkyl Dithiocarbamate at Ambient Temperature. <i>Macromolecules</i> , 2010 , 43, 5180-5183	5.5	122
1076	ARGET ATRP of methyl methacrylate in the presence of nitrogen-based ligands as reducing agents. <i>Polymer International</i> , 2009 , 58, 242-247	3.3	122
1075	Grafting Monodisperse Polymer Chains from Concave Surfaces of Ordered Mesoporous Silicas. <i>Macromolecules</i> , 2008 , 41, 8584-8591	5.5	121
1074	Cylindrical CoreBhell Brushes Prepared by a Combination of ROP and ATRP. <i>Macromolecules</i> , 2006 , 39, 4983-4989	5.5	121
1073	ABC Triblock Copolymers Prepared Using Atom Transfer Radical Polymerization Techniques. <i>Macromolecules</i> , 2001 , 34, 2101-2107	5.5	121
1072	Linear Gradient Quality of ATRP Copolymers. <i>Macromolecules</i> , 2012 , 45, 8519-8531	5.5	120

1071	Synthesis of Block and Graft Copolymers with Linear Polyethylene Segments by Combination of Degenerative Transfer Coordination Polymerization and Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2005 , 38, 5425-5435	5.5	119
1070	Preparation of block copolymers of polystyrene and poly (t-butyl acrylate) of various molecular weights and architectures by atom transfer radical polymerization 2000 , 38, 2274-2283		119
1069	Kinetic Study on the Activation Process in an Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 1998 , 31, 2699-2701	5.5	119
1068	Improving the Livingness of ATRP by Reducing Cu Catalyst Concentration. <i>Macromolecules</i> , 2013 , 46, 683-691	5.5	118
1067	Flexible particle array structures by controlling polymer graft architecture. <i>Journal of the American Chemical Society</i> , 2010 , 132, 12537-9	16.4	118
1066	Effect of adsorbed polyelectrolytes on nanoscale zero valent iron particle attachment to soil surface models. <i>Environmental Science & Environmental &</i>	10.3	118
1065	Atom transfer radical polymerization in inverse miniemulsion: A versatile route toward preparation and functionalization of microgels/nanogels for targeted drug delivery applications. <i>Polymer</i> , 2009 , 50, 4407-4423	3.9	117
1064	Controlled Radical Polymerization in the Presence of Oxygen. <i>Macromolecules</i> , 1998 , 31, 5967-5969	5.5	117
1063	Atom Transfer Radical Polymerization in Microemulsion. <i>Macromolecules</i> , 2005 , 38, 8131-8134	5.5	117
1062	BaBa-xy16: robust and broadband homonuclear DQ recoupling for applications in rigid and soft solids up to the highest MAS frequencies. <i>Journal of Magnetic Resonance</i> , 2011 , 212, 204-15	3	116
1061	Synthesis of Star Polymers by A New Lore-First Method: Sequential Polymerization of Cross-Linker and Monomer. <i>Macromolecules</i> , 2008 , 41, 1118-1125	5.5	116
1060	Thermodynamic Properties of Copper Complexes Used as Catalysts in Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2010 , 43, 9257-9267	5.5	115
1059	Genetically encoded initiator for polymer growth from proteins. <i>Journal of the American Chemical Society</i> , 2010 , 132, 13575-7	16.4	115
1058	Living Land controlled radical polymerization. <i>Journal of Physical Organic Chemistry</i> , 1995 , 8, 306-315	2.1	113
1057	Solution processable liquid metal nanodroplets by surface-initiated atom transfer radical polymerization. <i>Nature Nanotechnology</i> , 2019 , 14, 684-690	28.7	112
1056	Synthesis of High Molecular Weight Poly(styrene-co-acrylonitrile) Copolymers with Controlled Architecture. <i>Macromolecules</i> , 2006 , 39, 6384-6390	5.5	112
1055	Copper-Mediated CRP of Methyl Acrylate in the Presence of Metallic Copper: Effect of Ligand Structure on Reaction Kinetics. <i>Macromolecules</i> , 2012 , 45, 78-86	5.5	111
1054	Nanostructured hybrid hydrogels prepared by a combination of atom transfer radical polymerization and free radical polymerization. <i>Biomaterials</i> , 2009 , 30, 5270-8	15.6	110

1053	Observation and analysis of a slow termination process in the atom transfer radical polymerization of styrene. <i>Tetrahedron</i> , 1997 , 53, 15321-15329	2.4	110
1052	Synthesis and characterization of graft copolymers of poly(vinyl chloride) with styrene and (meth)acrylates by atom transfer radical polymerization. <i>Macromolecular Rapid Communications</i> , 1998 , 19, 47-52	4.8	110
1051	Synthesis of StyreneAcrylonitrile Copolymers and Related Block Copolymers by Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2002 , 35, 6142-6148	5.5	110
1050	Simplified electrochemically mediated atom transfer radical polymerization using a sacrificial anode. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 2388-92	16.4	109
1049	Temporal Control in Mechanically Controlled Atom Transfer Radical Polymerization Using Low ppm of Cu Catalyst. <i>ACS Macro Letters</i> , 2017 , 6, 546-549	6.6	108
1048	Bottlebrush Elastomers: A New Platform for Freestanding Electroactuation. <i>Advanced Materials</i> , 2017 , 29, 1604209	24	108
1047	Synthesis of biocompatible PEG-Based star polymers with cationic and degradable core for siRNA delivery. <i>Biomacromolecules</i> , 2011 , 12, 3478-86	6.9	108
1046	Hydrogels by atom transfer radical polymerization. I. Poly(N-vinylpyrrolidinone-g-styrene) via the macromonomer method. <i>Journal of Polymer Science Part A</i> , 1998 , 36, 823-830	2.5	108
1045	ATRP in Waterborne Miniemulsion via a Simultaneous Reverse and Normal Initiation Process. <i>Macromolecules</i> , 2004 , 37, 2106-2112	5.5	108
1044	Graft Copolymers from Linear Polyethylene via Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2004 , 37, 3651-3658	5.5	108
1043	Photoinitiated ATRP in Inverse Microemulsion. <i>Macromolecules</i> , 2013 , 46, 9537-9543	5.5	107
1042	Preparation of gradient copolymers via ATRP using a simultaneous reverse and normal initiation process. I. Spontaneous gradient. <i>Journal of Polymer Science Part A</i> , 2005 , 43, 3616-3622	2.5	107
1041	Polymerization-Induced Self-Assembly (PISA) Using ICAR ATRP at Low Catalyst Concentration. <i>Macromolecules</i> , 2016 , 49, 8605-8615	5.5	106
1040	Synthesis of Polyacrylate Networks by ATRP: Parameters Influencing Experimental Gel Points. <i>Macromolecules</i> , 2008 , 41, 2335-2340	5.5	106
1039	Preparation of hyperbranched polyacrylates by atom transfer radical polymerization, 4. The use of zero-valent copper. <i>Macromolecular Rapid Communications</i> , 1998 , 19, 665-670	4.8	105
1038	Atom Transfer Radical Polymerization of Tulipalin A: A Naturally Renewable Monomer. <i>Macromolecules</i> , 2008 , 41, 5509-5511	5.5	105
1037	Tadpole Conformation of Gradient Polymer Brushes. <i>Macromolecules</i> , 2004 , 37, 4235-4240	5.5	105
1036	Grafting Poly(n-butyl acrylate) from a Functionalized Carbon Black Surface by Atom Transfer Radical Polymerization <i>Langmuir</i> , 2003 , 19, 6342-6345	4	105

1035	Block and random copolymers as surfactants for dispersion polymerization. I. Synthesis via atom transfer radical polymerization and ring-opening polymerization. <i>Journal of Polymer Science Part A</i> , 2005 , 43, 1498-1510	2.5	105
1034	Kinetic Analysis of Controlled/Living Radical Polymerizations by Simulations. 1. The Importance of Diffusion-Controlled Reactions. <i>Macromolecules</i> , 1999 , 32, 2948-2955	5.5	105
1033	Fundamentals of Supported Catalysts for Atom Transfer Radical Polymerization (ATRP) and Application of an Immobilized/Soluble Hybrid Catalyst System to ATRP. <i>Macromolecules</i> , 2002 , 35, 7592	<i>-₹6</i> 05	104
1032	Atom Transfer Radical Polymerization: From Mechanisms to Applications. <i>Israel Journal of Chemistry</i> , 2012 , 52, 206-220	3.4	103
1031	Solution Behavior of Temperature-Responsive Molecular Brushes Prepared by ATRP. <i>Macromolecular Chemistry and Physics</i> , 2007 , 208, 30-36	2.6	103
1030	Heterografted PEO B nBA brush copolymers. <i>Polymer</i> , 2003 , 44, 6863-6871	3.9	103
1029	Functionalization of polymers prepared by ATRP using radical addition reactions. <i>Macromolecular Rapid Communications</i> , 2000 , 21, 103-109	4.8	103
1028	"Living" radical polymerization of vinyl acetate. <i>Macromolecules</i> , 1994 , 27, 645-649	5.5	103
1027	Atom Transfer Radical Polymerization of Methacrylic Acid: A Won Challenge. <i>Journal of the American Chemical Society</i> , 2016 , 138, 7216-9	16.4	102
1026	Synthesis of block, graft and star polymers from inorganic macroinitiators. <i>Applied Organometallic Chemistry</i> , 1998 , 12, 667-673	3.1	102
1025	Controlled/Living Radical Polymerization with Dendrimers Containing Stable Radicals. <i>Macromolecules</i> , 1996 , 29, 4167-4171	5.5	102
1024	Synthesis of azido end-functionalized polyacrylates via atom transfer radical polymerization. <i>Polymer Bulletin</i> , 1998 , 40, 135-142	2.4	101
1023	Measuring molecular weight by atomic force microscopy. <i>Journal of the American Chemical Society</i> , 2003 , 125, 6725-8	16.4	101
1022	Biologically derived soft conducting hydrogels using heparin-doped polymer networks. <i>ACS Nano</i> , 2014 , 8, 4348-57	16.7	99
1021	Copolymer-templated nitrogen-enriched porous nanocarbons for CO2 capture. <i>Chemical Communications</i> , 2012 , 48, 11516-8	5.8	98
1020	Temperature Effect on Activation Rate Constants in ATRP: New Mechanistic Insights into the Activation Process. <i>Macromolecules</i> , 2009 , 42, 6050-6055	5.5	98
1019	The effect of structure on the thermoresponsive nature of well-defined poly(oligo(ethylene oxide) methacrylates) synthesized by ATRP. <i>Journal of Polymer Science Part A</i> , 2008 , 46, 194-202	2.5	98
1018	Synthesis of poly[bis(trifluoroethoxy)phosphazene] under mild conditions using a fluoride initiator. Journal of the American Chemical Society, 1990, 112, 6721-6723	16.4	98

1017	Well-defined carbon nanoparticles prepared from water-soluble shell cross-linked micelles that contain polyacrylonitrile cores. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 2783-7	16.4	97	
1016	Kinetic modeling of the chain-end functionality in atom transfer radical polymerization. Macromolecular Chemistry and Physics, 2002 , 203, 1385-1395	2.6	97	
1015	Atom Transfer Radical Polymerization Initiated with Vinylidene Fluoride Telomers. <i>Macromolecules</i> , 2000 , 33, 4613-4615	5.5	97	
1014	Atom transfer radical polymerization of n-butyl methacrylate in an aqueous dispersed system: A miniemulsion approach. <i>Journal of Polymer Science Part A</i> , 2000 , 38, 4724-4734	2.5	96	
1013	Ultrasonication-Induced Aqueous Atom Transfer Radical Polymerization. <i>ACS Macro Letters</i> , 2018 , 7, 275-280	6.6	95	
1012	PEO-Based Block Copolymers and Homopolymers as Reactive Surfactants for AGET ATRP of Butyl Acrylate in Miniemulsion. <i>Macromolecules</i> , 2008 , 41, 6387-6392	5.5	95	
1011	Mechanistic Aspect of Reverse Atom Transfer Radical Polymerization of n-Butyl Methacrylate in Aqueous Dispersed System. <i>Macromolecules</i> , 2000 , 33, 7310-7320	5.5	95	
1010	Synthesis and Characterization of the Most Active Copper ATRP Catalyst Based on Tris[(4-dimethylaminopyridyl)methyl]amine. <i>Journal of the American Chemical Society</i> , 2018 , 140, 1525-	1534	94	
1009	One-Pot Synthesis of Hairy Nanoparticles by Emulsion ATRP. <i>Macromolecules</i> , 2009 , 42, 1597-1603	5.5	94	
1008	Controlled/Living Radical Polymerization of Methacrylic Monomers in the Presence of Lewis Acids: Influence on Tacticity. <i>Macromolecular Rapid Communications</i> , 2004 , 25, 486-492	4.8	94	
1007	Bottle-brush macromolecules in solution: Comparison between results obtained from scattering experiments and computer simulations. <i>Polymer</i> , 2006 , 47, 7318-7327	3.9	93	
1006	Polyolefin graft copolymers via living polymerization techniques: Preparation of poly(n-butyl acrylate)-graft-polyethylene through the combination of Pd-mediated living olefin polymerization and atom transfer radical polymerization. <i>Journal of Polymer Science Part A</i> , 2002 , 40, 2736-2749	2.5	93	
1005	Osmium-Mediated Radical Polymerization. <i>Macromolecules</i> , 2005 , 38, 9402-9404	5.5	92	
1004	PDMSPEO Densely Grafted Copolymers. <i>Macromolecules</i> , 2005 , 38, 8687-8693	5.5	92	
1003	Dual-reactive surfactant used for synthesis of functional nanocapsules in miniemulsion. <i>Journal of the American Chemical Society</i> , 2010 , 132, 7823-5	16.4	91	
1002	Polymer grafting from CdS quantum dots via AGET ATRP in miniemulsion. <i>Small</i> , 2007 , 3, 1230-6	11	91	
1001	END GROUP TRANSFORMATION OF POLYMERS PREPARED BY ATRP, SUBSTITUTION TO AZIDES. Journal of Macromolecular Science - Pure and Applied Chemistry, 1999 , 36, 667-679	2.2	91	
1000	Homogeneous Reverse Atom Transfer Radical Polymerization of Styrene Initiated by Peroxides. Macromolecules, 1999 , 32, 5199-5202	5.5	91	

999	Anionic ring-opening polymerization of 1,2,3,4-tetramethyl-1,2,3,4-tetraphenylcyclotetrasilane. Journal of the American Chemical Society, 1991 , 113, 1046-1047	16.4	91
998	Emerging Functional Porous Polymeric and Carbonaceous Materials for Environmental Treatment and Energy Storage. <i>Advanced Functional Materials</i> , 2020 , 30, 1907006	15.6	91
997	ATRP of MMA with ppm Levels of Iron Catalyst. <i>Macromolecules</i> , 2011 , 44, 4022-4025	5.5	90
996	Rational Selection of Initiating/Catalytic Systems for the Copper-Mediated Atom Transfer Radical Polymerization of Basic Monomers in Protic Media: ATRP of 4-Vinylpyridine. <i>Macromolecules</i> , 2006 , 39, 6817-6824	5.5	90
995	Surface-Initiated ARGET ATRP of Poly(Glycidyl Methacrylate) from Carbon Nanotubes via Bioinspired Catechol Chemistry for Efficient Adsorption of Uranium Ions. <i>ACS Macro Letters</i> , 2016 , 5, 382-386	6.6	90
994	Heteroatom-Doped Carbon Dots (CDs) as a Class of Metal-Free Photocatalysts for PET-RAFT Polymerization under Visible Light and Sunlight. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 12037-12042	16.4	89
993	Fabrication of novel polymeric and carbonaceous nanoscale networks by the union of self-assembly and hypercrosslinking. <i>Energy and Environmental Science</i> , 2014 , 7, 3006	35.4	89
992	Reversible CO2 capture with porous polymers using the humidity swing. <i>Energy and Environmental Science</i> , 2013 , 6, 488-493	35.4	89
991	Synthesis by AGET ATRP of degradable nanogel precursors for in situ formation of nanostructured hyaluronic acid hydrogel. <i>Biomacromolecules</i> , 2009 , 10, 2499-507	6.9	89
990	Effect of Ligand and n-Butyl Acrylate on Cobalt-Mediated Radical Polymerization of Vinyl Acetate. <i>Macromolecules</i> , 2005 , 38, 8163-8169	5.5	89
989	Polymerization of Vinyl Acetate Promoted by Iron Complexes. <i>Macromolecules</i> , 1999 , 32, 8310-8314	5.5	89
988	Bioinspired iron-based catalyst for atom transfer radical polymerization. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 12148-51	16.4	88
987	Solvent Effects on the Activation Rate Constant in Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2013 , 46, 3350-3357	5.5	88
986	Origin of Activity in Cu-, Ru-, and Os-Mediated Radical Polymerization. <i>Macromolecules</i> , 2007 , 40, 8576-8	3585	88
985	Enhancing Initiation Efficiency in Metal-Free Surface-Initiated Atom Transfer Radical Polymerization (SI-ATRP). ACS Macro Letters, 2016 , 5, 661-665	6.6	88
984	Automated Synthesis of Well-Defined Polymers and Biohybrids by Atom Transfer Radical Polymerization Using a DNA Synthesizer. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 2740-274	3 ^{6.4}	87
983	Templated synthesis of nitrogen-enriched nanoporous carbon materials from porogenic organic precursors prepared by ATRP. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 3957-60	16.4	87
982	All-Star Polymer Multilayers as pH-Responsive Nanofilms. <i>Macromolecules</i> , 2009 , 42, 368-375	5.5	87

981	Superhydrophilic surfaces via polymer-SiO2 nanocomposites. <i>Langmuir</i> , 2010 , 26, 15567-73	4	87
980	Photoinduced Fe-Based Atom Transfer Radical Polymerization in the Absence of Additional Ligands, Reducing Agents, and Radical Initiators. <i>Macromolecules</i> , 2015 , 48, 6948-6954	5.5	86
979	Development of novel attachable initiators for atom transfer radical polymerization. Synthesis of block and graft copolymers from poly(dimethylsiloxane) macroinitiators. <i>Polymer</i> , 1998 , 39, 5163-5170	3.9	86
978	Effect of Penultimate Unit on the Activation Process in ATRP. <i>Macromolecules</i> , 2003 , 36, 8222-8224	5.5	86
977	Formation of Block Copolymers by Transformation of Cationic Ring-Opening Polymerization to Atom Transfer Radical Polymerization (ATRP). <i>Macromolecules</i> , 1998 , 31, 3489-3493	5.5	86
976	Phenyl Benzo[b]phenothiazine as a Visible Light Photoredox Catalyst for Metal-Free Atom Transfer Radical Polymerization. <i>Chemistry - A European Journal</i> , 2017 , 23, 5972-5977	4.8	85
975	Structural Control of Poly(methyl methacrylate)-g-poly(dimethylsiloxane) Copolymers Using Controlled Radical Polymerization: Effect of the Molecular Structure on Morphology and Mechanical Properties. <i>Macromolecules</i> , 2003 , 36, 4772-4778	5.5	85
974	Inorganic Sulfites: Efficient Reducing Agents and Supplemental Activators for Atom Transfer Radical Polymerization. <i>ACS Macro Letters</i> , 2012 , 1, 1308-1311	6.6	84
973	Substituted Tris(2-pyridylmethyl)amine Ligands for Highly Active ATRP Catalysts. <i>ACS Macro Letters</i> , 2012 , 1, 1037-1040	6.6	84
	ATDD of MMA in Polar Solvents Catalyzed by FoRs2 without Additional Ligand Massemolecules		
972	ATRP of MMA in Polar Solvents Catalyzed by FeBr2 without Additional Ligand. <i>Macromolecules</i> , 2010 , 43, 4003-4005	5.5	84
97 ² 97 ¹		5.5	84
	2010, 43, 4003-4005 A green route to well-defined high-molecular-weight (Co)polymers using ARGET ATRP with alkyl		
971	2010, 43, 4003-4005 A green route to well-defined high-molecular-weight (Co)polymers using ARGET ATRP with alkyl pseudohalides and copper catalysis. <i>Angewandte Chemie - International Edition</i> , 2010, 49, 541-4 Dibromotrithiocarbonate Iniferter for Concurrent ATRP and RAFT Polymerization. Effect of Monomer, Catalyst, and Chain Transfer Agent Structure on the Polymerization Mechanism.	16.4	84
971	2010, 43, 4003-4005 A green route to well-defined high-molecular-weight (Co)polymers using ARGET ATRP with alkyl pseudohalides and copper catalysis. <i>Angewandte Chemie - International Edition</i> , 2010, 49, 541-4 Dibromotrithiocarbonate Iniferter for Concurrent ATRP and RAFT Polymerization. Effect of Monomer, Catalyst, and Chain Transfer Agent Structure on the Polymerization Mechanism. <i>Macromolecules</i> , 2008, 41, 4585-4596 Reversible-Deactivation Radical Polymerization in the Presence of Metallic Copper.	16.4 5.5	84
971 970 969	A green route to well-defined high-molecular-weight (Co)polymers using ARGET ATRP with alkyl pseudohalides and copper catalysis. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 541-4 Dibromotrithiocarbonate Iniferter for Concurrent ATRP and RAFT Polymerization. Effect of Monomer, Catalyst, and Chain Transfer Agent Structure on the Polymerization Mechanism. <i>Macromolecules</i> , 2008 , 41, 4585-4596 Reversible-Deactivation Radical Polymerization in the Presence of Metallic Copper. Comproportionation Disproportionation Equilibria and Kinetics. <i>Macromolecules</i> , 2013 , 46, 3793-3802 Comprehensive Modeling Study of Nitroxide-Mediated Controlled/Living Radical Copolymerization	16.4 5.5 5.5	84 84 83
971 970 969 968	A green route to well-defined high-molecular-weight (Co)polymers using ARGET ATRP with alkyl pseudohalides and copper catalysis. Angewandte Chemie - International Edition, 2010, 49, 541-4 Dibromotrithiocarbonate Iniferter for Concurrent ATRP and RAFT Polymerization. Effect of Monomer, Catalyst, and Chain Transfer Agent Structure on the Polymerization Mechanism. Macromolecules, 2008, 41, 4585-4596 Reversible-Deactivation Radical Polymerization in the Presence of Metallic Copper. ComproportionationDisproportionation Equilibria and Kinetics. Macromolecules, 2013, 46, 3793-3802 Comprehensive Modeling Study of Nitroxide-Mediated Controlled/Living Radical Copolymerization of Methyl Methacrylate with a Small Amount of Styrene. Macromolecules, 2009, 42, 4470-4478 Reactive Surfactants for Polymeric Nanocapsules via Interfacially Confined Miniemulsion ATRP.	16.4 5.5 5.5 5.5	84 84 83 83
971 970 969 968 967	A green route to well-defined high-molecular-weight (Co)polymers using ARGET ATRP with alkyl pseudohalides and copper catalysis. Angewandte Chemie - International Edition, 2010, 49, 541-4 Dibromotrithiocarbonate Iniferter for Concurrent ATRP and RAFT Polymerization. Effect of Monomer, Catalyst, and Chain Transfer Agent Structure on the Polymerization Mechanism. Macromolecules, 2008, 41, 4585-4596 Reversible-Deactivation Radical Polymerization in the Presence of Metallic Copper. Comproportionation Disproportionation Equilibria and Kinetics. Macromolecules, 2013, 46, 3793-3802 Comprehensive Modeling Study of Nitroxide-Mediated Controlled/Living Radical Copolymerization of Methyl Methacrylate with a Small Amount of Styrene. Macromolecules, 2009, 42, 4470-4478 Reactive Surfactants for Polymeric Nanocapsules via Interfacially Confined Miniemulsion ATRP. Macromolecules, 2009, 42, 8228-8233 Enhancing Mechanically Induced ATRP by Promoting Interfacial Electron Transfer from	16.4 5.5 5.5 5.5	8 ₄ 8 ₄ 8 ₃ 8 ₃ 8 ₃

963	Dehalogenation of polymers prepared by atom transfer radical polymerization. <i>Macromolecular Rapid Communications</i> , 1999 , 20, 66-70	4.8	82
962	Mechanism of Halogen Exchange in ATRP. <i>Macromolecules</i> , 2011 , 44, 7546-7557	5.5	81
961	Molecular Brushes with Spontaneous Gradient by Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2005 , 38, 8264-8271	5.5	81
960	Determination of Rate Constants for the Activation Step in Atom Transfer Radical Polymerization Using the Stopped-Flow Technique. <i>Macromolecules</i> , 2004 , 37, 2679-2682	5.5	81
959	Improving the Structural Control of Graft Copolymers. Copolymerization of Poly(dimethylsiloxane) Macromonomer with Methyl Methacrylate Using RAFT Polymerization. <i>Macromolecular Rapid Communications</i> , 2001 , 22, 1176	4.8	81
958	Preparation of polymeric nanoscale networks from cylindrical molecular bottlebrushes. <i>ACS Nano</i> , 2012 , 6, 6208-14	16.7	80
957	Partially graphitic, high-surface-area mesoporous carbons from polyacrylonitrile templated by ordered and disordered mesoporous silicas. <i>Microporous and Mesoporous Materials</i> , 2007 , 102, 178-187	5.3	8o
956	Low-Polydispersity Star Polymers with Core Functionality by Cross-Linking Macromonomers Using Functional ATRP Initiators. <i>Macromolecules</i> , 2007 , 40, 399-401	5.5	80
955	Synthesis of Miktoarm Star Polymers via ATRP Using the IhDutIMethod: Determination of Initiation Efficiency of Star Macroinitiators. <i>Macromolecules</i> , 2006 , 39, 7216-7223	5.5	8o
954	Sonochemical Synthesis of Polysilylenes by Reductive Coupling of Disubstituted Dichlorosilanes with Alkali Metals. <i>Macromolecules</i> , 1995 , 28, 59-72	5.5	80
953	Liquid Metal Supercooling for Low-Temperature Thermoelectric Wearables. <i>Advanced Functional Materials</i> , 2019 , 29, 1906098	15.6	79
952	Cellular uptake of functional nanogels prepared by inverse miniemulsion ATRP with encapsulated proteins, carbohydrates, and gold nanoparticles. <i>Biomacromolecules</i> , 2009 , 10, 2300-9	6.9	79
951	Effect of [bpy]/[Cu(I)] Ratio, Solvent, Counterion, and Alkyl Bromides on the Activation Rate Constants in Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2003 , 36, 599-604	5.5	79
950	RAFT Polymerization of Acrylonitrile and Preparation of Block Copolymers Using 2-Cyanoethyl Dithiobenzoate as the Transfer Agent. <i>Macromolecules</i> , 2003 , 36, 8587-8589	5.5	79
949	How far can we push polymer architectures?. <i>Journal of the American Chemical Society</i> , 2013 , 135, 1142	1 -4 6.4	78
948	Colloidal Crystals: Multifunctional Hydrogels with Reversible 3D Ordered Macroporous Structures (Adv. Sci. 5/2015). <i>Advanced Science</i> , 2015 , 2,	13.6	78
947	Origin of the Difference between Branching in Acrylates Polymerization under Controlled and Free Radical Conditions: A Computational Study of Competitive Processes. <i>Macromolecules</i> , 2011 , 44, 8361-8	3753	78
946	Molecular Tensile Testing Machines: Breaking a Specific Covalent Bond by Adsorption-Induced Tension in Brushlike Macromolecules. <i>Macromolecules</i> , 2009 , 42, 1805-1807	5.5	78

(2007-2008)

945	Concurrent ATRP/RAFT of Styrene and Methyl Methacrylate with Dithioesters Catalyzed by Copper(I) Complexes. <i>Macromolecules</i> , 2008 , 41, 6602-6604	5.5	78
944	Synthesis of 3-Arm Star Block Copolymers by Combination of Core-Firstland Coupling-Ontol Methods Using ATRP and Click Reactions. <i>Macromolecular Chemistry and Physics</i> , 2007 , 208, 1370-1378	2.6	78
943	Ab Initio Study of the Penultimate Effect for the ATRP Activation Step Using Propylene, Methyl Acrylate, and Methyl Methacrylate Monomers. <i>Macromolecules</i> , 2007 , 40, 5985-5994	5.5	78
942	Molecular motion in a spreading precursor film. <i>Physical Review Letters</i> , 2004 , 93, 206103	7.4	78
941	Block Copolymerizations of Vinyl Acetate by Combination of Conventional and Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 1999 , 32, 7023-7031	5.5	78
940	Harnessing the interaction between surfactant and hydrophilic catalyst to control ATRP in miniemulsion. <i>Macromolecules</i> , 2017 , 50, 3726-2732	5.5	77
939	Kinetic Modeling of ICAR ATRP. Macromolecular Theory and Simulations, 2012, 21, 52-69	1.5	77
938	Gelation in Living Copolymerization of Monomer and Divinyl Cross-Linker: Comparison of ATRP Experiments with Monte Carlo Simulations. <i>Macromolecules</i> , 2009 , 42, 5925-5932	5.5	77
937	Synthesis of Low-Polydispersity Miktoarm Star Copolymers via a Simple Arm-First Method: Macromonomers as Arm Precursors. <i>Macromolecules</i> , 2008 , 41, 4250-4257	5.5	77
936	Environmentally benign atom transfer radical polymerization: Towards green[processes and materials. <i>Journal of Polymer Science Part A</i> , 2006 , 44, 5098-5112	2.5	77
935	Preparation and characterization of graft terpolymers with controlled molecular structure. <i>Journal of Polymer Science Part A</i> , 2004 , 42, 1939-1952	2.5	77
934	Microbial bioavailability of covalently bound polymer coatings on model engineered nanomaterials. <i>Environmental Science & Environmental Science & Env</i>	10.3	76
933	A brush-polymer conjugate of exendin-4 reduces blood glucose for up to five days and eliminates poly(ethylene glycol) antigenicity. <i>Nature Biomedical Engineering</i> , 2016 , 1,	19	75
932	Nanoporous Polystyrene and Carbon Materials with CoreBhell Nanosphere-Interconnected Network Structure. <i>Macromolecules</i> , 2011 , 44, 5846-5849	5.5	75
931	Comparison of the Thermoresponsive Deswelling Kinetics of Poly(2-(2-methoxyethoxy)ethyl methacrylate) Hydrogels Prepared by ATRP and FRP. <i>Macromolecules</i> , 2010 , 43, 4791-4797	5.5	75
930	Synthesis, morphology and mechanical properties of linear triblock copolymers based on poly(Hinethylene-Ebutyrolactone). <i>Polymer</i> , 2009 , 50, 2087-2094	3.9	75
929	High Yield Synthesis of Molecular Brushes via ATRP in Miniemulsion. <i>Macromolecules</i> , 2007 , 40, 6557-65	5 63 5	75
928	Preparation of nanoparticles of double-hydrophilic PEO-PHEMA block copolymers by AGET ATRP in inverse miniemulsion. <i>Journal of Polymer Science Part A</i> , 2007 , 45, 4764-4772	2.5	75

927	Copolymerization of N,N-Dimethylacrylamide with n-Butyl Acrylate via Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2003 , 36, 2598-2603	5.5	75
926	An Immobilized/Soluble Hybrid Catalyst System for Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2001 , 34, 5099-5102	5.5	75
925	Block copolymers by transformation of living anionic polymerization into controlled/livinglatom transfer radical polymerization. <i>Macromolecular Chemistry and Physics</i> , 1999 , 200, 1094-1100	2.6	75
924	Controlled radical polymerization. <i>Current Opinion in Solid State and Materials Science</i> , 1996 , 1, 769-776	12	75
923	Electrochemically Mediated Reversible Addition-Fragmentation Chain-Transfer Polymerization. <i>Macromolecules</i> , 2017 , 50, 7872-7879	5.5	74
922	Reversible-Deactivation Radical Polymerization in the Presence of Metallic Copper. Activation of Alkyl Halides by Cu0. <i>Macromolecules</i> , 2013 , 46, 3803-3815	5.5	74
921	Determination of ATRP Equilibrium Constants under Polymerization Conditions. <i>ACS Macro Letters</i> , 2012 , 1, 1367-1370	6.6	74
920	ATRP in Water: Kinetic Analysis of Active and Super-Active Catalysts for Enhanced Polymerization Control. <i>Macromolecules</i> , 2017 , 50, 2696-2705	5.5	73
919	Facile Aqueous Route to Nitrogen-Doped Mesoporous Carbons. <i>Journal of the American Chemical Society</i> , 2017 , 139, 12931-12934	16.4	73
918	Electrochemically mediated ATRP of acrylamides in water. <i>Polymer</i> , 2015 , 60, 302-307	3.9	73
917	Synthesis and Morphology of Molecular Brushes with Polyacrylonitrile Block Copolymer Side Chains and Their Conversion into Nanostructured Carbons. <i>Macromolecules</i> , 2007 , 40, 6199-6205	5.5	73
916	Preparation of gradient copolymers via ATRP in miniemulsion. II. Forced gradient. <i>Journal of Polymer Science Part A</i> , 2007 , 45, 1413-1423	2.5	73
915	Kinetic Modeling of Normal ATRP, Normal ATRP with [Cull]0, Reverse ATRP and SR&NI ATRP. <i>Macromolecular Theory and Simulations</i> , 2008 , 17, 359-375	1.5	73
914	Nanoporous Carbon Films from Hairy Polyacrylonitrile-Grafted Colloidal Silica Nanoparticles. <i>Advanced Materials</i> , 2008 , 20, 1516-1522	24	73
913	Radical (Co)polymerization of Vinyl Chloroacetate and N-Vinylpyrrolidone Mediated by Bis (acetylacetonate) cobalt Derivatives. <i>Macromolecules</i> , 2006 , 39, 2757-2763	5.5	73
912	Atom Transfer Radical Polymerization of Methyl Methacrylate in Water-Borne System. <i>Macromolecules</i> , 2001 , 34, 6641-6648	5.5	73
911	Synthesis of polymers with hydroxyl end groups by atom transfer radical polymerization. <i>Macromolecular Rapid Communications</i> , 1999 , 20, 127-134	4.8	73

(2012-2013)

90	Reversible-Deactivation Radical Polymerization in the Presence of Metallic Copper. Kinetic Simulation. <i>Macromolecules</i> , 2013 , 46, 3816-3827	5.5	72	
90	Thermally Responsive P(M(EO)2MA-co-OEOMA) Copolymers via AGET ATRP in Miniemulsion. Macromolecules, 2010 , 43, 4623-4628	5.5	72	
90	Synthesis of Well-Defined Alternating Copolymers Poly(methyl methacrylate-alt-styrene) by RAFT Polymerization in the Presence of Lewis Acid. <i>Macromolecules</i> , 2002 , 35, 2448-2451	5.5	72	
90	Kinetic Analysis of Controlled/[living[Radical Polymerizations by Simulations. 2. Apparent External Orders of Reactants in Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2000 , 33, 1553-1559	5.5	72	
90	Bioinspired Polydopamine (PDA) Chemistry Meets Ordered Mesoporous Carbons (OMCs): A Benign Surface Modification Strategy for Versatile Functionalization. <i>Chemistry of Materials</i> , 2016 , 28, 5013-	502 ^{9.6}	71	
90	Synthesis of poly(vinyl acetate) block copolymers by successive RAFT and ATRP with a bromoxanthate iniferter. <i>Chemical Communications</i> , 2008 , 5336-8	5.8	71	
90	Water-Dispersible Carbon Black Nanocomposites Prepared by Surface-Initiated Atom Transfer Radical Polymerization in Protic Media. <i>Macromolecules</i> , 2006 , 39, 548-556	5.5	71	
90	ATRP of butyl acrylates from functionalized carbon black surfaces. <i>Journal of Polymer Science Part A</i> , 2005 , 43, 4695-4709	2.5	71	
90	Simultaneous EPR and Kinetic Study of Styrene Atom Transfer Radical Polymerization (ATRP). Macromolecules, 1998 , 31, 5695-5701	5.5	71	
90	Synthesis of Functional Polystyrenes by Atom Transfer Radical Polymerization Using Protected and Unprotected Carboxylic Acid Initiators. <i>Macromolecules</i> , 1999 , 32, 7349-7353	5.5	71	
89	Brush-modified materials: Control of molecular architecture, assembly behavior, properties and applications. <i>Progress in Polymer Science</i> , 2020 , 100, 101180	29.6	71	
89	Single-Ion Homopolymer Electrolytes with High Transference Number Prepared by Click Chemistry and Photoinduced Metal-Free Atom-Transfer Radical Polymerization. <i>ACS Energy Letters</i> , 2018 , 3, 20-	-27 ^{20.1}	71	
89	Water-Dispersible, Responsive, and Carbonizable Hairy Microporous Polymeric Nanospheres. Journal of the American Chemical Society, 2015 , 137, 13256-9	16.4	70	
89	ATRP of Methacrylates Utilizing CullX2/L and Copper Wire. <i>Macromolecules</i> , 2010 , 43, 9682-9689	5.5	70	
89	Harnessing labile bonds between nanogel particles to create self-healing materials. <i>ACS Nano</i> , 2009 , 3, 885-92	16.7	70	
89	Evaluation of acrylate-based block copolymers prepared by atom transfer radical polymerization as matrices for paclitaxel delivery from coronary stents. <i>Biomacromolecules</i> , 2005 , 6, 3410-8	6.9	70	
89	Controlling grafting density and side chain length in poly(n-butyl acrylate) by ATRP copolymerization of macromonomers. <i>Journal of Polymer Science Part A</i> , 2006 , 44, 5454-5467	2.5	70	
89	PEO-Based Star Copolymers as Stabilizers for Water-in-Oil or Oil-in-Water Emulsions. Macromolecules, 2012 , 45, 9419-9426	5.5	69	

891	Changes in Network Structure of Chemical Gels Controlled by Solvent Quality through Photoinduced Radical Reshuffling Reactions of Trithiocarbonate Units <i>ACS Macro Letters</i> , 2012 , 1, 478	3-489	69
890	Effect of Cross-Linker Reactivity on Experimental Gel Points during ATRcP of Monomer and Cross-Linker. <i>Macromolecules</i> , 2008 , 41, 7843-7849	5.5	69
889	pH-induced conformational changes of loosely grafted molecular brushes containing poly(acrylic acid) side chains. <i>Polymer</i> , 2008 , 49, 5490-5496	3.9	69
888	Recent mechanistic developments in atom transfer radical polymerization. <i>Journal of Molecular Catalysis A</i> , 2006 , 254, 155-164		69
887	Towards sustainable polymer chemistry with homogeneous metal-based catalysts. <i>Green Chemistry</i> , 2014 , 16, 1673-1686	10	68
886	Robust control of microdomain orientation in thin films of block copolymers by zone casting. <i>Journal of the American Chemical Society</i> , 2011 , 133, 11802-9	16.4	68
885	Homopolymerization and Block Copolymerization of N-Vinylpyrrolidone by ATRP and RAFT with Haloxanthate Inifers. <i>Macromolecules</i> , 2009 , 42, 8198-8210	5.5	68
884	Thermally Responsive PM(EO)2MA Magnetic Microgels via Activators Generated by Electron Transfer Atom Transfer Radical Polymerization in Miniemulsion. <i>Chemistry of Materials</i> , 2009 , 21, 3965-	39 7 2	68
883	Competitive Equilibria in Atom Transfer Radical Polymerization. <i>Macromolecular Symposia</i> , 2007 , 248, 60-70	0.8	68
882	Diimino- and diaminopyridine complexes of CuBr and FeBr2 as catalysts in atom transfer radical polymerization (ATRP). <i>Macromolecular Chemistry and Physics</i> , 2000 , 201, 1619-1624	2.6	68
881	Porous polymers prepared via high internal phase emulsion polymerization for reversible CO2 capture. <i>Polymer</i> , 2014 , 55, 385-394	3.9	67
880	Performance of dielectric nanocomposites: matrix-free, hairy nanoparticle assemblies and amorphous polymer-nanoparticle blends. <i>ACS Applied Materials & Dielectric Research</i> , 2014, 6, 21500-9	9.5	67
879	Iron-Based ICAR ATRP of Styrene with ppm Amounts of FeIIIBr3 and 1,1?-Azobis(cyclohexanecarbonitrile). <i>ACS Macro Letters</i> , 2012 , 1, 599-602	6.6	67
878	Star polymers via cross-linking amphiphilic macroinitiators by AGET ATRP in aqueous media. <i>Journal of the American Chemical Society</i> , 2009 , 131, 10378-9	16.4	67
877	TEMPO-mediated polymerization of styrene: Rate enhancement with dicumyl peroxide. <i>Journal of Polymer Science Part A</i> , 1997 , 35, 1857-1861	2.5	67
876	Reevaluation of Persistent Radical Effect in NMP. <i>Macromolecules</i> , 2006 , 39, 4332-4337	5.5	67
875	Synthesis of poly(2-hydroxyethyl methacrylate) in protic media through atom transfer radical polymerization using activators generated by electron transfer. <i>Journal of Polymer Science Part A</i> , 2006 , 44, 3787-3796	2.5	67
874	Block Copolymer Templating as a Path to Porous Nanostructured Carbons with Highly Accessible Nitrogens for Enhanced (Electro)chemical Performance. <i>Macromolecular Chemistry and Physics</i> , 2012, 213, 1078-1090.	2.6	66

873	Structure of Polymer Tethered Highly Grafted Nanoparticles. <i>Macromolecules</i> , 2011 , 44, 8129-8135	5.5	66
872	ICAR ATRP of Styrene and Methyl Methacrylate with Ru(Cp*)Cl(PPh3)2. <i>Macromolecules</i> , 2009 , 42, 2330)- <u>33</u> 32	66
871	Light-Induced Reversible Formation of Polymeric Micelles. <i>Angewandte Chemie</i> , 2007 , 119, 2505-2509	3.6	66
870	Multisegmented Block Copolymers by 'Click' Coupling of Polymers Prepared by ATRP. <i>Australian Journal of Chemistry</i> , 2007 , 60, 400	1.2	66
869	Synthesis of Multisegmented Degradable Polymers by Atom Transfer Radical Cross-Coupling. <i>Macromolecules</i> , 2007 , 40, 9217-9223	5.5	66
868	Reversible collapse of brushlike macromolecules in ethanol and water vapours as revealed by real-time scanning force microscopy. <i>Chemistry - A European Journal</i> , 2004 , 10, 4599-605	4.8	66
867	Multiarm molecular brushes: effect of the number of arms on the molecular weight polydispersity and surface ordering. <i>Langmuir</i> , 2004 , 20, 6005-11	4	66
866	4,4?,4?-Tris(5-nonyl)-2,2?: 6?,2?-terpyridine as ligand in atom transfer radical polymerization (ATRP). <i>Macromolecular Rapid Communications</i> , 1999 , 20, 341-346	4.8	66
865	A silver bullet: elemental silver as an efficient reducing agent for atom transfer radical polymerization of acrylates. <i>Journal of the American Chemical Society</i> , 2015 , 137, 1428-31	16.4	65
864	Solid-phase incorporation of an ATRP initiator for polymer-DNA biohybrids. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 2739-44	16.4	65
863	Synthesis, Characterization, and Properties of Starlike Poly(n-butyl acrylate)-b-poly(methyl methacrylate) Block Copolymers. <i>Macromolecules</i> , 2010 , 43, 1227-1235	5.5	65
862	Atom transfer radical polymerization in aqueous dispersed media. <i>Open Chemistry</i> , 2009 , 7, 657-674	1.6	65
861	Crystallization of Molecular Brushes with Block Copolymer Side Chains. <i>Macromolecules</i> , 2009 , 42, 9008	8-990;17	65
860	Synthesis of high molecular weight polystyrene using AGET ATRP under high pressure. <i>European Polymer Journal</i> , 2011 , 47, 730-734	5.2	65
859	Monomolecular Films of Arborescent Graft Polystyrenes. <i>Macromolecules</i> , 1997 , 30, 2343-2349	5.5	65
858	Use of an Amphiphilic Block Copolymer as a Stabilizer and a Macroinitiator in Miniemulsion Polymerization under AGET ATRP Conditions. <i>Macromolecules</i> , 2007 , 40, 8813-8816	5.5	65
857	Structure R eactivity Correlation in ClickIChemistry: Substituent Effect on Azide Reactivity. <i>Macromolecular Rapid Communications</i> , 2008 , 29, 1167-1171	4.8	65
856	Graft copolymers of polyethylene by atom transfer radical polymerization. <i>Journal of Polymer Science Part A</i> , 2000 , 38, 2440-2448	2.5	65

855	From Atom Transfer Radical Addition to Atom Transfer Radical Polymerization. <i>Current Organic Chemistry</i> , 2002 , 6, 67-82	1.7	65
854	Copper-based ATRP catalysts of very high activity derived from dimethyl cross-bridged cyclam. Journal of Molecular Catalysis A, 2006 , 257, 132-140		64
853	Introduction of self-healing properties into covalent polymer networks via the photodissociation of alkoxyamine junctions. <i>Polymer Chemistry</i> , 2014 , 5, 921-930	4.9	63
852	Comparison of thermomechanical properties of statistical, gradient and block copolymers of isobornyl acrylate and n-butyl acrylate with various acrylate homopolymers. <i>Polymer</i> , 2008 , 49, 1567-15	7 8 9	63
851	Preparation of Nanoparticles of Well-Controlled Water-Soluble Homopolymers and Block Copolymers Using an Inverse Miniemulsion ATRP. <i>Macromolecules</i> , 2006 , 39, 8003-8010	5.5	63
850	Preparation of polyethylene block copolymers by a combination of postmetallocene catalysis of ethylene polymerization and atom transfer radical polymerization. <i>Journal of Polymer Science Part A</i> , 2004 , 42, 496-504	2.5	63
849	Graft copolymers by atom transfer polymerization. <i>Macromolecular Symposia</i> , 2002 , 177, 1-16	0.8	63
848	Cubosomes from hierarchical self-assembly of poly(ionic liquid) block copolymers. <i>Nature Communications</i> , 2017 , 8, 14057	17.4	62
847	Spontaneous Curvature of Comblike Polymers at a Flat Interface. <i>Macromolecules</i> , 2004 , 37, 3918-3923	5.5	62
846	Reverse Atom Transfer Radical Polymerization in Miniemulsion. <i>Macromolecules</i> , 2003 , 36, 6028-6035	5.5	62
845	Unified approach to living and non-living cationic polymerization of alkenes. <i>Polymer International</i> , 1994 , 35, 1-26	3.3	62
844	Star polymers with a cationic core prepared by ATRP for cellular nucleic acids delivery. <i>Biomacromolecules</i> , 2013 , 14, 1262-7	6.9	61
843	Silica-polymethacrylate hybrid particles synthesized using high-pressure atom transfer radical polymerization. <i>Macromolecular Rapid Communications</i> , 2011 , 32, 295-301	4.8	61
842	Effect of Initiator and Ligand Structures on ATRP of Styrene and Methyl Methacrylate Initiated by Alkyl Dithiocarbamate. <i>Macromolecules</i> , 2008 , 41, 6627-6635	5.5	61
841	What happens in the dark? Assessing the temporal control of photo-mediated controlled radical polymerizations. <i>Journal of Polymer Science Part A</i> , 2019 , 57, 268-273	2.5	61
840	PEO-b-PNIPAM copolymers via SARA ATRP and eATRP in aqueous media. <i>Polymer</i> , 2015 , 71, 143-147	3.9	60
839	Ambient temperature rapid SARA ATRP of acrylates and methacrylates in alcoholwater solutions mediated by a mixed sulfite/Cu(II)Br2 catalytic system. <i>Polymer Chemistry</i> , 2013 , 4, 5629	4.9	60
838	Properties and ATRP activity of copper complexes with substituted tris(2-pyridylmethyl)amine-based ligands. <i>Inorganic Chemistry</i> , 2015 , 54, 1474-86	5.1	60

837	Preparation of cationic nanogels for nucleic acid delivery. <i>Biomacromolecules</i> , 2012 , 13, 3445-9	6.9	60
836	Covalently incorporated proteinBanogels using AGET ATRP in an inverse miniemulsion. <i>Polymer Chemistry</i> , 2011 , 2, 1476	4.9	60
835	Further progress in atom transfer radical polymerizations conducted in a waterborne system. <i>Journal of Polymer Science Part A</i> , 2003 , 41, 3606-3614	2.5	60
834	Electrochemical approaches to the determination of rate constants for the activation step in atom transfer radical polymerization. <i>Electrochimica Acta</i> , 2016 , 222, 393-401	6.7	60
833	Synthesis of tyclodextrin-based star polymers via a simplified electrochemically mediated ATRP. <i>Polymer</i> , 2016 , 88, 36-42	3.9	59
832	Linear-Free Energy Relationships for Modeling Structure R eactivity Trends in Controlled Radical Polymerization. <i>Macromolecules</i> , 2011 , 44, 7568-7583	5.5	59
831	Towards understanding monomer coordination in atom transfer radical polymerization: synthesis of [CuI(PMDETA)(EM)][BPh4] (M = methyl acrylate, styrene, 1-octene, and methyl methacrylate) and structural studies by FT-IR and 1H NMR spectroscopy and X-ray crystallography. <i>Journal of Organometallic Chemistry</i> , 2005, 690, 916-924	2.3	59
830	Polychloroalkane initiators in copper-catalyzed atom transfer radical polymerization of (meth)acrylates. <i>Macromolecular Chemistry and Physics</i> , 2000 , 201, 265-272	2.6	59
829	Enhanced Activity of ATRP Fe Catalysts with Phosphines Containing Electron Donating Groups. <i>Macromolecules</i> , 2012 , 45, 5911-5915	5.5	58
828	Synthesis of well-defined poly(2-(dimethylamino)ethyl methacrylate) under mild conditions and its co-polymers with cholesterol and PEG using Fe(0)/Cu(II) based SARA ATRP. <i>Polymer Chemistry</i> , 2013 , 4, 3088	4.9	58
827	Comparative study of polymeric stabilizers for magnetite nanoparticles using ATRP. <i>Langmuir</i> , 2010 , 26, 16890-900	4	58
826	Polar Three-Arm Star Block Copolymer Thermoplastic Elastomers Based on Polyacrylonitrile. <i>Macromolecules</i> , 2008 , 41, 2451-2458	5.5	58
825	Biocatalytic "Oxygen-Fueled" Atom Transfer Radical Polymerization. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 16157-16161	16.4	58
824	Disproportionation or Combination? The Termination of Acrylate Radicals in ATRP. <i>Macromolecules</i> , 2017 , 50, 7920-7929	5.5	57
823	Star Synthesis Using Macroinitiators via Electrochemically Mediated Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2013 , 46, 5856-5860	5.5	57
822	Harnessing interfacially-active nanorods to regenerate severed polymer gels. <i>Nano Letters</i> , 2013 , 13, 6269-74	11.5	57
821	Comparison of Thermoresponsive Deswelling Kinetics of Poly(oligo(ethylene oxide) methacrylate)-Based Thermoresponsive Hydrogels Prepared by Ciraft-from ATRP. <i>Macromolecules</i> , 2011, 44, 2261-2268	5.5	57
820	Synthesis of hyperbranched degradable polymers by atom transfer radical (Co)polymerization of inimers with ester or disulfide groups. <i>Journal of Polymer Science Part A</i> , 2009 , 47, 6839-6851	2.5	57

819	Block copolymers by transformation of <code>Ilvinglarbocationic</code> into <code>Ilvingladical</code> polymerization. II. ABA-type block copolymers comprising rubbery polyisobutene middle segment. <i>Journal of Polymer Science Part A</i> , 1997 , 35, 3595-3601	2.5	57
818	Copper Triflate as a Catalyst in Atom Transfer Radical Polymerization of Styrene and Methyl Acrylate. <i>Macromolecules</i> , 1998 , 31, 7999-8004	5.5	57
817	Viscoelastic properties of silica-grafted poly(styrenellcrylonitrile) nanocomposites. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2006 , 44, 2014-2023	2.6	57
816	Effect of variation of [PMDETA]0/[Cu(I)Br]0 ratio on atom transfer radical polymerization of n-butyl acrylate. <i>Journal of Polymer Science Part A</i> , 2004 , 42, 3285-3292	2.5	57
815	Synthesis and Characterization of New Liquid-Crystalline Block Copolymers with p-Cyanoazobenzene Moieties and Poly(n-butyl acrylate) Segments Using Atom-Transfer Radical Polymerization. <i>Macromolecules</i> , 2004 , 37, 9355-9365	5.5	57
814	Factors Affecting Rates of Comonomer Consumption in Copolymerization Processes with Intermittent Activation. <i>Macromolecules</i> , 2002 , 35, 6773-6781	5.5	57
813	Structural comparison of CuII complexes in atom transfer radical polymerization. <i>New Journal of Chemistry</i> , 2002 , 26, 462-468	3.6	57
812	Synthesis of Well-Defined Allyl End-Functionalized Polystyrene by Atom Transfer Radical Polymerization with an Allyl Halide Initiator. <i>Polymer Journal</i> , 1998 , 30, 138-141	2.7	57
811	Fabrication and nanostructure control of super-hierarchical carbon materials from heterogeneous bottlebrushes. <i>Chemical Science</i> , 2017 , 8, 2101-2106	9.4	56
810	Mechanistically Guided Predictive Models for Ligand and Initiator Effects in Copper-Catalyzed Atom Transfer Radical Polymerization (Cu-ATRP). <i>Journal of the American Chemical Society</i> , 2019 , 141, 7486-7497	16.4	56
809	Miniemulsion ARGET ATRP via Interfacial and Ion-Pair Catalysis: From ppm to ppb of Residual Copper. <i>Macromolecules</i> , 2017 , 50, 8417-8425	5.5	56
808	Synthesis of Amphiphilic Poly(-vinylpyrrolidone)poly(vinyl acetate) Molecular Bottlebrushes <i>ACS Macro Letters</i> , 2012 , 1, 227-231	6.6	56
807	Reducing Copper Concentration in Polymers Prepared via Atom Transfer Radical Polymerization. <i>Macromolecular Reaction Engineering</i> , 2010 , 4, 180-185	1.5	56
806	"Hairy" single-walled carbon nanotubes prepared by atom transfer radical polymerization. <i>Small</i> , 2007 , 3, 1803-10	11	56
805	Synthesis, characterization, and in vitro cell culture viability of degradable poly(N-isopropylacrylamide-co-5,6-benzo-2-methylene-1,3-dioxepane)-based polymers and crosslinked gels. <i>Journal of Biomedical Materials Research - Part A</i> , 2008 , 87, 345-58	5.4	56
804	Comparison of Bond Dissociation Energies of Dormant Species Relevant to Degenerative Transfer and Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2005 , 38, 8093-8100	5.5	56
803	Conformational Switching of Molecular Brushes in Response to the Energy of Interaction with the Substrate Journal of Physical Chemistry A, 2004, 108, 9682-9686	2.8	56
802	Preparation of Polyisobutene-graft-Poly(methyl methacrylate) and Polyisobutene-graft-Polystyrene with Different Compositions and Side Chain Architectures through Atom Transfer Radical Polymerization (ATRP). <i>Macromolecular Chemistry and Physics</i> , 2001 ,	2.6	56

(2012-2017)

801	Atom Transfer Radical Polymerization with Different Halides (F, Cl, Br, and I): Is the Process Living in the Presence of Fluorinated Initiators?. <i>Macromolecules</i> , 2017 , 50, 192-202	5.5	55
800	Electrochemical Atom Transfer Radical Polymerization in Miniemulsion with a Dual Catalytic System. <i>Macromolecules</i> , 2016 , 49, 8838-8847	5.5	55
799	Vinyl-triazolium monomers: Versatile and new class of radically polymerizable ionic monomers. Journal of Polymer Science Part A, 2014 , 52, 417-423	2.5	55
798	Allyl Halide (Macro)initiators in ATRP: Synthesis of Block Copolymers with Polyisobutylene Segments. <i>Macromolecules</i> , 2008 , 41, 2318-2323	5.5	55
797	"Fatal adsorption" of brushlike macromolecules: high sensitivity of C-C bond cleavage rates to substrate surface energy. <i>Journal of the American Chemical Society</i> , 2008 , 130, 4228-9	16.4	55
796	Biotin-, Pyrene-, and GRGDS-Functionalized Polymers and Nanogels via ATRP and End Group Modification. <i>Macromolecular Chemistry and Physics</i> , 2008 , 209, 2179-2193	2.6	55
795	Arborescent Polystyrene-graft-poly(2-vinylpyridine) Copolymers as Unimolecular Micelles. Synthesis from Acetylated Substrates. <i>Macromolecules</i> , 2003 , 36, 2642-2648	5.5	55
794	Star-like poly (n-butyl acrylate)-b-poly (Emethylene-Ebutyrolactone) block copolymers for high temperature thermoplastic elastomers applications. <i>Polymer</i> , 2010 , 51, 4806-4813	3.9	54
793	Well-Defined Poly(ethylene oxide)Polyacrylonitrile Diblock Copolymers as Templates for Mesoporous Silicas and Precursors for Mesoporous Carbons. <i>Chemistry of Materials</i> , 2006 , 18, 1417-142	49.6	54
792	Super soft elastomers as ionic conductors. <i>Polymer</i> , 2004 , 45, 6333-6339	3.9	54
791	AGET ATRP in water and inverse miniemulsion: A facile route for preparation of high-molecular-weight biocompatible brush-like polymers. <i>Journal of Polymer Science Part A</i> , 2009 , 47, 1771-1781	2.5	53
790	ATRP of MMA Catalyzed by FeIIBr2in the Presence of Triflate Anions. <i>Macromolecules</i> , 2011 , 44, 1226-1	2 <u>3</u> .8	52
789	Use of an Immobilized/Soluble Hybrid ATRP Catalyst System for the Preparation of Block Copolymers, Random Copolymers, and Polymers with High Degree of Chain End Functionality. <i>Macromolecules</i> , 2003 , 36, 1075-1082	5.5	52
788	Synthesis and characterization of copolymers of 5,6-benzo-2-methylene-1,3-dioxepane and n-butyl acrylate. <i>Polymer</i> , 2005 , 46, 11698-11706	3.9	52
787	General method for determination of the activation, deactivation, and initiation rate constants in transition metal-catalyzed atom transfer radical processes. <i>Journal of the American Chemical Society</i> , 2002 , 124, 8196-7	16.4	52
786	Effect of Ligand Structure on the Cull R OMRP Dormant Species and Its Consequences for Catalytic Radical Termination in ATRP. <i>Macromolecules</i> , 2016 , 49, 7749-7757	5.5	52
785	Photoinduced Iron-Catalyzed Atom Transfer Radical Polymerization with ppm Levels of Iron Catalyst under Blue Light Irradiation. <i>Macromolecules</i> , 2017 , 50, 7967-7977	5.5	51
7 ⁸ 4	Tuning Dispersity in Diblock Copolymers Using ARGET ATRP. <i>Macromolecular Chemistry and Physics</i> , 2012 , 213, 2659-2668	2.6	51

783	Direct DNA conjugation to star polymers for controlled reversible assemblies. <i>Bioconjugate Chemistry</i> , 2011 , 22, 2030-7	6.3	51
782	pH-Responsive Fluorescent Molecular Bottlebrushes Prepared by Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2011 , 44, 5905-5910	5.5	51
781	Synthesis of Star Polymers Using ARGET ATRP. <i>Macromolecules</i> , 2010 , 43, 9227-9229	5.5	51
7 ⁸ 0	Influence of Initiation Efficiency and Polydispersity of Primary Chains on Gelation during Atom Transfer Radical Copolymerization of Monomer and Cross-Linker. <i>Macromolecules</i> , 2009 , 42, 927-932	5.5	51
779	THE ATOM TRANSFER RADICAL POLYMERIZATION OF LAURYL ACRYLATE. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 2001 , 38, 731-739	2.2	51
778	EPR Study of Atom Transfer Radical Polymerization (ATRP) of Styrene. <i>Macromolecules</i> , 1998 , 31, 548-5	5 59 5	51
777	Polyacrylonitrile-derived nanostructured carbon materials. <i>Progress in Polymer Science</i> , 2019 , 92, 89-13	429.6	50
776	Bright Fluorescent Nanotags from Bottlebrush Polymers with DNA-Tipped Bristles. <i>ACS Central Science</i> , 2015 , 1, 431-8	16.8	50
775	Formation and Possible Reactions of Organometallic Intermediates with Active Copper(I) Catalysts in ATRP. <i>Organometallics</i> , 2012 , 31, 7994-7999	3.8	50
774	Perfect mixing of immiscible macromolecules at fluid interfaces. <i>Nature Materials</i> , 2013 , 12, 735-40	27	50
773	Thermoresponsive star triblock copolymers by combination of ROP and ATRP: From micelles to hydrogels. <i>Journal of Polymer Science Part A</i> , 2011 , 49, 1942-1952	2.5	50
772	Synthesis of Poly(vinyl acetate) Molecular Brushes by a Combination of Atom Transfer Radical Polymerization (ATRP) and Reversible Addition Bragmentation Chain Transfer (RAFT) Polymerization. <i>Macromolecules</i> , 2010 , 43, 4016-4019	5.5	50
771	Synthesis of Binary Polymer Brushes via Two-Step Reverse Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2011 , 44, 2253-2260	5.5	50
770	Controlled Radical Polymerization. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 1994 , 31, 1561-1578	2.2	50
769	Control of Dispersity and Grafting Density of Particle Brushes by Variation of ATRP Catalyst Concentration. <i>ACS Macro Letters</i> , 2019 , 8, 859-864	6.6	49
768	Well-defined biohybrids using reversible-deactivation radical polymerization procedures. <i>Journal of Controlled Release</i> , 2015 , 205, 45-57	11.7	49
767	Polymer-based protein engineering grown ferrocene-containing redox polymers improve current generation in an enzymatic biofuel cell. <i>Biosensors and Bioelectronics</i> , 2016 , 86, 446-453	11.8	49
766	High-transparency polymer nanocomposites enabled by polymer-graft modification of particle fillers. <i>Langmuir</i> , 2014 , 30, 14434-42	4	49

7	765	Electron Transfer Reactions in Atom Transfer Radical Polymerization. <i>Synthesis</i> , 2017 , 49, 3311-3322	2.9	49	
7	764	Standing arrays of gold nanorods end-tethered with polymer ligands. <i>Small</i> , 2012 , 8, 731-7	11	49	
7	763	Strategies for the synthesis of thermoplastic polymer nanocomposite materials with high inorganic filling fraction. <i>Langmuir</i> , 2013 , 29, 8989-96	4	49	
7	762	Atom Transfer Radical Polymerization of Dimethyl(1-ethoxycarbonyl)vinyl Phosphate and Corresponding Block Copolymers. <i>Macromolecules</i> , 2005 , 38, 3577-3583	5.5	49	
7	761	Macromolecular engineering by controlled/living ionic and radical polymerizations. <i>Macromolecular Symposia</i> , 2001 , 174, 51-68	0.8	49	
7	760	Enzymatically Degassed Surface-Initiated Atom Transfer Radical Polymerization with Real-Time Monitoring. <i>Journal of the American Chemical Society</i> , 2019 , 141, 3100-3109	16.4	48	
7	759	Matrix-free Particle Brush System with Bimodal Molecular Weight Distribution Prepared by SI-ATRP. <i>Macromolecules</i> , 2015 , 48, 8208-8218	5.5	48	
7	758	Highly Active Bipyridine-Based Ligands for Atom Transfer Radical Polymerization <i>ACS Macro Letters</i> , 2012 , 1, 508-512	6.6	48	
7	757	Controlled Aqueous Atom Transfer Radical Polymerization with Electrochemical Generation of the Active Catalyst. <i>Angewandte Chemie</i> , 2011 , 123, 11593-11596	3.6	48	
7	756	Poly[N -(2-hydroxypropyl)methacrylamide- block - n -butyl acrylate] micelles in water/DMF mixed solvents. <i>Polymer</i> , 2002 , 43, 3735-3741	3.9	48	
7	755	Synthesis of Degradable Poly(methyl methacrylate) via ATRP: Atom Transfer Radical Ring-Opening Copolymerization of 5-Methylene-2-phenyl-1,3-dioxolan-4-one and Methyl Methacrylate. <i>Macromolecules</i> , 2003 , 36, 2995-2998	5.5	48	
7	⁷ 54	Overview: Fundamentals of Controlled/Living Radical Polymerization. ACS Symposium Series, 1998, 2-30	0.4	48	
7	753	Heterografted Molecular Brushes as Stabilizers for Water-in-Oil Emulsions. <i>Macromolecules</i> , 2017 , 50, 2942-2950	5.5	47	
7	752	Synthesis of Poly(OEOMA) Using Macromonomers via G rafting-Through ATRP. <i>Macromolecules</i> , 2015 , 48, 6385-6395	5.5	47	
7	751	SP-PLP-EPR Measurement of ATRP Deactivation Rate. <i>Macromolecules</i> , 2012 , 45, 3797-3801	5.5	47	
7	750	Synthesis of Cyclic (Co)polymers by Atom Transfer Radical Cross-Coupling and Ring Expansion by Nitroxide-Mediated Polymerization. <i>Macromolecules</i> , 2011 , 44, 240-247	5.5	47	
7	⁷ 49	Biomimetic Bottlebrush Polymer Coatings for Fabrication of Ultralow Fouling Surfaces. Angewandte Chemie - International Edition, 2019 , 58, 1308-1314	16.4	47	
7	748	Synergistic Interaction Between ATRP and RAFT: Taking the Best of Each World. <i>Australian Journal of Chemistry</i> , 2009 , 62, 1384	1.2	46	

747	Synthesis and ATRP Activity of New TREN-Based Ligands. <i>Macromolecular Chemistry and Physics</i> , 2004 , 205, 551-566	2.6	46
746	New Amine-Based Tripodal Copper Catalysts for Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2004 , 37, 4014-4021	5.5	46
745	The Effect of Ligands on Copper-Mediated Atom Transfer Radical Polymerization. <i>ACS Symposium Series</i> , 2000 , 207-223	0.4	46
744	Interaction of Propagating Radicals with Copper(I) and Copper(II) Species. <i>Macromolecules</i> , 1998 , 31, 4718-23	5.5	46
743	Metal-Free Photoinduced Electron Transfer-Atom Transfer Radical Polymerization Integrated with Bioinspired Polydopamine Chemistry as a Green Strategy for Surface Engineering of Magnetic Nanoparticles. <i>ACS Applied Materials & Acs Applied & </i>	9.5	45
742	In-Situ Platinum Deposition on Nitrogen-Doped Carbon Films as a Source of Catalytic Activity in a Hydrogen Evolution Reaction. <i>ACS Applied Materials & Description of Catalytic Activity in a Hydrogen Evolution Reaction.</i>	9.5	45
741	Effect of [CuII] on the Rate of Activation in ATRP. <i>Macromolecules</i> , 2005 , 38, 2015-2018	5.5	45
740	Wear Protection without Surface Modification Using a Synergistic Mixture of Molecular Brushes and Linear Polymers. <i>ACS Nano</i> , 2017 , 11, 1762-1769	16.7	44
739	Processing fragile matter: effect of polymer graft modification on the mechanical properties and processibility of (nano-) particulate solids. <i>Soft Matter</i> , 2016 , 12, 3527-37	3.6	44
738	Modular polymerized ionic liquid block copolymer membranes for CO2/N2 separation. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 7967-7972	13	44
737	Synthesis of Poly(ionic liquid)s by Atom Transfer Radical Polymerization with ppm of Cu Catalyst. <i>Macromolecules</i> , 2014 , 47, 6601-6609	5.5	44
736	Effects of Core Microstructure on Structure and Dynamics of Star Polymer Melts: From Polymeric to Colloidal Response. <i>Macromolecules</i> , 2014 , 47, 5347-5356	5.5	44
735	Modeling the response of dual cross-linked nanoparticle networks to mechanical deformation. <i>Soft Matter</i> , 2013 , 9, 109-121	3.6	44
734	Novel Nanoporous Carbons from Well-Defined Poly(styrene-co-acrylonitrile)-Grafted Silica Nanoparticles. <i>Chemistry of Materials</i> , 2011 , 23, 2024-2026	9.6	44
733	Rapid cellular internalization of multifunctional star polymers prepared by atom transfer radical polymerization. <i>Biomacromolecules</i> , 2010 , 11, 2199-203	6.9	44
732	New Segmented Copolymers by Combination of Atom Transfer Radical Polymerization and Ring Opening Polymerization. <i>Macromolecular Symposia</i> , 2006 , 240, 213-223	0.8	44
731	Quantifying Vinyl Monomer Coordination to Culin Solution and the Effect of Coordination on Monomer Reactivity in Radical Copolymerization. <i>Macromolecules</i> , 2005 , 38, 4081-4088	5.5	44
730	Effect of [Pyridylmethanimine]/[CuI] Ratio, Ligand, Solvent and Temperature on the Activation Rate Constants in Atom Transfer Radical Polymerization. <i>Macromolecular Chemistry and Physics</i> , 2005 , 206, 1171-1177	2.6	44

729	Synthesis of Nanoparticle Copolymer Brushes via Surface-Initiated seATRP. <i>Macromolecules</i> , 2017 , 50, 4151-4159	5.5	43	
728	Polyacrylonitrile-b-poly(butyl acrylate) Block Copolymers as Precursors to Mesoporous Nitrogen-Doped Carbons: Synthesis and Nanostructure. <i>Macromolecules</i> , 2017 , 50, 2759-2767	5.5	43	
727	Synergic Effect between Nucleophilic Monomers and Cu(II) Metal®rganic Framework for Visible-Light-Triggered Controlled Photopolymerization. <i>Chemistry of Materials</i> , 2017 , 29, 9445-9455	9.6	43	
726	Complex polymer architectures through free-radical polymerization of multivinyl monomers. <i>Nature Reviews Chemistry</i> , 2020 , 4, 194-212	34.6	43	
7 2 5	Molecular tensile machines: intrinsic acceleration of disulfide reduction by dithiothreitol. <i>Journal of the American Chemical Society</i> , 2011 , 133, 17479-84	16.4	43	
724	Linear Free-Energy Relationships for the Alkyl Radical Affinities of Nitroxides: A Theoretical Study. <i>Macromolecules</i> , 2010 , 43, 3728-3743	5.5	43	
723	Synthesis and Evaluation of a Functional, Water- and Organo-Soluble Nitroxide for Living Free Radical Polymerization. <i>Macromolecules</i> , 2007 , 40, 6067-6075	5.5	43	
722	Controlled Copolymerization of n-Butyl Acrylate with Nonpolar 1-Alkenes Using Activators Regenerated by Electron Transfer for Atom-Transfer Radical Polymerization. <i>Macromolecules</i> , 2007 , 40, 5255-5260	5.5	43	
721	Isotope Effects and the Mechanism of Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2003 , 36, 8609-8616	5.5	43	
720	Water-Borne Block and Statistical Copolymers Synthesized Using Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2000 , 33, 2296-2298	5.5	43	
719	Synthesis of polyphosphazene block copolymers bearing alkoxyethoxy and trifluoroethoxy groups. <i>Macromolecules</i> , 1993 , 26, 6741-6748	5.5	43	
718	Catalyst-Free Selective Photoactivation of RAFT Polymerization: A Facile Route for Preparation of Comblike and Bottlebrush Polymers. <i>Macromolecules</i> , 2018 , 51, 7776-7784	5.5	43	
717	A Fatty Acid-Inspired Tetherable Initiator for Surface-Initiated Atom Transfer Radical Polymerization. <i>Chemistry of Materials</i> , 2017 , 29, 4963-4969	9.6	42	
716	A simplified electrochemically mediated ATRP synthesis of PEO-b-PMMA copolymers. <i>Polymer</i> , 2015 , 77, 266-271	3.9	42	
715	End-group effects on the properties of PEG-co-PGA hydrogels. <i>Acta Biomaterialia</i> , 2009 , 5, 1872-83	10.8	42	
714	Effect of Shell Architecture on the Static and Dynamic Properties of Polymer-Coated Particles in Solution. <i>Macromolecules</i> , 2009 , 42, 2721-2728	5.5	42	
713	Modeling of branching and gelation in living copolymerization of monomer and divinyl cross-linker using dynamic lattice liquid model (DLL) and Flory Stockmayer model. <i>Polymer</i> , 2010 , 51, 6084-6092	3.9	42	
712	Polymerization of acrylates by atom transfer radical polymerization. Homopolymerization of glycidyl acrylate. <i>Macromolecular Chemistry and Physics</i> , 1997 , 198, 4011-4017	2.6	42	

711	Synthesis and in situ atomic force microscopy characterization of temperature-responsive hydrogels based on poly(2-(dimethylamino)ethyl methacrylate) prepared by atom transfer radical polymerization. <i>Langmuir</i> , 2007 , 23, 241-9	4	42
710	Atom Transfer Radical Dispersion Polymerization of Styrene in Ethanol. <i>Macromolecules</i> , 2007 , 40, 7217	7- 3 222	42
709	Real-Time Scanning Force Microscopy of Macromolecular Conformational Transitions. <i>Macromolecular Rapid Communications</i> , 2004 , 25, 1703-1707	4.8	42
708	Amphiphilic block copolymers prepared via controlled radical polymerization as surfactants for emulsion polymerization. <i>Macromolecular Symposia</i> , 2000 , 150, 39-44	0.8	42
707	Comparison and Classification of Controlled/Living Radical Polymerizations. <i>ACS Symposium Series</i> , 2000 , 2-26	0.4	42
706	Free-Radical Intermediates in Atom Transfer Radical Addition and Polymerization: Study of Racemization, Halogen Exchange, and Trapping Reactions. <i>Macromolecules</i> , 2001 , 34, 3127-3129	5.5	42
705	Biocompatible Polymeric Analogues of DMSO Prepared by Atom Transfer Radical Polymerization. <i>Biomacromolecules</i> , 2017 , 18, 475-482	6.9	41
704	Molecular Tensile Machines: Anti-Arrhenius Cleavage of Disulfide Bonds. <i>Macromolecules</i> , 2013 , 46, 719	96 5 .7520	141
703	Carbon black functionalized with hyperbranched polymers: synthesis, characterization, and application in reversible CO2 capture. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 6810	13	41
702	Molecular Imaging and Analysis of Branching Topology in Polyacrylates by Atomic Force Microscopy. <i>Macromolecules</i> , 2011 , 44, 5928-5936	5.5	41
701	A Green Route to Well-Defined High-Molecular-Weight (Co)polymers Using ARGET ATRP with Alkyl Pseudohalides and Copper Catalysis. <i>Angewandte Chemie</i> , 2010 , 122, 551-554	3.6	41
700	Transformation of gels via catalyst-free selective RAFT photoactivation. <i>Polymer Chemistry</i> , 2019 , 10, 2477-2483	4.9	40
699	Liquid metal nanocomposites. <i>Nanoscale Advances</i> , 2020 , 2, 2668-2677	5.1	40
698	Rapid On-Demand Extracellular Vesicle Augmentation with Versatile Oligonucleotide Tethers. <i>ACS Nano</i> , 2019 , 13, 10555-10565	16.7	40
697	Surface-Initiated Atom Transfer Radical Polymerization. Advances in Polymer Science, 2015, 29-76	1.3	40
696	Halogen Conservation in Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2012 , 45, 8929-8932	5.5	40
695	Effect of dilution on branching and gelation in living copolymerization of monomer and divinyl cross-linker: Modeling using dynamic lattice liquid model (DLL) and FloryBtockmayer (FS) model. <i>Polymer</i> , 2011 , 52, 5092-5101	3.9	40
694	Synthesis and Properties of Copolymers with Tailored Sequence Distribution by Controlled/Living Radical Polymerization. <i>ACS Symposium Series</i> , 2003 , 268-282	0.4	40

(2006-2000)

693	Controlled/Iliving Radical Polymerization Applied to Water-Borne Systems. <i>Macromolecular Symposia</i> , 2000 , 155, 15-29	0.8	40	
692	SYNTHESIS OF POLYMERS WITH AMINO END GROUPS BY ATOM TRANSFER RADICAL POLYMERIZATION. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 1999 , 36, 811-826	2.2	40	
691	Next generation protein-polymer conjugates. AICHE Journal, 2018, 64, 3230-3245	3.6	40	
690	Transparent and High Refractive Index Thermoplastic Polymer Glasses Using Evaporative Ligand Exchange of Hybrid Particle Fillers. <i>ACS Applied Materials & Description of Hybrid Particle Fillers</i> . <i>ACS Applied Materials & Description of Hybrid Particle Fillers</i> . <i>ACS Applied Materials & Description of Hybrid Particle Fillers</i> .	9.5	39	
689	Toward Electrochemically Mediated Reversible AdditionEragmentation Chain-Transfer (eRAFT) Polymerization: Can Propagating Radicals Be Efficiently Electrogenerated from RAFT Agents?. <i>Macromolecules</i> , 2019 , 52, 1479-1488	5.5	39	
688	Transformable Materials: Structurally Tailored and Engineered Macromolecular (STEM) Gels by Controlled Radical Polymerization. <i>Macromolecules</i> , 2018 , 51, 3808-3817	5.5	39	
687	Controlled Polymerization of Multivinyl Monomers: Formation of Cyclized/Knotted Single-Chain Polymer Architectures. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 450-460	16.4	39	
686	Anisotropic elasticity of quasi-one-component polymer nanocomposites. ACS Nano, 2011 , 5, 5746-54	16.7	39	
685	EPR study of the atom transfer radical polymerization (ATRP) of (meth)acrylates. <i>Macromolecular Rapid Communications</i> , 1998 , 19, 319-321	4.8	39	
684	PBABMMA 3-Arm Star Block Copolymer Thermoplastic Elastomers. <i>Macromolecular Chemistry and Physics</i> , 2008 , 209, 1686-1693	2.6	39	
683	Concurrent Initiation by Air in the Atom Transfer Radical Polymerization of Methyl Methacrylate. <i>Macromolecular Chemistry and Physics</i> , 2003 , 204, 1151-1159	2.6	39	
682	Mechanistic Aspects of Atom Transfer Radical Polymerization. ACS Symposium Series, 1998, 258-283	0.4	39	
681	Radical Generation and Termination in SARA ATRP of Methyl Acrylate: Effect of Solvent, Ligand, and Chain Length. <i>Macromolecules</i> , 2016 , 49, 2977-2984	5.5	39	
6 80	Universality of the Entanglement Plateau Modulus of Comb and Bottlebrush Polymer Melts. <i>Macromolecules</i> , 2018 , 51, 10028-10039	5.5	39	
679	Atom Transfer Radical Polymerization Enabled by Sonochemically Labile Cu-carbonate Species. <i>ACS Macro Letters</i> , 2019 , 8, 161-165	6.6	38	
678	Temperature- and pH-Responsive Star Polymers as Nanocarriers with Potential for Agrochemical Delivery. <i>ACS Nano</i> , 2020 , 14, 10954-10965	16.7	38	
677	Aqueous SARA ATRP using Inorganic Sulfites. <i>Polymer Chemistry</i> , 2017 , 8, 375-387	4.9	38	
676	Characterization of Linear and 3-Arm Star Block Copolymers by Liquid Chromatography at Critical Conditions. <i>Macromolecular Chemistry and Physics</i> , 2006 , 207, 1709-1717	2.6	38	

675	Templating Conducting Polymers via Self-Assembly of Block Copolymers and Supramolecular Recognition. <i>Macromolecules</i> , 2007 , 40, 7745-7747	5.5	38
674	Extended X-ray Absorption Fine Structure Study of Copper(I) and Copper(II) Complexes in Atom Transfer Radical Polymerization. <i>European Journal of Inorganic Chemistry</i> , 2003 , 2003, 2082-2094	2.3	38
673	Measurement of Initial Degree of Polymerization without Reactivation as a New Method To Estimate Rate Constants of Deactivation in ATRP. <i>Macromolecules</i> , 2002 , 35, 6167-6173	5.5	38
672	Inner sphere and outer sphere electron transfer reactions in atom transfer radical polymerization. <i>Macromolecular Symposia</i> , 1998 , 134, 105-118	0.8	38
671	Preparation of Well-Defined Polymers and DNAPolymer Bioconjugates via Small-Volume eATRP in the Presence of Air. <i>ACS Macro Letters</i> , 2019 , 603-609	6.6	37
670	Block copolymer-templated nitrogen-enriched nanocarbons with morphology-dependent electrocatalytic activity for oxygen reduction. <i>Chemical Science</i> , 2014 , 5, 3315	9.4	37
669	Excimer Emission from Self-Assembly of Fluorescent Diblock Copolymer Prepared by Atom Transfer Radical Polymerization. <i>Chemistry of Materials</i> , 2010 , 22, 4426-4434	9.6	37
668	Anti-Arrhenius cleavage of covalent bonds in bottlebrush macromolecules on substrate. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 9276-80	11.5	37
667	Cell-adhesive star polymers prepared by ATRP. <i>Biomacromolecules</i> , 2009 , 10, 1795-803	6.9	37
666	Electron Spin Resonance Study of Monomeric, Dimeric, and Polymeric Acrylate Radicals Prepared Using the Atom Transfer Radical Polymerization TechniqueDirect Detection of Penultimate-Unit Effects. <i>Macromolecules</i> , 2004 , 37, 1378-1385	5.5	37
665	Atom Transfer Radical Polymerization Driven by Near-Infrared Light with Recyclable Upconversion Nanoparticles. <i>Macromolecules</i> , 2020 , 53, 4678-4684	5.5	36
664	Synthesis and arm dissociation in molecular stars with a spoked wheel core and bottlebrush arms. Journal of the American Chemical Society, 2014 , 136, 12762-70	16.4	36
663	Synthesis of cationic poly((3-acrylamidopropyl)trimethylammonium chloride) by SARA ATRP in ecofriendly solvent mixtures. <i>Polymer Chemistry</i> , 2014 , 5, 5829-5836	4.9	36
662	Autotransfecting short interfering RNA through facile covalent polymer escorts. <i>Journal of the American Chemical Society</i> , 2013 , 135, 12508-11	16.4	36
661	Copolymer-templated nitrogen-enriched nanocarbons as a low charge-transfer resistance and highly stable alternative to platinum cathodes in dye-sensitized solar cells. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 4413-4419	13	36
660	End-linked, amphiphilic, degradable polymer conetworks: synthesis by sequential atom transfer radical polymerization using a bifunctional, cleavable initiator. <i>Polymer Chemistry</i> , 2012 , 3, 105-116	4.9	36
659	Atom transfer radical polymerization of styrene catalyzed by copper carboxylate complexes. <i>Macromolecular Chemistry and Physics</i> , 1998 , 199, 2289-2292	2.6	36
658	Atom transfer radical polymerization of styrene in toluene/water mixtures. <i>Journal of Polymer Science Part A</i> , 2002 , 40, 3153-3160	2.5	36

(2019-2003)

657	A Dual Catalyst System for Atom Transfer Radical Polymerization Based on a Halogen-Free Neutral Cu(I) Complex. <i>Macromolecules</i> , 2003 , 36, 7432-7438	5.5	36
656	Controlled/Living Radical Polymerization in the Undergraduate Laboratories. 2. Using ATRP in Limited Amounts of Air to Prepare Block and Statistical Copolymers of n-Butyl Acrylate and Styrene. <i>Journal of Chemical Education</i> , 2001 , 78, 547	2.4	36
655	Synthesis of Functional Polymers by Atom Transfer Radical Polymerization. <i>ACS Symposium Series</i> , 1998 , 16-27	0.4	36
654	The Next 100 Years of Polymer Science. <i>Macromolecular Chemistry and Physics</i> , 2020 , 221, 2000216	2.6	36
653	Translating Surface-Initiated Atom Transfer Radical Polymerization into Technology: The Mechanism of Cu0-Mediated SI-ATRP under Environmental Conditions. <i>ACS Macro Letters</i> , 2019 , 8, 865-	8 7 6	35
652	New protocol to determine the equilibrium constant of atom transfer radical polymerization. <i>Electrochimica Acta</i> , 2018 , 260, 648-655	6.7	35
651	[FeFe]-Hydrogenase Mimetic Metallopolymers with Enhanced Catalytic Activity for Hydrogen Production in Water. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 11898-11902	16.4	35
650	Colloidal Crystals: Three-Dimensionally Ordered Macroporous Polymeric Materials by Colloidal Crystal Templating for Reversible CO2 Capture (Adv. Funct. Mater. 37/2013). <i>Advanced Functional Materials</i> , 2013 , 23, 4719-4719	15.6	35
649	Toward Structural and Mechanistic Understanding of Transition Metal-Catalyzed Atom Transfer Radical Processes. <i>ACS Symposium Series</i> , 2003 , 130-147	0.4	35
648	Exchange reactions in the living cationic polymerization of alkenes. <i>Makromolekulare Chemie Macromolecular Symposia</i> , 1991 , 47, 221-237		35
647	The macroester? macroion equilibrium in the cationic polymerization of THF observed directly by 300 MHz1 H NMR. <i>Journal of Polymer Science: Polymer Chemistry Edition</i> , 1974 , 12, 1905-1912		35
646	Disentangling the Role of Chain Conformation on the Mechanics of Polymer Tethered Particle Materials. <i>Nano Letters</i> , 2019 , 19, 2715-2722	11.5	34
645	Synthesis of poly(meth)acrylates with thioether and tertiary sulfonium groups by ARGET ATRP and their use as siRNA delivery agents. <i>Biomacromolecules</i> , 2015 , 16, 236-45	6.9	34
644	Oxygen Tolerant and Cytocompatible Iron(0)-Mediated ATRP Enables the Controlled Growth of Polymer Brushes from Mammalian Cell Cultures. <i>Journal of the American Chemical Society</i> , 2020 , 142, 3158-3164	16.4	34
643	Toward Ultimate Control of Radical Polymerization: Functionalized Metal Drganic Frameworks as a Robust Environment for Metal-Catalyzed Polymerizations. <i>Chemistry of Materials</i> , 2018 , 30, 2983-2994	9.6	34
642	Tetrakis(dialkylamino)phosphonium Polyelectrolytes Prepared by Reversible Addition E ragmentation Chain Transfer Polymerization. <i>ACS Macro Letters</i> , 2016 , 5, 253-257	6.6	34
641	A Semiliquid Lithium Metal Anode. <i>Joule</i> , 2019 , 3, 1637-1646	27.8	34
640	Growing Polymer Brushes from a Variety of Substrates under Ambient Conditions by Cu-Mediated Surface-Initiated ATRP. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 27470-27477	9.5	34

639	Tertiary Structure-Based Prediction of How ATRP Initiators React with Proteins. <i>ACS Biomaterials Science and Engineering</i> , 2017 , 3, 2086-2097	5.5	34
638	Synthesis and Characterization of Molecular Bottlebrushes Prepared by Iron-Based ATRP. <i>Macromolecules</i> , 2012 , 45, 9243-9249	5.5	34
637	Cationic Surface-Active Monomers as Reactive Surfactants for AGET Emulsion ATRP of n-Butyl Methacrylate. <i>Macromolecules</i> , 2011 , 44, 5578-5585	5.5	34
636	Photo-cross-linkable thermoresponsive star polymers designed for control of cell-surface interactions. <i>Biomacromolecules</i> , 2010 , 11, 2647-52	6.9	34
635	Influence of cross-linker chemistry on release kinetics of PEG-co-PGA hydrogels. <i>Journal of Biomedical Materials Research - Part A</i> , 2009 , 90, 142-53	5.4	34
634	Controlled Radical Polymerization and Copolymerization of 5-Methylene-2-phenyl-1,3-dioxolan-4-one by ATRP. <i>Macromolecules</i> , 2005 , 38, 5581-5586	5.5	34
633	Properties of well-defined alternating and random copolymers of methacrylates and styrene prepared by controlled/living radical polymerization. <i>Journal of Polymer Science Part A</i> , 2005 , 43, 3440-	3446	34
632	Extended X-ray absorption fine structure analysis of the bipyridine copper complexes in atom transfer radical polymerization. <i>Inorganic Chemistry</i> , 2001 , 40, 6-8	5.1	34
631	Facile Arm-First Synthesis of Star Block Copolymers via ARGET ATRP with ppm Amounts of Catalyst. <i>Macromolecules</i> , 2016 , 49, 6752-6760	5.5	34
630	A Breathing Atom-Transfer Radical Polymerization: Fully Oxygen-Tolerant Polymerization Inspired by Aerobic Respiration of Cells. <i>Angewandte Chemie</i> , 2018 , 130, 945-948	3.6	34
629	Synthesis of Polymer Bioconjugates via Photoinduced Atom Transfer Radical Polymerization under Blue Light Irradiation. <i>ACS Macro Letters</i> , 2018 , 7, 1248-1253	6.6	34
628	Intermolecular Interactions between Bottlebrush Polymers Boost the Protection of Surfaces against Frictional Wear. <i>Chemistry of Materials</i> , 2018 , 30, 4140-4149	9.6	34
627	The Role of Cu0 in Surface-Initiated Atom Transfer Radical Polymerization: Tuning Catalyst Dissolution for Tailoring Polymer Interfaces. <i>Macromolecules</i> , 2018 , 51, 6825-6835	5.5	33
626	Explaining unexpected data via competitive equilibria and processes in radical reactions with reversible deactivation. <i>Accounts of Chemical Research</i> , 2014 , 47, 3028-36	24.3	33
625	Soft Elastomers via Introduction of Poly(butyl acrylate) "Diluent" to Poly(hydroxyethyl acrylate)-Based Gel Networks <i>ACS Macro Letters</i> , 2013 , 2, 23-26	6.6	33
624	Polymethacrylates with Polyhedral Oligomeric Silsesquioxane (POSS) Moieties: Influence of Spacer Length on Packing, Thermodynamics, and Dynamics. <i>Macromolecules</i> , 2015 , 48, 3376-3385	5.5	33
623	A protein-polymer hybrid mediated by DNA. <i>Langmuir</i> , 2012 , 28, 1954-8	4	33
622	How to Make Polymer Chains of Various Shapes, Compositions, and Functionalities by Atom Transfer Radical Polymerization. <i>ACS Symposium Series</i> , 1998 , 396-417	0.4	33

(1980-2006)

621	Synthesis and Characterization of Styrene/Butyl Acrylate Linear and Star Block Copolymers via Atom Transfer Radical Polymerization. <i>Macromolecular Chemistry and Physics</i> , 2006 , 207, 801-811	2.6	33	
620	Structure and Properties of Poly(butyl acrylate-block-sulfone-block-butyl acrylate) Triblock Copolymers Prepared by ATRP. <i>Macromolecular Chemistry and Physics</i> , 2005 , 206, 33-42	2.6	33	
619	SYNTHESIS OF POLYMERS WITH PHOSPHONIUM END GROUPS BY ATOM TRANSFER RADICAL POLYMERIZATION. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 1999 , 36, 653-666	2.2	33	
618	Comments on the Paper Living Radical Polymerization: Kinetic Results (Catala, J. M.; Bubel, F.; Oulad Hammouch, S.Macromolecules 1995, 28, 8441). <i>Macromolecules</i> , 1996 , 29, 5239-5240	5.5	33	
617	Atom Transfer Radical Polymerization for Biorelated Hybrid Materials. <i>Biomacromolecules</i> , 2019 , 20, 4272-4298	6.9	33	
616	Polymerization-induced self-assembly of acrylonitrile via ICAR ATRP. <i>Polymer</i> , 2017 , 129, 57-67	3.9	32	
615	Preparation and Analysis of Bicyclic Polystyrene. <i>Macromolecules</i> , 2014 , 47, 3791-3796	5.5	32	
614	Synthesis of well-defined functionalized poly(2-(diisopropylamino)ethyl methacrylate) using ATRP with sodium dithionite as a SARA agent. <i>Polymer Chemistry</i> , 2014 , 5, 3919-3928	4.9	32	
613	Fundamentals of Atom Transfer Radical Polymerization. <i>Journal of Chemical Education</i> , 2010 , 87, 916-9	19 .4	32	
612	A Simple and Efficient Synthesis of RAFT Chain Transfer Agents via Atom Transfer Radical Addition Eragmentation. <i>Macromolecules</i> , 2009 , 42, 3738-3742	5.5	32	
611	Dangling chain elastomers as repeatable fibrillar adhesives. <i>ACS Applied Materials & Dangling</i> , 1, 2277-87	9.5	32	
610	Methylaluminoxane as a Reducing Agent for Activators Generated by Electron Transfer ATRP. Journal of Macromolecular Science - Pure and Applied Chemistry, 2007, 44, 1035-1039	2.2	32	
609	Controlled/Living Radical Polymerization: State of the Art in 2002. ACS Symposium Series, 2003, 2-9	0.4	32	
608	Preparation of Segmented Copolymers in the Presence of an Immobilized/Soluble Hybrid ATRP Catalyst System. <i>Macromolecules</i> , 2003 , 36, 27-35	5.5	32	
607	Control of Free-Radical Polymerization by Chain Transfer Methods629-690		32	
606	Synthesis and Characterization of Polysilanes. <i>Journal of Macromolecular Science Part A, Chemistry</i> , 1991 , 28, 1151-1176		32	
605	Structural and Mechanistic Aspects of Copper Catalyzed Atom Transfer Radical Polymerization. <i>Topics in Organometallic Chemistry</i> , 2009 , 221-251	0.6	32	
604	Cationic Ring-Opening Polymerization of Heterocyclic Monomers. <i>Advances in Polymer Science</i> , 1980 ,	1.3	32	

603	Grafting PMMA Brushes from ⊞Alumina Nanoparticles via SI-ATRP. <i>ACS Applied Materials & amp; Interfaces</i> , 2016 , 8, 5458-65	9.5	31
602	Synthesis of High Molecular Weight Polymethacrylates with Polyhedral Oligomeric Silsesquioxane Moieties by Atom Transfer Radical Polymerization <i>ACS Macro Letters</i> , 2014 , 3, 799-802	6.6	31
601	Active Ligand for Low PPM Miniemulsion Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2012 , 45, 7356-7363	5.5	31
600	Synthesis, Characterization and Thermolysis of Hyperbranched Homo- and Amphiphilic Co-Polymers Prepared Using an Inimer Bearing a Thermolyzable Acylal Group. <i>Macromolecules</i> , 2012 , 45, 1313-1320	5.5	31
599	Thermoresponsive hydrogel scaffolds with tailored hydrophilic pores. <i>Chemistry - an Asian Journal</i> , 2011 , 6, 128-36	4.5	31
598	Fundamentals of Atom Transfer Radical Polymerization523-628		31
597	Initiators for Continuous Activator Regeneration Atom Transfer Radical Polymerization of Methyl Methacrylate and Styrene with N-Heterocyclic Carbene as Ligands for Fe-Based Catalysts. <i>ACS Macro Letters</i> , 2014 , 3, 944-947	6.6	30
596	Straightforward ARGET ATRP for the Synthesis of Primary Amine Polymethacrylate with Improved Chain-End Functionality under Mild Reaction Conditions. <i>Macromolecules</i> , 2014 , 47, 4615-4621	5.5	30
595	Strain recovery and self-healing in dual cross-linked nanoparticle networks. <i>Polymer Chemistry</i> , 2013 , 4, 4927	4.9	30
594	Controlled/Living Radical Polymerization of tert-Butyl Acrylate Mediated by Chiral Nitroxides. A Stereochemical Study. <i>Macromolecules</i> , 2002 , 35, 8323-8329	5.5	30
593	Making ATRP More Practical: Oxygen Tolerance. Accounts of Chemical Research, 2021, 54, 1779-1790	24.3	30
592	Enzyme-Deoxygenated Low Parts per Million Atom Transfer Radical Polymerization in Miniemulsion and Emulsion. <i>ACS Macro Letters</i> , 2018 , 7, 1317-1321	6.6	30
591	A Simplified Fe-Based PhotoATRP Using Only Monomers and Solvent. <i>Macromolecular Rapid Communications</i> , 2017 , 38, 1600651	4.8	29
590	Cooperative, reversible self-assembly of covalently pre-linked proteins into giant fibrous structures. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 8050-5	16.4	29
589	Nanomechanical mapping of a high curvature polymer brush grafted from a rigid nanoparticle. <i>Soft Matter</i> , 2012 , 8, 8312	3.6	29
588	Polyaniline and Polypyrrole Templated on Self-Assembled Acidic Block Copolymers. <i>Macromolecules</i> , 2009 , 42, 8129-8137	5.5	29
587	Synthesis of a linear polyethylene macromonomer and preparation of polystyrene-graft-polyethylene copolymers via grafting-through atom transfer radical polymerization. <i>Journal of Applied Polymer Science</i> , 2007 , 105, 3-13	2.9	29
586	Structural mobility of molecular bottle-brushes investigated by NMR relaxation dynamics. <i>Polymer</i> , 2007 , 48, 496-501	3.9	29

(2014-2001)

585	Controlled/Living Radical Polymerization in the Undergraduate Laboratories. 1. Using ATRP to Prepare Block and Statistical Copolymers of n-Butyl Acrylate and Styrene. <i>Journal of Chemical Education</i> , 2001 , 78, 544	2.4	29	
584	Degradation of poly(methylphenylsilylene) and poly(di-n-hexylsilylene). <i>Journal of Polymer Science Part A</i> , 1993 , 31, 299-307	2.5	29	
583	Polymer-Based Protein Engineering Enables Molecular Dissolution of Chymotrypsin in Acetonitrile. <i>ACS Macro Letters</i> , 2016 , 5, 493-497	6.6	29	
582	Bottlebrush-Guided Polymer Crystallization Resulting in Supersoft and Reversibly Moldable Physical Networks. <i>Macromolecules</i> , 2017 , 50, 2103-2111	5.5	28	
581	A hypercrosslinking-induced self-assembly strategy for preparation of advanced hierarchical porous polymers with customizable functional components. <i>Chemical Communications</i> , 2017 , 53, 5294-5297	5.8	28	
580	Ductility, toughness and strain recovery in self-healing dual cross-linked nanoparticle networks studied by computer simulations. <i>Progress in Polymer Science</i> , 2015 , 40, 121-137	29.6	28	
579	Intramolecular Interactions of Conjugated Polymers Mimic Molecular Chaperones to Stabilize Protein-Polymer Conjugates. <i>Biomacromolecules</i> , 2018 , 19, 3798-3813	6.9	28	
578	Activation D eactivation Equilibrium of Atom Transfer Radical Polymerization of Styrene up to High Pressure. <i>Macromolecular Chemistry and Physics</i> , 2011 , 212, 2423-2428	2.6	28	
577	Flory theorem for structurally asymmetric mixtures. <i>Physical Review Letters</i> , 2007 , 99, 137801	7.4	28	
576	Nitroxide-Mediated Living Radical Polymerizations463-521		28	
575	Synthesis, characterization, and bromine substitution by 4,4'-di(5-nonyl)-2,2'-bipyridine in Cu(II)(4,4'-di(5-nonyl)-2,2'-bipyridine)Br(2). <i>Inorganic Chemistry</i> , 2001 , 40, 2818-24	5.1	28	
574	Synthesis of well defined polymers by controlled radical polymerization. <i>Macromolecular Symposia</i> , 1995 , 98, 73-89	0.8	28	
573	Thermomechanical Properties and Glass Dynamics of Polymer-Tethered Colloidal Particles and Films. <i>Macromolecules</i> , 2017 , 50, 8658-8669	5.5	27	
572	Impact of Organometallic Intermediates on Copper-Catalyzed Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2019 , 52, 4079-4090	5.5	27	
57 ²		5.5 5.8	27	
	Polymerization. <i>Macromolecules</i> , 2019 , 52, 4079-4090 Novel hollow and yolk-shell structured periodic mesoporous polymer nanoparticles. <i>Chemical</i>	5.8		
571	Polymerization. <i>Macromolecules</i> , 2019 , 52, 4079-4090 Novel hollow and yolk-shell structured periodic mesoporous polymer nanoparticles. <i>Chemical Communications</i> , 2016 , 52, 2489-92	5.8	27	

567	Enhancing the fraction of grafted polystyrene on silica hybrid nanoparticles. <i>Polymer</i> , 2012 , 53, 79-86	3.9	27
566	Controlled Architecture of Hybrid Polymer Nanocapsules with Tunable Morphologies by Manipulating Surface-Initiated ARGET ATRP from Hydrothermally Modified Polydopamine. <i>Chemistry of Materials</i> , 2017 , 29, 10212-10219	9.6	27
565	Preparation of porous nanocarbons with tunable morphology and pore size from copolymer templated precursors. <i>Materials Horizons</i> , 2014 , 1, 121-124	14.4	27
564	Activation Deactivation Equilibrium Associated With Iron-Mediated Atom-Transfer Radical Polymerization up to High Pressure. <i>Macromolecular Chemistry and Physics</i> , 2012 , 213, 2019-2026	2.6	27
563	Ultrahigh surface area hierarchical porous carbons based on natural well-defined macropores in sisal fibers. <i>Journal of Materials Chemistry</i> , 2011 , 21, 14424		27
562	Melt rheology of star polymers with large number of small arms, prepared by crosslinking poly(n-butyl acrylate) macromonomers via ATRP. <i>European Polymer Journal</i> , 2011 , 47, 746-751	5.2	27
561	Flow-enhanced epitaxial ordering of brush-like macromolecules on graphite. <i>Langmuir</i> , 2006 , 22, 1254-9	94	27
560	SYNTHESIS OF POLYPROPYLENE-POLY(METH)ACRYLATE BLOCK COPOLYMERS USING METALLOCENE CATALYZED PROCESSES AND SUBSEQUENT ATOM TRANSFER RADICAL POLYMERIZATION. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 2002 , 39, 901-913	2.2	27
559	Why Do We Need More Active ATRP Catalysts?. Israel Journal of Chemistry, 2020, 60, 108-123	3.4	27
558	Fully oxygen-tolerant atom transfer radical polymerization triggered by sodium pyruvate. <i>Chemical Science</i> , 2020 , 11, 8809-8816	9.4	27
557	Synthesis of well-defined polyacrylonitrile by ICAR ATRP with low concentrations of catalyst. Journal of Polymer Science Part A, 2016 , 54, 1961-1968	2.5	27
556	Soft-Templated Tellurium-Doped Mesoporous Carbon as a Pt-Free Electrocatalyst for High-Performance Dye-Sensitized Solar Cells. <i>ACS Applied Materials & Description (Communication)</i> 11, 2093-21	02 5	27
555	Kinetics of Fe-Mediated ATRP with Triarylphosphines. <i>Macromolecules</i> , 2015 , 48, 4431-4437	5.5	26
554	Molecular Bottlebrushes with Bimodal Length Distribution of Side Chains. <i>Macromolecules</i> , 2015 , 48, 4813-4822	5.5	26
553	Surface-Initiated Photoinduced ATRP: Mechanism, Oxygen Tolerance, and Temporal Control during the Synthesis of Polymer Brushes. <i>Macromolecules</i> , 2020 , 53, 2801-2810	5.5	26
552	Solid-phase synthesis of protein-polymers on reversible immobilization supports. <i>Nature Communications</i> , 2018 , 9, 845	17.4	26
551	Relation between Overall Rate of ATRP and Rates of Activation of Dormant Species. <i>Macromolecules</i> , 2016 , 49, 2467-2476	5.5	26
550	Copolymer-Templated Synthesis of Nitrogen-Doped Mesoporous Carbons for Enhanced Adsorption of Hexavalent Chromium and Uranium. <i>ACS Applied Nano Materials</i> , 2018 , 1, 2536-2543	5.6	26

549	Clickable poly(ionic liquid)s for modification of glass and silicon surfaces. <i>Polymer</i> , 2014 , 55, 3330-3338	3.9	26
548	Effect of Pressure on Activation D eactivation Equilibrium Constants for ATRP of Methyl Methacrylate. <i>Macromolecular Chemistry and Physics</i> , 2012 , 213, 2287-2292	2.6	26
547	Focusing bond tension in bottle-brush macromolecules during spreading. <i>Journal of Materials Chemistry</i> , 2011 , 21, 8448		26
546	Copolymerization of (Meth)acrylates with Olefins Using Activators Regenerated by Electron Transfer for Atom Transfer Radical Polymerization (ARGET ATRP). <i>Macromolecular Symposia</i> , 2008 , 261, 1-9	0.8	26
545	A scanning force microscopy study on the motion of single brush-like macromolecules on a silicon substrate induced by coadsorption of small molecules. <i>Physical Chemistry Chemical Physics</i> , 2007 , 9, 346-	-3.6 -32	26
544	Synthesis and Surface Attachment of ABC Triblock Copolymers Containing Glassy and Rubbery Segments. <i>Macromolecular Chemistry and Physics</i> , 2004 , 205, 411-417	2.6	26
543	Molecular visualization of conformation-triggered flow instability. <i>Physical Review Letters</i> , 2005 , 94, 237	′ 8 0 ₄ 1	26
542	EPR and Kinetic Studies of Atom Transfer Radical Polymerization of (Meth)acrylates. <i>Polymer Journal</i> , 1999 , 31, 70-75	2.7	26
541	Ion ? ester equilibria in the living cationic polymerization of tetrahydrofuran. <i>Journal of Polymer Science: Polymer Chemistry Edition</i> , 1974 , 12, 1333-1336		26
540	Polymer-Based Synthetic Routes to Carbon-Based Metal-Free Catalysts. <i>Advanced Materials</i> , 2019 , 31, e1804626	24	26
539	Synthesis of Well-Defined Polymer Brushes from Silicon Wafers via Surface-Initiated seATRP. <i>Macromolecular Chemistry and Physics</i> , 2017 , 218, 1700106	2.6	25
538	Tuning the molecular weight distribution from atom transfer radical polymerization using deep reinforcement learning. <i>Molecular Systems Design and Engineering</i> , 2018 , 3, 496-508	4.6	25
537	Modification of wood-based materials by atom transfer radical polymerization methods. <i>European Polymer Journal</i> , 2019 , 120, 109253	5.2	25
536	Synthesis of poly(N-vinyl carbazole)-based block copolymers by sequential polymerizations of RAFTIATRP. <i>Polymer</i> , 2014 , 55, 6051-6057	3.9	25
535	Synthesis of degradable polyHIPEs by AGET ATRP. <i>Polymer</i> , 2013 , 54, 4480-4485	3.9	25
534	Activators Regenerated by Electron Transfer Atom Transfer Radical Polymerization in Miniemulsion with 50 ppm of Copper Catalyst. <i>ACS Macro Letters</i> , 2013 , 2, 822-825	6.6	25
533	Stable emulsions with thermally responsive microstructure and rheology using poly(ethylene oxide) star polymers as emulsifiers. <i>Journal of Colloid and Interface Science</i> , 2013 , 394, 284-92	9.3	25
532	Stackable, Covalently Fused Gels: Repair and Composite Formation. <i>Macromolecules</i> , 2015 , 48, 1169-117	'§ .5	25

531	Atom transfer radical polymerization of ionic liquid monomer: The influence of salt/counterion on polymerization. <i>Journal of Polymer Science Part A</i> , 2014 , 52, 2175-2184	2.5	25
530	Dynamic Homogeneity by Architectural Design Bottlebrush Polymers. <i>Macromolecular Chemistry and Physics</i> , 2012 , 213, 1311-1320	2.6	25
529	Impact of polymer graft characteristics and evaporation rate on the formation of 2-D nanoparticle assemblies. <i>Langmuir</i> , 2010 , 26, 13210-5	4	25
528	Incorporation of poly(2-acrylamido-2-methyl-N-propanesulfonic acid) segments into block and brush copolymers by ATRP. <i>Journal of Polymer Science Part A</i> , 2009 , 47, 5386-5396	2.5	25
527	Synthesis of poly(vinyl acetate)-graft-polystyrene by a combination of cobalt-mediated radical polymerization and atom transfer radical polymerization. <i>Journal of Polymer Science Part A</i> , 2007 , 45, 447-459	2.5	25
526	Controlling polymer structures by atom transfer radical polymerization and other controlled/living radical polymerizations. <i>Macromolecular Symposia</i> , 2003 , 195, 25-32	0.8	25
525	Polymer ligand-induced autonomous sorting and reversible phase separation in binary particle blends. <i>Science Advances</i> , 2016 , 2, e1601484	14.3	25
524	Preparation of titania nanoparticles with tunable anisotropy and branched structures from coreBhell molecular bottlebrushes. <i>Polymer</i> , 2016 , 98, 481-486	3.9	25
523	Synthesis of bio-based poly(N-phenylitaconimide) by atom transfer radical polymerization. <i>Journal of Polymer Science Part A</i> , 2015 , 53, 822-827	2.5	24
522	Intelligent Monte Carlo: A New Paradigm for Inverse Polymerization Engineering. <i>Macromolecular Theory and Simulations</i> , 2018 , 27, 1700106	1.5	24
521	Preparation of ZnO hybrid nanoparticles by ATRP. <i>Polymer</i> , 2016 , 107, 492-502	3.9	24
520	Heteroatom-Doped Carbon Dots (CDs) as a Class of Metal-Free Photocatalysts for PET-RAFT Polymerization under Visible Light and Sunlight. <i>Angewandte Chemie</i> , 2018 , 130, 12213-12218	3.6	24
519	In Situ Crosslinking of Nanoparticles in Polymerization-Induced Self-Assembly via ARGET ATRP of Glycidyl Methacrylate. <i>Macromolecular Rapid Communications</i> , 2019 , 40, e1800332	4.8	24
518	Proteinpolymer hybrids: Conducting ARGET ATRP from a genetically encoded cleavable ATRP initiator. <i>European Polymer Journal</i> , 2013 , 49, 2919-2924	5.2	24
517	Clickable Stars by Combination of AROP and Aqueous AGET ATRP. <i>Macromolecules</i> , 2011 , 44, 1920-192	26 5.5	24
516	Dual Concurrent ATRP/RAFT of Methyl Acrylate Co-initiated by Alkyl Halides. <i>Macromolecules</i> , 2011 , 44, 1752-1754	5.5	24
515	Uniform PEO star polymers synthesized in water via free radical polymerization or atom transfer radical polymerization. <i>Macromolecular Rapid Communications</i> , 2011 , 32, 74-81	4.8	24
514	Conjugated Conducting Polymers as Components in Block Copolymer Systems. <i>Molecular Crystals and Liquid Crystals</i> , 2010 , 521, 1-55	0.5	24

513	Synthesis of N-vinylcarbazoleN-vinylpyrrolidone amphiphilic block copolymers by xanthate-mediatedIcontrolled radical polymerization. <i>Canadian Journal of Chemistry</i> , 2010 , 88, 228-235	0.9	24	
512	End-linked amphiphilic polymer conetworks: Synthesis by sequential atom transfer radical polymerization and swelling characterization. <i>Journal of Polymer Science Part A</i> , 2010 , 48, 1878-1886	2.5	24	
511	Solvent induced morphologies of poly(methyl methacrylate-b-ethylene oxide-b-methyl methacrylate) triblock copolymers synthesized by atom transfer radical polymerization. <i>Polymer</i> , 2007 , 48, 7279-7290	3.9	24	
510	Lifetimes of Polystyrene Chains in Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 1999 , 32, 90.	5 1:9 05	i3 ₂₄	
509	Structurally Tailored and Engineered Macromolecular (STEM) Gels as Soft Elastomers and Hard/Soft Interfaces. <i>Macromolecules</i> , 2018 , 51, 9184-9191	5.5	24	
508	Automated Synthesis of Well-Defined Polymers and Biohybrids by Atom Transfer Radical Polymerization Using a DNA Synthesizer. <i>Angewandte Chemie</i> , 2017 , 129, 2784-2787	3.6	23	
50)	Controlled Preparation of Well-Defined Mesoporous Carbon/Polymer Hybrids via Surface-Initiated ICAR ATRP with a High Dilution Strategy Assisted by Facile Polydopamine Chemistry. Macromolecules, 2016, 49, 8943-8950	5.5	23	
500	Sonication-induced scission of molecular bottlebrushes: Implications of the Bairylarchitecture. Polymer, 2016, 84, 178-184	3.9	23	
50	Iron-Catalyzed Atom Transfer Radical Polymerization of Semifluorinated Methacrylates. <i>ACS Macro Letters</i> , 2019 , 8, 1110-1114	6.6	23	
50.	Modeling polymer grafted nanoparticle networks reinforced by high-strength chains. <i>Soft Matter</i> , 2014 , 10, 1374-83	3.6	23	
50)	Spontaneous and specific activation of chemical bonds in macromolecular fluids. <i>Journal of the American Chemical Society</i> , 2010 , 132, 12487-91	16.4	23	
502	Role of parallel reformable bonds in the self-healing of cross-linked nanogel particles. <i>Langmuir</i> , 2011 , 27, 3991-4003	4	23	
50:	Effect of chain topology on the self-organization and the mechanical properties of poly(n-butyl acrylate)-b-polystyrene block copolymers. <i>Polymer</i> , 2011 , 52, 2576-2583	3.9	23	
500	O Metal complexes in controlled radical polymerization. <i>Acta Polymerica</i> , 1997 , 48, 169-180		23	
499	Preparation and degradation of polysilylenes. <i>Journal of Inorganic and Organometallic Polymers</i> , 1991 , 1, 463-485		23	
49	Activated esters in the cationic polymerization of styrenes. <i>Makromolekulare Chemie Macromolecular Symposia</i> , 1988 , 13-14, 433-441		23	
497	Direct ATRP of Methacrylic Acid with Iron-Porphyrin Based Catalysts. <i>ACS Macro Letters</i> , 2018 , 7, 26-30	6.6	23	
49	Toughening PMMA with fillers containing polymer brushes synthesized via atom transfer radical polymerization (ATRP). <i>Polymer</i> , 2017 , 117, 48-53	3.9	22	

495	Localized Surface Plasmon Resonance Meets Controlled/Living Radical Polymerization: An Adaptable Strategy for Broadband Light-Regulated Macromolecular Synthesis. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 12096-12101	16.4	22
494	Reductive Termination of Cyanoisopropyl Radicals by Copper(I) Complexes and Proton Donors: Organometallic Intermediates or Coupled Proton-Electron Transfer?. <i>Inorganic Chemistry</i> , 2019 , 58, 644	.5 ⁵ 645	7 ²²
493	Surface Engineering of Liquid Metal Nanodroplets by Attachable Diblock Copolymers. <i>ACS Nano</i> , 2020 , 14, 9884-9893	16.7	22
492	Transformation of Ilvingstarbocationic and other polymerizations to controlled/Ilvingstadical polymerization. <i>Macromolecular Symposia</i> , 1998 , 132, 85-101	0.8	22
491	The importance of exchange reactions in controlled/living radical polymerization in the presence of alkoxyamines and transition metals. <i>Macromolecular Symposia</i> , 1996 , 111, 47-61	0.8	22
490	Preparation of Well-Defined Poly(styrene-co-acrylonitrile)/ZnO Hybrid Nanoparticles by an Efficient Ligand Exchange Strategy. <i>Langmuir</i> , 2016 , 32, 13207-13213	4	22
489	The Borderline between Simultaneous Reverse and Normal Initiation and Initiators for Continuous Activator Regeneration ATRP. <i>Macromolecules</i> , 2016 , 49, 7793-7803	5.5	22
488	Mesoporous nitrogen-doped carbons from PAN-based molecular bottlebrushes. <i>Polymer</i> , 2017 , 126, 352-359	3.9	21
487	Synthesis and characterization of Ag NPs templated via polymerization induced self-assembly. <i>Polymer</i> , 2017 , 129, 144-150	3.9	21
486	Unraveling the Correlations between Conformation, Lubrication, and Chemical Stability of Bottlebrush Polymers at Interfaces. <i>Biomacromolecules</i> , 2017 , 18, 4002-4010	6.9	21
485	Investigating Temporal Control in Photoinduced Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2020 , 53, 5280-5288	5.5	21
484	Synergy between Electrochemical ATRP and RAFT for Polymerization at Low Copper Loading. <i>Macromolecular Rapid Communications</i> , 2018 , 39, e1800221	4.8	21
483	Solid-Phase Incorporation of an ATRP Initiator for Polymer D NA Biohybrids. <i>Angewandte Chemie</i> , 2014 , 126, 2777-2782	3.6	21
482	High-pressure atom transfer radical polymerization of n-butyl acrylate. <i>Macromolecular Rapid Communications</i> , 2013 , 34, 604-9	4.8	21
481	CHAPTER 8:Atom Transfer Radical Polymerization (ATRP). RSC Polymer Chemistry Series, 2013, 287-357	1.3	21
480	Star polymer synthesis and gelation in ATRP copolymerization: Monte Carlo simulations. <i>Polymer</i> , 2013 , 54, 1979-1986	3.9	21
479	Photocontrol over the disorder-to-order transition in thin films of polystyrene-block-poly(methyl methacrylate) block copolymers containing photodimerizable anthracene functionality. <i>Journal of the American Chemical Society</i> , 2011 , 133, 17217-24	16.4	21
47 ⁸	Gelation in ATRP Using Structurally Different Branching Reagents: Comparison of Inimer, Divinyl and Trivinyl Cross-Linkers. <i>Macromolecules</i> , 2009 , 42, 8039-8043	5.5	21

(2013-2007)

477	A Novel Route for the Preparation of Discrete Nanostructured Carbons from Block Copolymers with Polystyrene Segments. <i>Macromolecular Chemistry and Physics</i> , 2007 , 208, 2312-2320	2.6	21	
476	Vapor-induced spreading dynamics of adsorbed linear and brush-like macromolecules as observed by environmental SFM: Polymer chain statistics and scaling exponents. <i>Journal of Polymer Science, Part B: Polymer Physics,</i> 2007 , 45, 2368-2379	2.6	21	
475	Kinetics and Molar Mass Evolution during Atom Transfer Radical Polymerization of n-Butyl Acrylate Using Automatic Continuous Online Monitoring. <i>Macromolecules</i> , 2005 , 38, 9556-9563	5.5	21	
474	The Kinetics of Free-Radical Polymerization187-261		21	
473	General Concepts and History of Living Radical Polymerization361-406		21	
472	Stopped-Flow Investigation of Trifluoromethanesulfonic Acid Initiated Cationic Oligomerization of trans-1,3-Diphenyl-1-butene. 1. Analysis of Products and UVII isible Spectroscopic Study. <i>Macromolecules</i> , 1996 , 29, 5777-5783	5.5	21	
471	Organoaluminium amides as initiators for polymerization of acrylic monomers, 2 New initiating systems for well-controlled polymerization of methyl methacrylate. <i>Macromolecular Rapid Communications</i> , 1994 , 15, 37-44	4.8	21	
470	Bimodal Molecular Weight Distribution in Carbocationic Systems with Free Ions and Ion Pairs of Equal Reactivities but Different Lifetimes. <i>Macromolecules</i> , 1994 , 27, 7565-7574	5.5	21	
469	Two-compartment kinetic Monte Carlo modelling of electrochemically mediated ATRP. <i>Reaction Chemistry and Engineering</i> , 2018 , 3, 866-874	4.9	21	
468	Temporal Control in Atom Transfer Radical Polymerization Using Zerovalent Metals. <i>Macromolecules</i> , 2018 , 51, 4250-4258	5.5	21	
467	Ab Initio Emulsion Atom-Transfer Radical Polymerization. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 8270-8274	16.4	21	
466	Structural Engineering of Graphitic Carbon Nitrides for Enhanced Metal-Free PET-RAFT Polymerizations in Heterogeneous and Homogeneous Systems. <i>ACS Omega</i> , 2019 , 4, 16247-16255	3.9	20	
465	Syntheses of Monosubstituted Rhodocenium Derivatives, Monomers, and Polymers. <i>Macromolecules</i> , 2015 , 48, 1644-1650	5.5	20	
464	Transforming protein-polymer conjugate purification by tuning protein solubility. <i>Nature Communications</i> , 2019 , 10, 4718	17.4	20	
463	Photoactivated Structurally Tailored and Engineered Macromolecular (STEM) gels as precursors for materials with spatially differentiated mechanical properties. <i>Polymer</i> , 2017 , 126, 224-230	3.9	20	
462	Role of Polymer Graft Architecture on the Acoustic Eigenmode Formation in Densely Polymer-Tethered Colloidal Particles. <i>ACS Macro Letters</i> , 2014 , 3, 1059-1063	6.6	20	
461	Phototunable Supersoft Elastomers using Coumarin Functionalized Molecular Bottlebrushes for Cell-Surface Interactions Study. <i>Macromolecules</i> , 2014 , 47, 7852-7857	5.5	20	
460	Thermal Properties of Particle Brush Materials: Effect of Polymer Graft Architecture on the Glass Transition Temperature in Polymer-Grafted Colloidal Systems. <i>Macromolecular Symposia</i> , 2013 , 331-332, 9-16	0.8	20	

459	Factors Determining the Performance of Copper-Based Atom Transfer Radical Polymerization Catalysts and Criteria for Rational Catalyst Selection. <i>ACS Symposium Series</i> , 2006 , 56-70	0.4	20
458	Effect of (Pseudo)halide Initiators and Copper Complexes with Non-halogen Anions on the Atom Transfer Radical Polymerization. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 2004 , 41, 449-465	2.2	20
457	Engineering exosome polymer hybrids by atom transfer radical polymerization. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	20
456	Understanding the Relationship between Catalytic Activity and Termination in photoATRP: Synthesis of Linear and Bottlebrush Polyacrylates. <i>Macromolecules</i> , 2020 , 53, 59-67	5.5	20
455	Recent developments in natural and synthetic polymeric drug delivery systems used for the treatment of osteoarthritis. <i>Acta Biomaterialia</i> , 2021 , 123, 31-50	10.8	20
454	Synergy between Zwitterionic Polymers and Hyaluronic Acid Enhances Antifouling Performance. <i>Langmuir</i> , 2019 , 35, 15535-15542	4	19
453	ZnO/carbon hybrids derived from polymer nanocomposite precursor materials for pseudocapacitor electrodes with high cycling stability. <i>Polymer</i> , 2018 , 137, 370-377	3.9	19
452	Monte Carlo Simulations of Atom Transfer Radical (Homo)polymerization of Divinyl Monomers: Applicability of FloryBtockmayer Theory. <i>Macromolecules</i> , 2018 , 51, 6673-6681	5.5	19
451	Copolymer Composition Deviations from Mayollewis Conventional Free Radical Behavior in Nitroxide Mediated Copolymerization. <i>Macromolecular Theory and Simulations</i> , 2014 , 23, 245-265	1.5	19
450	Electrostatically controlled swelling and adsorption of polyelectrolyte brush-grafted nanoparticles to the solid/liquid interface. <i>Langmuir</i> , 2014 , 30, 4056-65	4	19
449	Reversible-Deactivation Radical Polymerization of Methyl Methacrylate and Styrene Mediated by Alkyl Dithiocarbamates and Copper Acetylacetonates. <i>Macromolecules</i> , 2013 , 46, 5512-5519	5.5	19
448	Smart heparin-based bioconjugates synthesized by a combination of ATRP and click chemistry. <i>Polymer Chemistry</i> , 2013 , 4, 2800	4.9	19
447	Multifunctional Hydrogels with Reversible 3D Ordered Macroporous Structures. <i>Advanced Science</i> , 2015 , 2, 1500069	13.6	19
446	Pressure Dependence of Iron-Mediated Methyl Methacrylate ATRP in Different Solvent Environments. <i>Macromolecular Chemistry and Physics</i> , 2014 , 215, 44-53	2.6	19
445	CuAAC: The Quintessential Click Reaction 2012 , 247-277		19
444	AGET ATRP of oligo(ethylene glycol) monomethyl ether methacrylate in inverse microemulsion. <i>Polymer Chemistry</i> , 2012 , 3, 1813-1819	4.9	19
443	Atom Transfer Radical Copolymerization of Monomer and Cross-Linker under Highly Dilute Conditions. <i>Macromolecules</i> , 2011 , 44, 3270-3275	5.5	19
442	Conformation of Arborescent Polymers in Solution by Small-Angle Neutron Scattering: Segment Density and CoreBhell Morphology. <i>Macromolecules</i> , 2008 , 41, 175-183	5.5	19

(2011-2008)

441	Tripodal imidazole containing ligands for copper catalyzed ATRP. <i>Journal of Polymer Science Part A</i> , 2008 , 46, 2015-2024	2.5	19
440	ARGET ATRP Synthesis of Thermally Responsive Polymers with Oligo(ethylene oxide) Units. <i>Polymer Journal</i> , 2008 , 40, 496-497	2.7	19
439	Characterization of Edihydroxypolystyrene by gradient polymer elution chromatography and two-dimensional liquid chromatography. <i>Designed Monomers and Polymers</i> , 2005 , 8, 533-546	3.1	19
438	Block Copolymers from Organomodified Siloxane-Containing Macroinitiators by Atom Transfer Radical Polymerization. <i>Macromolecular Chemistry and Physics</i> , 2003 , 204, 1169-1177	2.6	19
437	Synthesis of poly(phenyltrifluoroethoxyphosphazene) by direct reaction of trimethylsilyl azide with bis(2,2,2-trifluoroethyl) phenylphosphonite. <i>Journal of Polymer Science Part A</i> , 1992 , 30, 813-818	2.5	19
436	Aqueous RAFT Polymerization of Acrylonitrile. <i>Macromolecules</i> , 2016 , 49, 5877-5883	5.5	19
435	Linear and Star Poly(ionic liquid) Assemblies: Surface Monolayers and Multilayers. <i>Langmuir</i> , 2017 , 33, 3187-3199	4	18
434	Individual Nanoporous Carbon Spheres with High Nitrogen Content from Polyacrylonitrile Nanoparticles with Sacrificial Protective Layers. <i>ACS Applied Materials & Discounty of the Protective Content of the Protection Content of the Protective Content of</i>	37812	18
433	Well-Defined N/S Co-Doped Nanocarbons from Sulfurized PAN-b-PBA Block Copolymers: Structure and Supercapacitor Performance. <i>ACS Applied Nano Materials</i> , 2019 , 2, 2467-2474	5.6	18
432	STEM Gels by Controlled Radical Polymerization. <i>Trends in Chemistry</i> , 2020 , 2, 341-353	14.8	18
431	Grafting polymer from oxygen-vacancy-rich nanoparticles to enable protective layers for stable lithium metal anode. <i>Nano Energy</i> , 2020 , 76, 105046	17.1	18
430	Organosilica with Grafted Polyacrylonitrile Brushes for High Surface Area Nitrogen-Enriched Nanoporous Carbons. <i>Chemistry of Materials</i> , 2018 , 30, 2208-2212	9.6	18
429	Multifunctional photo-crosslinked polymeric ionic hydrogel films. <i>Polymer Chemistry</i> , 2014 , 5, 2824-2835	54.9	18
428	Templated Synthesis of Nitrogen-Enriched Nanoporous Carbon Materials from Porogenic Organic Precursors Prepared by ATRP. <i>Angewandte Chemie</i> , 2014 , 126, 4038-4041	3.6	18
427	Mechanism of Supplemental Activator and Reducing Agent Atom Transfer Radical Polymerization Mediated by Inorganic Sulfites: Experimental Measurements and Kinetic Simulations. <i>Polymer Chemistry</i> , 2017 , 8, 6506-6519	4.9	18
426	Synthesis of Molecular Bottlebrushes by Atom Transfer Radical Polymerization with ppm Amounts of Cu Catalyst. <i>ACS Macro Letters</i> , 2012 , 1, 991-994	6.6	18
425	Linear Viscoelasticity of Spherical SiO2 Nanoparticle-Tethered Poly(butyl acrylate) Hybrids. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 11985-11990	3.9	18
424	Using mesoscopic models to design strong and tough biomimetic polymer networks. <i>Langmuir</i> , 2011 , 27, 13796-805	4	18

423	Methacryloyl and/or Hydroxyl End-Functional Star Polymers Synthesized by ATRP Using the Arm-First Method. <i>Macromolecular Chemistry and Physics</i> , 2009 , 210, 421-430	2.6	18
422	Modular Approaches to Star and Miktoarm Star Polymers by ATRP of Cross-Linkers. <i>Macromolecular Symposia</i> , 2010 , 291-292, 12-16	0.8	18
421	Viscoelastic and dielectric studies on comb- and brush-shaped poly(n-butyl acrylate). <i>Polymer</i> , 2008 , 49, 3533-3540	3.9	18
420	Biodegradable Nano- and Microparticles with Controlled Surface Properties. <i>Macromolecular Symposia</i> , 2005 , 226, 239-252	0.8	18
419	Well-Defined Carbon Nanoparticles Prepared from Water-Soluble Shell Cross-linked Micelles that Contain Polyacrylonitrile Cores. <i>Angewandte Chemie</i> , 2004 , 116, 2843-2847	3.6	18
418	Trimethylsilyl triflate as an initiator for cationic polymerization: Improved initiation through the use of promoters. <i>Journal of Polymer Science Part A</i> , 1995 , 33, 285-298	2.5	18
417	Unimolecular and bimolecular exchange reactions in controlled radical polymerization. <i>Macromolecular Symposia</i> , 1995 , 95, 217-231	0.8	18
416	Conjugated Cross-linked Phenothiazines as Green or Red Light Heterogeneous Photocatalysts for Copper-Catalyzed Atom Transfer Radical Polymerization. <i>Journal of the American Chemical Society</i> , 2021 , 143, 9630-9638	16.4	18
415	Elastomeric Conducting Polyaniline Formed Through Topological Control of Molecular Templates. <i>ACS Nano</i> , 2016 , 10, 5991-8	16.7	18
4 ¹ 4	Molecular Sieving on the Surface of a Nano-Armored Protein. <i>Biomacromolecules</i> , 2019 , 20, 1235-1245	6.9	18
413	Photocatalytic Active Mesoporous Carbon/ZnO Hybrid Materials from Block Copolymer Tethered ZnO Nanocrystals. <i>Langmuir</i> , 2017 , 33, 12276-12284	4	17
412	Redox-switchable atom transfer radical polymerization. <i>Chemical Communications</i> , 2019 , 55, 612-615	5.8	17
411	Cationic Nanogel-mediated Runx2 and Osterix siRNA Delivery Decreases Mineralization in MC3T3 Cells. <i>Clinical Orthopaedics and Related Research</i> , 2015 , 473, 2139-49	2.2	17
410	Speciation Analysis in Iron-Mediated ATRP Studied via FT-Near-IR and MBsbauer Spectroscopy. <i>Macromolecules</i> , 2015 , 48, 1981-1990	5.5	17
409	Model Studies of Alkyl Halide Activation and Comproportionation Relevant to RDRP in the Presence of Cu0. <i>Macromolecules</i> , 2015 , 48, 8428-8436	5.5	17
408	Influence of Spacers in Tetherable Initiators on Surface-Initiated Atom Transfer Radical Polymerization (SI-ATRP). <i>Macromolecules</i> , 2016 , 49, 9283-9286	5.5	17
407	Benefits of Catalyzed Radical Termination: High-Yield Synthesis of Polyacrylate Molecular Bottlebrushes without Gelation. <i>Macromolecules</i> , 2018 , 51, 6218-6225	5.5	17
406	Cationic Hyperbranched Polymers with Biocompatible Shells for siRNA Delivery. <i>Biomacromolecules</i> , 2018 , 19, 3754-3765	6.9	17

(2006-2014)

405	Synthesis of star polymers by Bore-firstIbneFot method via ATRP: Monte Carlo simulations. <i>Polymer</i> , 2014 , 55, 2552-2561	3.9	17
404	Self-assembly of pODMA-b-ptBA-b-pODMA triblock copolymers in bulk and on surfaces. A quantitative SAXS/AFM comparison. <i>Langmuir</i> , 2005 , 21, 9721-7	4	17
403	Structure-reactivity correlation in atom transfer radical polymerization. <i>Macromolecular Symposia</i> , 2002 , 182, 209-224	0.8	17
402	Cationic nanostructured polymers for siRNA delivery in murine calvarial pre-osteoblasts. <i>Journal of Biomedical Nanotechnology</i> , 2014 , 10, 1130-6	4	17
401	Bioinspired polymers for lubrication and wear resistance. <i>Progress in Polymer Science</i> , 2020 , 110, 10129	829.6	17
400	Superlubricity of Zwitterionic Bottlebrush Polymers in the Presence of Multivalent Ions. <i>Journal of the American Chemical Society</i> , 2020 , 142, 14843-14847	16.4	17
399	Iron Catalysts in Atom Transfer Radical Polymerization. <i>Molecules</i> , 2020 , 25,	4.8	17
398	Macromolecular Engineering of the Outer Coordination Sphere of [2Fe-2S] Metallopolymers to Enhance Catalytic Activity for H2 Production. <i>ACS Macro Letters</i> , 2018 , 7, 1383-1387	6.6	17
397	p-Substituted Tris(2-pyridylmethyl)amines as Ligands for Highly Active ATRP Catalysts: Facile Synthesis and Characterization. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 14910-14920	16.4	16
396	Physical Networks from Multifunctional Telechelic Star Polymers: A Rheological Study by Experiments and Simulations. <i>Macromolecules</i> , 2018 , 51, 2872-2886	5.5	16
395	Iron Oxide Nanoparticles with Grafted Polymeric Analogue of Dimethyl Sulfoxide as Potential Magnetic Resonance Imaging Contrast Agents. <i>ACS Applied Materials & Dimethyl Sulfoxide as Potential Magnetic Resonance Imaging Contrast Agents.</i>	·2⁄1§08	16
394	Simplified Electrochemically Mediated Atom Transfer Radical Polymerization using a Sacrificial Anode. <i>Angewandte Chemie</i> , 2015 , 127, 2418-2422	3.6	16
393	Poly(ethylene oxide) star polymer adsorption at the silica/aqueous interface and displacement by linear poly(ethylene oxide). <i>Langmuir</i> , 2013 , 29, 3999-4007	4	16
392	Phase Behavior and Photoresponse of Azobenzene-Containing Polystyrene-block-poly(n-butyl methacrylate) Block Copolymers. <i>Macromolecules</i> , 2011 , 44, 1125-1131	5.5	16
391	Effect of crosslinker multiplicity on the gel point in ATRP. <i>Journal of Polymer Science Part A</i> , 2010 , 48, 2016-2023	2.5	16
390	Synthesis and characterization of polyphosphazene homopolymers and copolymers. <i>Macromolecular Chemistry and Physics</i> , 1997 , 198, 665-671	2.6	16
389	Grafting Chromatographic Stationary Phase Substrates by Atom Transfer Radical Polymerization. <i>ACS Symposium Series</i> , 2006 , 252-268	0.4	16
388	Functional Degradable Polymeric Materials Prepared by Atom Transfer Radical Polymerization. <i>ACS Symposium Series</i> , 2006 , 184-200	0.4	16

387	Statistical, Gradient, Block and Graft Copolymers by Controlled/Living Radical Polymerizations. <i>Advances in Polymer Science</i> , 2002 ,	1.3	16
386	Kinetics and mechanism of the cationic polymerization of tetrahydrofuran in solution. I. THFICI4 system. <i>Journal of Polymer Science: Polymer Chemistry Edition</i> , 1975 , 13, 763-784		16
385	Synthesis and Applications of ZnO/Polymer Nanohybrids 2021 , 3, 599-621		16
384	Enhancing thermal transport in nanocomposites by polymer-graft modification of particle fillers. <i>Polymer</i> , 2016 , 93, 72-77	3.9	16
383	Charge-Preserving Atom Transfer Radical Polymerization Initiator Rescues the Lost Function of Negatively Charged Protein-Polymer Conjugates. <i>Biomacromolecules</i> , 2019 , 20, 2392-2405	6.9	15
382	Influence of intramolecular crosslinking on gelation in living copolymerization of monomer and divinyl cross-linker. Monte Carlo simulation studies. <i>Polymer</i> , 2015 , 79, 171-178	3.9	15
381	Molecular Parameters Governing the Elastic Properties of Brush Particle Films. <i>Macromolecules</i> , 2020 , 53, 1502-1513	5.5	15
380	Tailoring structure formation and mechanical properties of particle brush solids via homopolymer addition. <i>Faraday Discussions</i> , 2016 , 186, 17-30	3.6	15
379	Effect of Thermal Self-Initiation on the Synthesis, Composition, and Properties of Particle Brush Materials. <i>Macromolecules</i> , 2014 , 47, 5501-5508	5.5	15
378	Raman spectroscopy study on influence of network architecture on hydration of poly(2-(2-methoxyethoxy)ethyl methacrylate) hydrogels. <i>Journal of Raman Spectroscopy</i> , 2017 , 48, 465-	473	15
377	Efficient Polymerization Inhibition Systems for Acrylic Acid Distillation: New Liquid-Phase Inhibitors. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 3910-3915	3.9	15
376	Atom Transfer Radical Dispersion Polymerization of Styrene in the Presence of PEO-based Macromonomer. <i>Macromolecular Chemistry and Physics</i> , 2011 , 212, 1582-1589	2.6	15
375	ATRP of Styrene and Methyl Methacrylate with Less Efficient Catalysts and with Alkyl Pseudohalides as Initiators/Chain Transfer Agents. <i>Macromolecular Chemistry and Physics</i> , 2010 , 211, 493-500	2.6	15
374	Morphology and thermomechanical properties of well-defined polyethylene-graft-poly(n-butyl acrylate) prepared by atom transfer radical polymerization. <i>Colloid and Polymer Science</i> , 2004 , 282, 844	-83 3	15
373	Polysilanes with various architectures. <i>Macromolecular Symposia</i> , 1994 , 77, 79-92	0.8	15
372	Synthesis of polyphosphazenes from phosphoranimines and phosphine azides. <i>Polymer</i> , 1994 , 35, 5005	-5 ₅ 05] 1	15
371	Electrochemically mediated atom transfer radical polymerization with dithiocarbamates as alkyl pseudohalides. <i>Journal of Polymer Science Part A</i> , 2019 , 57, 376-381	2.5	15
370	Expanding the ATRP Toolbox: Methacrylate Polymerization with an Elemental Silver Reducing Agent. <i>Macromolecules</i> , 2015 , 48, 6457-6464	5.5	14

369	Atom Transfer Radical Polymerization of Acrylic and Methacrylic Acids: Preparation of Acidic Polymers with Various Architectures. <i>ACS Macro Letters</i> , 2020 , 9, 693-699	6.6	14
368	Cobalt(III) and copper(II) hydrides at the crossroad of catalysed chain transfer and catalysed radical termination: a DFT study. <i>Polymer Chemistry</i> , 2016 , 7, 1079-1087	4.9	14
367	Localized Surface Plasmon Resonance Meets Controlled/Living Radical Polymerization: An Adaptable Strategy for Broadband Light-Regulated Macromolecular Synthesis. <i>Angewandte Chemie</i> , 2019 , 131, 12224-12229	3.6	14
366	A facile route to well-dispersed Ru nanoparticles embedded in self-templated mesoporous carbons for high-performance supercapacitors. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 20208-20222	13	14
365	Shifting Electronic Structure by Inherent Tension in Molecular Bottlebrushes with Polythiophene Backbones <i>ACS Macro Letters</i> , 2014 , 3, 738-742	6.6	14
364	Controlled Radical Polymerization: State-of-the-Art in 2014. ACS Symposium Series, 2015, 1-17	0.4	14
363	Controlled Synthesis and Properties of Cyclic Polymers 2011 , 875-908		14
362	Controlled Radical Polymerization: State of the Art in 2008. ACS Symposium Series, 2009, 3-13	0.4	14
361	Comparison of Controlled Living Carbocationic and Radical Polymerizations. <i>ACS Symposium Series</i> , 1997 , 12-24	0.4	14
3 60	Monitoring surface thermal transitions of ABA triblock copolymers with crystalline segments using phase contrast tapping mode atomic force microscopy. <i>Langmuir</i> , 2005 , 21, 1143-8	4	14
359	Synthesis of Magnesium Dihydroxide Hybrid Nanocomposites via ATRP. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2006 , 16, 129-137	3.2	14
358	A Commentary on Role of Initiator-Transfer Agent-Terminator (Iniferter) in Radical Polymerizations: Polymer Design by Organic Disulfides as Iniferters by T. Otsu, M. Yoshida (Macromol. Rapid Commun. 1982, 3, 1271/32). <i>Macromolecular Rapid Communications</i> , 2005 , 26, 135-142	4.8 !	14
357	Control of Stereochemistry of Polymers in Radical Polymerization691-773		14
356	Electrospray ionization mass spectrometric study of Cu(I) and Cu(II) bipyridine complexes employed in atom transfer radical polymerization. <i>Journal of Mass Spectrometry</i> , 2000 , 35, 1295-9	2.2	14
355	Copolymerization of n-Butyl Acrylate with Methyl Methacrylate and PMMA Macromonomers by Conventional and Atom Transfer Radical Copolymerization. <i>ACS Symposium Series</i> , 2000 , 361-371	0.4	14
354	Iodine-mediated photoATRP in aqueous media with oxygen tolerance. <i>Polymer Chemistry</i> , 2020 , 11, 843	3- & .498	14
353	Radicals and Dormant Species in Biology and Polymer Chemistry. ChemPlusChem, 2016, 81, 11-29	2.8	14
352	Versatile PISA templates for tailored synthesis of nanoparticles. <i>European Polymer Journal</i> , 2019 , 110, 49-55	5.2	14

351	Modeling the formation of layered, amphiphilic gels. <i>Polymer</i> , 2017 , 111, 214-221	3.9	13
350	Growth of polymer brushes by grafting from via ATRP Monte Carlo simulations. <i>Polymer</i> , 2017 , 130, 267-279	3.9	13
349	Polymer brush relaxation during and after polymerization [Monte Carlo simulation study. <i>Polymer</i> , 2019 , 173, 190-196	3.9	13
348	ABA triblock copolymers from two mechanistic techniques: Polycondensation and atom transfer radical polymerization. <i>Journal of Polymer Science Part A</i> , 2015 , 53, 228-238	2.5	13
347	Synthesis of high molecular weight poly(n-butyl acrylate) macromolecules via seATRP: From polymer stars to molecular bottlebrushes. <i>European Polymer Journal</i> , 2020 , 126, 109566	5.2	13
346	Synthesis of Riboflavin-Based Macromolecules through Low ppm ATRP in Aqueous Media. <i>Macromolecular Chemistry and Physics</i> , 2020 , 221, 1900496	2.6	13
345	Critical evaluation of the microwave effect on radical (co)polymerizations. <i>Macromolecular Rapid Communications</i> , 2012 , 33, 80-6	4.8	13
344	Atom transfer radical polymerization of dimethyl(methacryloyloxymethyl) phosphonate. <i>European Polymer Journal</i> , 2014 , 56, 11-16	5.2	13
343	Three-Dimensionally Ordered Macroporous Polymeric Materials by Colloidal Crystal Templating for Reversible CO2 Capture. <i>Advanced Functional Materials</i> , 2013 , 23, n/a-n/a	15.6	13
342	Effect of residual copper on stability of molecular brushes prepared by atom transfer radical polymerization. <i>European Polymer Journal</i> , 2011 , 47, 1198-1202	5.2	13
34 ²		5.2	13
	polymerization. European Polymer Journal, 2011 , 47, 1198-1202	5.2 5.5	
341	polymerization. <i>European Polymer Journal</i> , 2011 , 47, 1198-1202 Living Ring-Opening Metathesis Polymerization297-342 Synthesis of Poly(vinylacetylene) Block Copolymers by Atom Transfer Radical Polymerization.		13
341	Delymerization. European Polymer Journal, 2011, 47, 1198-1202 Living Ring-Opening Metathesis Polymerization297-342 Synthesis of Poly(vinylacetylene) Block Copolymers by Atom Transfer Radical Polymerization. Macromolecules, 2008, 41, 9522-9524 Nanoscale structure of SANBEOBAN triblock copolymers synthesized by atom transfer radical	5.5	13
341 340 339	Living Ring-Opening Metathesis Polymerization297-342 Synthesis of Poly(vinylacetylene) Block Copolymers by Atom Transfer Radical Polymerization. Macromolecules, 2008, 41, 9522-9524 Nanoscale structure of SANPEOBAN triblock copolymers synthesized by atom transfer radical polymerization. Polymer, 2006, 47, 6673-6683 Characterization of Cu(II) Bipyridine Complexes in Halogen Atom Transfer Reactions by Electron	5.5	13 13
341 340 339 338	Living Ring-Opening Metathesis Polymerization297-342 Synthesis of Poly(vinylacetylene) Block Copolymers by Atom Transfer Radical Polymerization. Macromolecules, 2008, 41, 9522-9524 Nanoscale structure of SANBEOBAN triblock copolymers synthesized by atom transfer radical polymerization. Polymer, 2006, 47, 6673-6683 Characterization of Cu(II) Bipyridine Complexes in Halogen Atom Transfer Reactions by Electron Spin Resonance. Macromolecules, 2003, 36, 8291-8296	5.5	13 13 13
341 340 339 338 337	Living Ring-Opening Metathesis Polymerization297-342 Synthesis of Poly(vinylacetylene) Block Copolymers by Atom Transfer Radical Polymerization. Macromolecules, 2008, 41, 9522-9524 Nanoscale structure of SANPEOBAN triblock copolymers synthesized by atom transfer radical polymerization. Polymer, 2006, 47, 6673-6683 Characterization of Cu(II) Bipyridine Complexes in Halogen Atom Transfer Reactions by Electron Spin Resonance. Macromolecules, 2003, 36, 8291-8296 Kinetics of Living Radical Polymerization407-462 The Copper Catalyst in Atom Transfer Radical Polymerizations: Structural Observations. ACS	5.5 3.9 5.5	13 13 13 13

(2002-2016)

333	Miktoarm star copolymers as interfacial connectors for stackable amphiphilic gels. <i>Polymer</i> , 2016 , 101, 406-414	3.9	13
332	Biomimetic Bottlebrush Polymer Coatings for Fabrication of Ultralow Fouling Surfaces. Angewandte Chemie, 2019 , 131, 1322-1328	3.6	13
331	An isocyanide ligand for the rapid quenching and efficient removal of copper residues after Cu/TEMPO-catalyzed aerobic alcohol oxidation and atom transfer radical polymerization. <i>Chemical Science</i> , 2020 , 11, 4251-4262	9.4	13
330	Viscoelastic properties and ion dynamics in star-shaped polymerized ionic liquids. <i>European Polymer Journal</i> , 2018 , 109, 326-335	5.2	13
329	ATRP of N-Hydroxyethyl Acrylamide in the Presence of Lewis Acids: Control of Tacticity, Molecular Weight, and Architecture. <i>Macromolecular Rapid Communications</i> , 2019 , 40, e1800877	4.8	12
328	Intelligent Machine Learning: Tailor-Making Macromolecules. <i>Polymers</i> , 2019 , 11,	4.5	12
327	Degradable Polymer Stars Based on Tannic Acid Cores by ATRP. <i>Polymers</i> , 2019 , 11,	4.5	12
326	Non-Tacky Fluorinated and Elastomeric STEM Networks. <i>Macromolecular Rapid Communications</i> , 2019 , 40, e1800876	4.8	12
325	Protection of opening lids: very high catalytic activity of lipase immobilized on core-shell nanoparticles. <i>Macromolecules</i> , 2018 , 51, 289-296	5.5	12
324	Modification of Silica Nanoparticles with Miktoarm Polymer Brushes via ATRP. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2016 , 26, 1292-1300	3.2	12
323	Impact of Catalyzed Radical Termination (CRT) and Reductive Radical Termination (RRT) in Metal-Mediated Radical Polymerization Processes. <i>European Journal of Inorganic Chemistry</i> , 2019 , 2019, 4489-4499	2.3	12
322	Nanoanesthesia: a novel, intravenous approach to ankle block in the rat by magnet-directed concentration of ropivacaine-associated nanoparticles. <i>Anesthesia and Analgesia</i> , 2014 , 118, 1355-62	3.9	12
321	Nanogel-Mediated RNAi Against Runx2 and Osx Inhibits Osteogenic Differentiation in Constitutively Active BMPR1A Osteoblasts. <i>ACS Biomaterials Science and Engineering</i> , 2015 , 1, 1139-115	6 5·5	12
320	Effect of block molecular weight distribution on the structure formation in block copolymer/homopolymer blends. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2012 , 50, 106-116	2.6	12
319	Spontaneous core-sheath formation in electrospun nanofibers. <i>Polymer</i> , 2011 , 52, 2869-2876	3.9	12
318	Click Functionalization of Well-Defined Copolymers Prepared by Atom Transfer Radical Polymerization. <i>ACS Symposium Series</i> , 2006 , 140-152	0.4	12
317	OrganicIhorganic Hybrid Materials from Polysiloxanes and Polysilsesquioxanes Using Controlled/Living Radical Polymerization. <i>ACS Symposium Series</i> , 2003 , 273-284	0.4	12
316	Mechanistic features and radical intermediates in atom transfer radical polymerization. Macromolecular Symposia, 2002, 183, 71-82	0.8	12

315	Effect of initiators, lewis acids, deactivators, additives and medium on controlled/living carbocationic systems. <i>Macromolecular Symposia</i> , 1996 , 107, 53-63	0.8	12
314	Anionic ring-opening polymerization of cyclotetrasilanes. <i>Makromolekulare Chemie Macromolecular Symposia</i> , 1991 , 42-43, 269-280		12
313	New synthetic routes towards polyphosphazenes. <i>Makromolekulare Chemie Macromolecular Symposia</i> , 1992 , 54-55, 13-30		12
312	Theoretical basis and kinetic sense of covalent propagation in cationic polymerization. <i>Journal of Polymer Science Part A</i> , 1987 , 25, 765-773	2.5	12
311	Depolymerization of P(PDMS11MA) Bottlebrushes via Atom Transfer Radical Polymerization with Activator Regeneration. <i>Macromolecules</i> , 2021 , 54, 5526-5538	5.5	12
310	Tailoring Site Specificity of Bioconjugation Using Step-Wise Atom-Transfer Radical Polymerization on Proteins. <i>Biomacromolecules</i> , 2018 , 19, 4044-4051	6.9	12
309	Pushing the Limit: Synthesis of SiO2-g-PMMA/PS Particle Brushes via ATRP with Very Low Concentration of Functionalized SiO2Br Nanoparticles. <i>Macromolecules</i> , 2019 , 52, 8713-8723	5.5	11
308	Emulsification synergism in mixtures of polyelectrolyte brush-grafted nanoparticles and surfactants. <i>Journal of Colloid and Interface Science</i> , 2015 , 449, 152-9	9.3	11
307	Small-angle neutron scattering of arborescent polystyrene-graft-poly(2-vinylpyridine) copolymers. <i>Polymer</i> , 2003 , 44, 6579-6587	3.9	11
306	CORRELATION OF THE RATE CONSTANTS OF PROPAGATION WITH THE STRUCTURES OF MONOMERS AND ACTIVE CENTERS IN CHAIN-GROWTH POLYMERIZATION. <i>Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics</i> , 1986 , 26, 1-32		11
305	Understanding the Synthesis of Linear B ottlebrush l linear Block Copolymers: Toward Plastomers with Well-Defined Mechanical Properties. <i>Macromolecules</i> , 2020 , 53, 8324-8332	5.5	11
304	Kinetics of FeMesohemin(MPEG500)2-Mediated RDRP in Aqueous Solution. <i>Macromolecules</i> , 2016 , 49, 8088-8097	5.5	10
303	Modeling Atom-Transfer Radical Polymerization of Butyl Acrylate. <i>Macromolecular Theory and Simulations</i> , 2014 , 23, 279-287	1.5	10
302	Catalyzed Radical Termination in the Presence of Tellanyl Radicals. <i>Chemistry - A European Journal</i> , 2017 , 23, 13879-13882	4.8	10
301	Enhanced interfacial activity of multi-arm poly(ethylene oxide) star polymers relative to linear poly(ethylene oxide) at fluid interfaces. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 23854-23868	3.6	10
300	Polymer-Based Protein Engineering: Synthesis and Characterization of Armored, High Graft Density Polymer-Protein Conjugates. <i>Methods in Enzymology</i> , 2017 , 590, 347-380	1.7	10
299	Modification of the surfaces of silicon wafers with temperature-responsive cross-linkable poly[oligo(ethylene oxide) methacrylate]-based star polymers. <i>ACS Applied Materials & amp; Interfaces</i> , 2012 , 4, 5949-55	9.5	10
298	Synthesis of Photoisomerizable Block Copolymers by Atom Transfer Radical Polymerization. Macromolecular Chemistry and Physics, 2009, 210, 1484-1492	2.6	10

(2018-2009)

297	Synthesis of large-pore SBA-15 silica using poly(ethylene oxide)-poly(methyl acrylate) diblock copolymers. <i>Adsorption</i> , 2009 , 15, 156-166	2.6	10
296	Modeling the nanoscratching of self-healing materials. <i>Journal of Chemical Physics</i> , 2011 , 134, 084901	3.9	10
295	Controlled Synthesis of Polymers with Ionic or Ionizable Groups Using Atom Transfer Radical Polymerization. <i>ACS Symposium Series</i> , 2006 , 79-94	0.4	10
294	General Chemistry of Radical Polymerization117-186		10
293	Functionalized Polymers by Atom Transfer Radical Polymerization. ACS Symposium Series, 2000, 347-36	0 0.4	10
292	Branched polysilanes from tetrafunctional monomers. <i>Journal of Inorganic and Organometallic Polymers</i> , 1995 , 5, 261-279		10
291	The Conversion of Phosphoranimines to Polyphosphazenes in the Presence of Electrophiles. Journal of Macromolecular Science - Pure and Applied Chemistry, 1995 , 32, 1497-1519	2.2	10
2 90	Synthesis of polyphosphazenes bearing alkoxyethoxy and trifluoroethoxy groups. <i>Journal of Polymer Science Part A</i> , 1994 , 32, 465-473	2.5	10
289	Salt and solvent effects in [lving]carbocationic polymerization. <i>Macromolecular Symposia</i> , 1994 , 85, 65-78	0.8	10
288	Cationic polymerization of styrenes by activated covalent species. Direct 1H-NMR observation of complexes of 1-phenylethyl acetates with lewis acids. <i>Journal of Polymer Science Part A</i> , 1991 , 29, 1439-	-1 ² 446	10
287	Preparation of Nitrogen-Doped Mesoporous Carbon for the Efficient Removal of Bilirubin in Hemoperfusion <i>ACS Applied Bio Materials</i> , 2020 , 3, 1036-1043	4.1	10
286	Synthesis of Gradient Copolymer Grafted Particle Brushes by ATRP. <i>Macromolecules</i> , 2019 , 52, 9466-94	75 .5	10
285	The interaction of carbon-centered radicals with copper(I) and copper(II) complexes*. <i>Journal of Coordination Chemistry</i> , 2018 , 71, 1641-1668	1.6	10
284	Dynamic Heterogeneity in Random Copolymers of Polymethacrylates Bearing Different Polyhedral Oligomeric Silsesquioxane Moieties (POSS). <i>Macromolecules</i> , 2017 , 50, 4043-4053	5.5	9
283	Kinetics of the temperature-induced volume phase transition in poly(2-(2-methoxyethoxy)ethyl methacrylate) hydrogels of various topologies. <i>Polymer</i> , 2017 , 110, 25-35	3.9	9
282	Evolution of high-temperature molecular relaxations in poly(2-(2-methoxyethoxy)ethyl methacrylate) upon network formation. <i>Colloid and Polymer Science</i> , 2015 , 293, 1357-1367	2.4	9
281	Tunable Assembly of Block Copolymer Tethered Particle Brushes by Surface-Initiated Atom Transfer Radical Polymerization. <i>ACS Macro Letters</i> , 2020 , 9, 806-812	6.6	9
280	Friction and adhesion control between adsorbed layers of polyelectrolyte brush-grafted nanoparticles via pH-triggered bridging interactions. <i>Journal of Colloid and Interface Science</i> , 2018 , 526, 114-123	9.3	9

279	[FeFe]-Hydrogenase Mimetic Metallopolymers with Enhanced Catalytic Activity for Hydrogen Production in Water. <i>Angewandte Chemie</i> , 2018 , 130, 12074-12078	3.6	9
278	Evolution of Morphology of POEGMA-b-PBzMA Nano-Objects Formed by PISA. <i>Macromolecular Rapid Communications</i> , 2019 , 40, e1800331	4.8	9
277	Combining ATRP and FRP Gels: Soft Gluing of Polymeric Materials for the Fabrication of Stackable Gels. <i>Polymers</i> , 2017 , 9,	4.5	9
276	Polymer micelles from tadpole-shaped amphiphilic block-graft copolymers prepared by G rafting-through ATRP. <i>Polymer Science - Series A</i> , 2009 , 51, 1210-1217	1.2	9
275	Rapid screening of atom transfer radical polymerization catalysts by electrospray ionization mass spectrometry. <i>Chemical Communications</i> , 2008 , 6306-8	5.8	9
274	Polymers, Particles, and Surfaces with Hairy Coatings: Synthesis, Structure, Dynamics, and Resulting Properties. <i>ACS Symposium Series</i> , 2003 , 366-382	0.4	9
273	Electron Paramagnetic Resonance Study of Conventional and Controlled Radical Polymerizations. <i>ACS Symposium Series</i> , 2000 , 68-81	0.4	9
272	New (Co)polymers by atom transfer radical polymerization. <i>Macromolecular Symposia</i> , 1999 , 143, 257-2	68 .8	9
271	Enhancing the Performance of Rubber with Nano ZnO as Activators. <i>ACS Applied Materials & Activators</i> . <i>ACS Applied Materials & Interfaces</i> , 2020 , 12, 48007-48015	9.5	9
270	A Thermodynamic Roadmap for the Grafting-through Polymerization of PDMS11MA. <i>ACS Macro Letters</i> , 2020 , 9, 1303-1309	6.6	9
269	Star Polymer Size, Charge Content, and Hydrophobicity Affect their Leaf Uptake and Translocation in Plants. <i>Environmental Science & Environmental Sci</i>	10.3	9
268	Photoinduced atom transfer radical polymerization in ab initio emulsion. <i>Polymer</i> , 2019 , 165, 163-167	3.9	9
267	Cu-Catalyzed Atom Transfer Radical Polymerization in the Presence of Liquid Metal Micro/Nanodroplets. <i>Macromolecules</i> , 2021 , 54, 1631-1638	5.5	9
266	Biocatalytic Dxygen-Fueled[Atom Transfer Radical Polymerization. <i>Angewandte Chemie</i> , 2018 , 130, 16389-16393	3.6	9
265	Copper(II) Chloride/Tris(2-pyridylmethyl)amine-Catalyzed Depolymerization of Poly(n-butyl methacrylate). <i>Macromolecules</i> , 2022 , 55, 78-87	5.5	9
264	Activation of alkyl halides at the Cu0 surface in SARA ATRP: An assessment of reaction order and surface mechanisms. <i>Journal of Polymer Science Part A</i> , 2017 , 55, 3048-3057	2.5	8
263	Solvent-Processed Metallic Lithium Microparticles for Lithium Metal Batteries. <i>ACS Applied Energy Materials</i> , 2019 , 2, 1623-1628	6.1	8
262	Mechanism and application of surface-initiated ATRP in the presence of a Zn0 plate. <i>Polymer Chemistry</i> , 2020 , 11, 7009-7014	4.9	8

(2021-2020)

261	Self-Assembly Strategy for Double Network Elastomer Nanocomposites with Ultralow Energy Consumption and Ultrahigh Wear Resistance. <i>Advanced Functional Materials</i> , 2020 , 30, 2003429	15.6	8
2 60	Degradable cellulose-based polymer brushes with controlled grafting densities. <i>Journal of Polymer Science Part A</i> , 2019 , 57, 2426-2435	2.5	8
259	Covalent Attachment of P15 Peptide to Ti Alloy Surface Modified with Polymer to Enhance Osseointegration of Implants. <i>ACS Applied Materials & Discourse (Materials & Discours)</i> , 11, 38531-38536	9.5	8
258	Synthesis of triblock and multiblock methacrylate polymers and self-assembly of stimuli responsive triblock polymers. <i>Journal of Polymer Science Part A</i> , 2014 , 52, 2548-2555	2.5	8
257	Synthesis and characterization of gibbsite nanoplatelet brushes by surface-initiated atom transfer radical polymerization. <i>Polymer</i> , 2017 , 126, 126-132	3.9	8
256	Low glass transition temperature poly(ionic liquid) prepared from a new quaternary ammonium cationic monomer. <i>Polymers for Advanced Technologies</i> , 2015 , 26, 823-828	3.2	8
255	Thermocurable hyperbranched polystyrenes for ultrathin polymer dielectrics. <i>ACS Applied Materials & Amp; Interfaces</i> , 2010 , 2, 2475-80	9.5	8
254	UV-enhanced Ordering in Azobenzene-Containing Polystyrene-block-Poly(n-Butyl Methacrylate) Copolymer Blends. <i>Macromolecules</i> , 2011 , 44, 278-285	5.5	8
253	High-yield synthesis of uniform star polymersis controlled radical polymerization always needed?. <i>Chemistry - A European Journal</i> , 2009 , 15, 6107-11	4.8	8
252	The Atom Transfer Radical Polymerization Equilibrium: Structural and Medium Effects. <i>ACS Symposium Series</i> , 2009 , 85-96	0.4	8
251	Effect of Water and Oxygen on the Polymerization of Vinyl Acetate Initiated by Aluminum Alkyls, Bipyridyls, and Nitroxyl Radicals. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 1997 , 34, 221-224	2.2	8
250	Controlling Polymer Chain Topology and Architecture by ATRP from Flat Surfaces. <i>ACS Symposium Series</i> , 2005 , 28-42	0.4	8
249	Comments on pseudocationic polymerization after 24 years by P. H. Plesch. <i>Makromolekulare Chemie Macromolecular Symposia</i> , 1988 , 13-14, 389-392		8
248	Polymer brushes in pores by ATRP: Monte Carlo simulations. <i>Polymer</i> , 2020 , 211, 123124	3.9	8
247	RAFT polymerization within high internal phase emulsions: Porous structures, mechanical behaviors, and uptakes. <i>Polymer</i> , 2021 , 213, 123327	3.9	8
246	Structure of block copolymer grafted silica nanoparticles. <i>Polymer</i> , 2018 , 159, 138-145	3.9	8
245	Are RAFT and ATRP Universally Interchangeable Polymerization Methods in Network Formation?. <i>Macromolecules</i> , 2021 , 54, 8331-8340	5.5	8
244	Functional polymers for lithium metal batteries. <i>Progress in Polymer Science</i> , 2021 , 122, 101453	29.6	8

243	Atom Transfer Radical Polymerization and the Synthesis of Polymeric Materials 1998, 10, 901		8
242	Toward Green Atom Transfer Radical Polymerization: Current Status and Future Challenges <i>Advanced Science</i> , 2022 , e2106076	13.6	8
241	Fabrication of Porous Nanonetwork-Structured Carbons from Well-Defined Cylindrical Molecular Bottlebrushes. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 18763-18769	9.5	7
240	Iron and copper based catalysts containing anionic phenolate ligands for atom transfer radical polymerization. <i>Macromolecular Research</i> , 2017 , 25, 504-512	1.9	7
239	Computational Evaluation of the Sulfonyl Radical as a Universal Leaving Group for RAFT Polymerisation. <i>Australian Journal of Chemistry</i> , 2013 , 66, 308	1.2	7
238	Polymers with Star-Related Structures 2011 , 909-972		7
237	Rheooscillations of a Bottlebrush Polymer Solution Due to Shear-Induced Phase Transitions between a Shear Molten State and a Line Hexatic Phase. <i>Macromolecules</i> , 2007 , 40, 7680-7688	5.5	7
236	Industrial Applications and Processes333-359		7
235	Polychloroalkanes as ATRP Initiators: Fundamentals and Application to the Synthesis of Block Copolymers from the Combination of Conventional Radical Polymerization and ATRP. <i>ACS Symposium Series</i> , 2000 , 234-247	0.4	7
234	Synthesis of branched copolysilanes from trichlorosilanes. <i>Journal of Polymer Science Part A</i> , 1995 , 33, 771-778	2.5	7
233	Tuning dispersity of linear polymers and polymeric brushes grown from nanoparticles by atom transfer radical polymerization. <i>Polymer Chemistry</i> , 2021 , 12, 6071-6082	4.9	7
232	Grafting and Polymer Brushes on Solid Surfaces1137-1178		7
231	Tuning Butyrylcholinesterase Inactivation and Reactivation by Polymer-Based Protein Engineering. <i>Advanced Science</i> , 2020 , 7, 1901904	13.6	7
230	Swelling of multi-responsive spherical polyelectrolyte brushes across a wide range of grafting densities. <i>Colloid and Polymer Science</i> , 2020 , 298, 35-49	2.4	7
229	Polymer Chemistry for Improving Lithium Metal Anodes. <i>Macromolecular Chemistry and Physics</i> , 2020 , 221, 1900379	2.6	7
228	Under pressure: electrochemically-mediated atom transfer radical polymerization of vinyl chloride. <i>Polymer Chemistry</i> , 2020 , 11, 6745-6762	4.9	7
227	Amphiphilic polymer co-networks: 32 years old and growing stronger he perspective. <i>Polymer International</i> , 2021 , 70, 10-13	3.3	7
226	Star polymer T iO2 nanohybrids to effectively modify the surface of PMMA dielectric layers for solution processable OFETs. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 1269-1278	7.1	7

225	Fabrication of Porous Functional Nanonetwork-Structured Polymers with Enhanced Adsorption Performance from Well-Defined Molecular Brush Building Blocks. <i>Chemistry of Materials</i> , 2018 , 30, 862	24-8629	, 7
224	Red-Light-Induced, Copper-Catalyzed Atom Transfer Radical Polymerization <i>ACS Macro Letters</i> , 2022 , 11, 376-381	6.6	7
223	Characterization of ZnO Nanoparticles using Superconducting Tunnel Junction Cryodetection Mass Spectrometry. <i>Journal of the American Society for Mass Spectrometry</i> , 2017 , 28, 1160-1165	3.5	6
222	Catalytic Halogen Exchange in Miniemulsion ARGET ATRP: A Pathway to Well-Controlled Block Copolymers. <i>Macromolecular Rapid Communications</i> , 2020 , 41, e2000264	4.8	6
221	Controlled Radical Polymerization: State-of-the-Art in 2011. ACS Symposium Series, 2012, 1-13	0.4	6
220	Bioinspired Iron-Based Catalyst for Atom Transfer Radical Polymerization. <i>Angewandte Chemie</i> , 2013 , 125, 12370-12373	3.6	6
219	Polymer Networks 2011 , 1687-1730		6
218	Coordination Polymerization: Synthesis of New Homo- and Copolymer Architectures from Ethylene and Propylene Using Homogeneous Ziegler latta Polymerization Catalysts 2011 , 217-247		6
217	Ionic and Coordination Ring-Opening Polymerization 2011 , 103-159		6
216	Size separation of macromolecules during spreading. <i>Langmuir</i> , 2010 , 26, 15339-44	4	6
216	Size separation of macromolecules during spreading. <i>Langmuir</i> , 2010 , 26, 15339-44 Anionic Vinyl Polymerization1-56	4	6
		4	
215	Anionic Vinyl Polymerization1-56	0.4	6
215	Anionic Vinyl Polymerization1-56 Carbocationic Polymerization57-102 Advances in Nanostructured Carbons from Block Copolymers Prepared by Controlled Radical		6
215 214 213	Anionic Vinyl Polymerization1-56 Carbocationic Polymerization57-102 Advances in Nanostructured Carbons from Block Copolymers Prepared by Controlled Radical Polymerization Techniques. ACS Symposium Series, 2006, 295-310 Acrylate-Based Block Copolymers Prepared by Atom Transfer Radical Polymerization as Matrices	0.4	6 6
215 214 213 212	Anionic Vinyl Polymerization1-56 Carbocationic Polymerization57-102 Advances in Nanostructured Carbons from Block Copolymers Prepared by Controlled Radical Polymerization Techniques. <i>ACS Symposium Series</i> , 2006 , 295-310 Acrylate-Based Block Copolymers Prepared by Atom Transfer Radical Polymerization as Matrices for Drug Delivery Applications. <i>ACS Symposium Series</i> , 2006 , 234-251	0.4	6666
215 214 213 212 211	Anionic Vinyl Polymerization1-56 Carbocationic Polymerization57-102 Advances in Nanostructured Carbons from Block Copolymers Prepared by Controlled Radical Polymerization Techniques. ACS Symposium Series, 2006, 295-310 Acrylate-Based Block Copolymers Prepared by Atom Transfer Radical Polymerization as Matrices for Drug Delivery Applications. ACS Symposium Series, 2006, 234-251 Macromolecular Engineering by Controlled/Living Radical Polymerization775-844 Novel segmented copolymers by combination of controlled ionic and radical polymerizations.	0.4	6 6 6 6

207	Injectable bottlebrush hydrogels with tissue-mimetic mechanical properties <i>Science Advances</i> , 2022 , 8, eabm2469	14.3	6
206	Semiconducting Polymers and Their Optoelectronic Applications2369-2408		6
205	Lubrication and Wear Protection of Micro-Structured Hydrogels Using Bioinspired Fluids. <i>Biomacromolecules</i> , 2019 , 20, 326-335	6.9	6
204	Scanning Calorimetry1827-1880		6
203	Molecular and Supramolecular Conjugated Polymers for Electronic Applications 2225-2262		6
202	Degradable and Recyclable Polymers by Reversible Deactivation Radical Polymerization. <i>CCS Chemistry</i> ,1-36	7.2	6
201	Glycopolymer Brushes by Reversible Deactivation Radical Polymerization: Preparation, Applications, and Future Challenges. <i>Polymers</i> , 2020 , 12,	4.5	5
200	Reversible Deactivation Radical Polymerization: State-of-the-Art in 2017. <i>ACS Symposium Series</i> , 2018 , 1-39	0.4	5
199	Recent Developments in External Regulation of Reversible Addition Fragmentation Chain Transfer (RAFT) Polymerization. <i>ACS Symposium Series</i> , 2018 , 273-290	0.4	5
198	Kontrollierte Polymerisation von Multivinyl-Monomeren: Bildung einer cyclischen/verknoteten Einzelketten-Polymerarchitektur. <i>Angewandte Chemie</i> , 2017 , 129, 462-473	3.6	5
197	Polymerization under Light and Other External Stimuli 2011 , 643-672		5
196	Macromolecular Engineering of Polypeptides Using the Ring-Opening Polymerization of ⊞Amino Acid N-Carboxyanhydrides 2011 , 519-540		5
195	Carbocationic Polymerization 2011 , 57-101		5
194	Polymer Synthesis and Modification by Enzymatic Catalysis 2011 , 401-477		5
193	Investigation of metal ligand affinities of atom transfer radical polymerization catalysts with a quadrupole ion trap. <i>Dalton Transactions</i> , 2009 , 8878-84	4.3	5
192	Living Transition Metal-Catalyzed Alkene Polymerization: Polyolefin Synthesis and New Polymer Archi	tecture	s 1 , 67-239
191	Polymer Brushes by Atom Transfer Radical Polymerization 2005 , 51-68		5
190	Controlled/Living Radical Polymerization: State of the Art in 2005. ACS Symposium Series, 2006, 2-12	0.4	5

189	Heterogeneous Systems301-331		5
188	Lithium alkylnickelate and alkylpalladate bimetallic leteltomplexes as initiators for anionic polymerization of methyl methacrylate. <i>Macromolecular Chemistry and Physics</i> , 1995 , 196, 399-409	2.6	5
187	Trimethylsilyl trifluoromethanesulfonate as IhitiatorIbf the cationic polymerization of styrenes. <i>Journal of Polymer Science Part A</i> , 1990 , 28, 1771-1779	2.5	5
186	Regio- and sequence-controlled conjugated topological oligomers and polymers via boronate-tag assisted solution-phase strategy. <i>Nature Communications</i> , 2021 , 12, 5853	17.4	5
185	Distribution of Alternating Sequences in Methyl Methacrylate/n-Butyl Acrylate Copolymers Prepared by Atom Transfer Radical Polymerization. <i>Macromolecules</i> ,	5.5	5
184	Catalytic Detoxification of Organophosphorus Nerve Agents by Butyrylcholinesterase-Polymer-Oxime Bioscavengers. <i>Biomacromolecules</i> , 2020 , 21, 3867-3877	6.9	5
183	Fabrication of Advanced Hierarchical Porous Polymer Nanosheets and Their Application in LithiumBulfur Batteries. <i>Macromolecules</i> , 2021 , 54, 2992-2999	5.5	5
182	Comparative performance of ex situ artificial solid electrolyte interphases for Li metal batteries with liquid electrolytes. <i>IScience</i> , 2021 , 24, 102578	6.1	5
181	Highly efficient and tunable miktoarm stars for HIPE stabilization and polyHIPE synthesis. <i>Polymer</i> , 2021 , 217, 123444	3.9	5
180	Conformational Variations for Surface-Initiated Reversible Deactivation Radical Polymerization: From Flat to Curved Nanoparticle Surfaces. <i>Macromolecules</i> , 2021 , 54, 8270-8288	5.5	5
179	Polymeric Membranes for Gas Separation, Water Purification and Fuel Cell Technology2451-2491		5
178	Polymeric Drugs2541-2595		5
177	Nitrogen-Doped Nanocarbons Derived from Tetrazine Cross-Linked Poly(4-cyanostyrene)-Silica Hybrids. <i>Macromolecular Chemistry and Physics</i> , 2017 , 218, 1600524	2.6	4
176	Copolymer-Derived N/B Co-Doped Nanocarbons with Controlled Porosity and Highly Active Surface. <i>Journal of Polymer Science</i> , 2020 , 58, 225-232	2.4	4
175	Poor Solvents Improve Yield of Grafting-Through Radical Polymerization of OEO19MA. <i>ACS Macro Letters</i> , 2020 , 9, 674-679	6.6	4
174	Accessibility of Densely Localized DNA on Soft Polymer Nanoparticles. <i>Langmuir</i> , 2018 , 34, 14731-1473	37 ₄	4
173	Molecular dynamics in PBA/PEO miktoarm star copolymers. <i>Polymer</i> , 2013 , 54, 3341-3349	3.9	4
172	Polymer Chemistry: Current Status and Perspective. <i>Chemistry International</i> , 2017 , 39,	1.6	4

171	GFP Knockdown by Cationic Nanogel-siRNA Polyplexes. <i>Bioengineering</i> , 2015 , 2, 160-175	5.3	4
170	Polymerizations in Aqueous Dispersed Media 2011 , 605-642		4
169	Synthesis of Macromonomers and Telechelic Oligomers by Living Polymerizations 2011 , 775-812		4
168	Macromolecular Engineering 2011 , 1-6		4
167	Molecular Brushes (Densely Grafted Copolymers 2011 , 1103-1135		4
166	CoreBhell Particles 2011 , 1209-1247		4
165	Structural studies of poly(butyl acrylate) [boly(ethylene oxide) miktoarm star polymers. <i>Polymer</i> , 2011 , 52, 5513-5520	3.9	4
164	Synthesis of Block and Graft Copolymers445-492		4
163	Macromolecular Architectures by Living and Controlled/Living Polymerizations343-443		4
162	Motion of single wandering diblock-macromolecules directed by a PTFE nano-fence: real time SFM observations. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 5591-7	3.6	4
161	Linear Viscoelasticity of Polymer Tethered Highly Grafted Nanoparticles. <i>ACS Symposium Series</i> , 2009 , 257-267	0.4	4
160	Organic-Inorganic Hybrid Polymers from Atom Transfer Radical Polymerization and Poly(dimethylsiloxane). <i>ACS Symposium Series</i> , 2000 , 270-283	0.4	4
159	Modification of polysilanes: Preparation of comb-like graft copolymers. <i>Journal of Inorganic and Organometallic Polymers</i> , 1995 , 5, 183-193		4
158	Synthesis of poly(Emethoxypropylmethylsilylene) and poly(Emethoxypropylmethylsilylene-co-di-n-hexylsilylene). <i>Journal of Polymer Science Part A</i> , 1994 , 32, 1949-1956	2.5	4
157	Synthesis and characterization of poly(phenyl-p-tolylphosphazene), prepared via in situ polymerization of phenyl-p-tolylphosphine azide. <i>Macromolecular Rapid Communications</i> , 1994 , 15, 169-	178	4
156	ATRP of MIDA Boronate-Containing Monomers as a Tool for Synthesizing Linear Phenolic and Functionalized Polymers <i>ACS Macro Letters</i> , 2021 , 10, 1327-1332	6.6	4
155	Polymers for Microelectronics2263-2293		4
154	Polyene-Free Photoluminescent Polymers via Hydrothermal Hydrolysis of Polyacrylonitrile in Neutral Water. <i>ACS Macro Letters</i> , 2020 , 9, 1403-1408	6.6	4

(2011-2020)

153	Nanosized Organo-Silica Particles with B uilt-In Surface-Initiated Atom Transfer Radical Polymerization Capability as a Platform for Brush Particle Synthesis. <i>ACS Macro Letters</i> , 2020 , 9, 1218-1	223	4
152	Molecular Dynamics-Guided Design of a Functional Protein-ATRP Conjugate That Eliminates Protein-Protein Interactions. <i>Bioconjugate Chemistry</i> , 2021 , 32, 821-832	6.3	4
151	Effective SERS materials by loading Ag nanoparticles into poly(acrylic acid-stat-acrylamide)-block-polystyrene nano-objects prepared by PISA. <i>Polymer</i> , 2021 , 224, 123747	3.9	4
150	Synthesis of Metallopolymers via Atom Transfer Radical Polymerization from a [2Fe-2S] Metalloinitiator: Molecular Weight Effects on Electrocatalytic Hydrogen Production. <i>Macromolecular Rapid Communications</i> , 2020 , 41, e1900424	4.8	4
149	Synthesis of Ultra-high Molecular Weight SiO2-g-PMMA Particle Brushes. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2020 , 30, 174-181	3.2	4
148	Interfacial dilatational rheology as a bridge to connect amphiphilic heterografted bottlebrush copolymer architecture to emulsifying efficiency. <i>Journal of Colloid and Interface Science</i> , 2021 , 581, 13.	59147	4
147	Phosphate Polymer Nanogel for Selective and Efficient Rare Earth Element Recovery. <i>Environmental Science & Environmental Scie</i>	10.3	4
146	Molecular bottlebrush with pH-responsive cleavable bonds as a unimolecular vehicle for anticancer drug delivery. <i>Materials Science and Engineering C</i> , 2021 , 130, 112439	8.3	4
145	Effect of Added Salt on Disordered Poly(ethylene oxide)-Block-Poly(methyl methacrylate) Copolymer Electrolytes. <i>Macromolecules</i> , 2021 , 54, 1414-1424	5.5	4
144	Cyclic voltammetric studies of copper complexes catalyzing atom transfer radical polymerization 2000 , 201, 1625		4
143	Chromatography of Polymers1881-1936		4
142	Designing Hydrogels by ATRP. Series in Bioengineering, 2015 , 69-105	0.7	3
141	Tuning Polymer Properties through Competitive Processes. ACS Symposium Series, 2012, 145-169	0.4	3
140	From Stars to Microgels 2011 , 1007-1056		3
139	Polyelectrolyte Multilayer Films 🖪 General Approach to (Bio)functional Coatings 2011 , 1249-1305		3
138	Segmented Copolymers by Mechanistic Transformations 2011 , 541-604		3
137	Polycondensation 2011 , 295-349		3
136	Linear Versus (Hyper)branched Polymers 2011 , 973-1005		3

135	Statistical, Alternating and Gradient Copolymers 2011 , 813-838		3
134	Radical Polymerization103-166		3
133	Copolymerization Kinetics263-300		3
132	Future Outlook and Perspectives895-900		3
131	Using Atom Transfer Radical Polymerization in Environmentally Benign Processes. <i>ACS Symposium Series</i> , 2002 , 113-126	0.4	3
130	Molecular events in atom transfer radical polymerization of styrene and methyl acrylate. Macromolecular Symposia, 2000 , 161, 1-10	0.8	3
129	Stopped-Flow Investigation of Trifluoromethanesulfonic Acid Initiated Cationic Oligomerization of trans-1,3-Diphenyl-1-butene. 2. A Model Kinetic Study of Styrene Cationic Polymerization. <i>Macromolecules</i> , 1998 , 31, 2403-2408	5.5	3
128	Thermal Degradation of Polyphosphazene Homopolymers and Copolymers Prepared by the Anionic Polymerization of Phosphoranimines. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 1995 , 32, 1115-1135	2.2	3
127	Ring-opening of 1,2,3,4-tetramethyl-1,2,3,4-tetraphenylcyclotetrasilane in the presence of transition metal catalysts. <i>Journal of Polymer Science Part A</i> , 1996 , 34, 2243-2252	2.5	3
126	Microstructure in the Ring Opening Polymerization of Cyclotetrasilanes. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 1994 , 93, 129-141	1	3
125	Exchange reactions between covalent and carbocationic species in polymerization of vinyl ethers in the presence of lewis acids: dynamic NMR studies. <i>Macromolecular Chemistry and Physics</i> , 1995 , 196, 2149-2160	2.6	3
124	Atom Transfer Radical Polymerization Including Degenerative Transfer: Novel and General Pathways Towards Living (Controlled Radical Polymerization 1996, 1-9		3
123	Self-Assembly and Morphology Diagrams for Solution and Bulk Materials: Experimental Aspects1387-14	130	3
122	Poly(2-hydroxyethyl methacrylate) brushes synthesized by atom transfer radical polymerization from gold surface as a gate insulator in organic thin-film transistors. <i>Thin Solid Films</i> , 2019 , 669, 133-140	2.2	3
121	Transparent Hybrid Opals with Unexpected Strong Resonance-Enhanced Photothermal Energy Conversion. <i>Advanced Materials</i> , 2021 , 33, e2004732	24	3
120	Amphiphilic Thiol Polymer Nanogel Removes Environmentally Relevant Mercury Species from Both Produced Water and Hydrocarbons. <i>Environmental Science & Environmental Science &</i>	10.3	3
119	Assemblies of Polyacrylonitrile-Derived Photoactive Polymers as Blue and Green Light Photo-Cocatalysts for Cu-Catalyzed ATRP in Water and Organic Solvents. <i>Frontiers in Chemistry</i> , 2021 , 9, 734076	5	3
118	Atom transfer radical polymerization of n-butyl methacrylate in an aqueous dispersed system: A miniemulsion approach. <i>Journal of Polymer Science Part A</i> ,38, 4724-4734	2.5	3

117	Gradient copolymers by atom transfer radical copolymerization 2000 , 13, 775		3
116	Nanostructured Carbons from Block Copolymers257-274		3
115	Applications of Thermoplastic Elastomers Based on Styrenic Block Copolymers2001-2031		3
114	Gel: A Potential Material as Artificial Soft Tissue2689-2717		3
113	Star Polymers with Designed Reactive Oxygen Species Scavenging and Agent Delivery Functionality Promote Plant Stress Tolerance <i>ACS Nano</i> , 2022 , 16, 4467-4478	16.7	3
112	Frontispiz: Biomimetic Bottlebrush Polymer Coatings for Fabrication of Ultralow Fouling Surfaces. <i>Angewandte Chemie</i> , 2019 , 131,	3.6	2
111	p-Substituted Tris(2-pyridylmethyl)amines as Ligands for Highly Active ATRP Catalysts: Facile Synthesis and Characterization. <i>Angewandte Chemie</i> , 2020 , 132, 15020-15030	3.6	2
110	Catalyzed Radical Termination (CRT) in the Metal-Mediated Polymerization of Acrylates: Experimental and Computational Studies. <i>ACS Symposium Series</i> , 2018 , 135-159	0.4	2
109	Catalyst Activity in ATRP, Determining Conditions for Well-Controlled Polymerizations. <i>ACS Symposium Series</i> , 2015 , 87-103	0.4	2
108	Morphology and NMR Self-Diffusion in PBA/PEO Miktoarm Star Copolymers. <i>Zeitschrift Fur Physikalische Chemie</i> , 2012 , 226, 1271-1292	3.1	2
107	Fundamentals of Controlled/Living Radical Polymerization 2012,		2
106	The Importance of Controlled/Living Radical Polymerization Techniques in the Design of Tailor Made Nanoparticles for Drug Delivery Systems. <i>Advances in Predictive, Preventive and Personalised Medicine</i> , 2013 , 315-357	0.4	2
105	Radical Polymerization 2011 , 161-215		2
104	Supramolecular Polymer Engineering 2011 , 351-399		2
103	Bio-Inspired Complex Block Copolymers/Polymer Conjugates and Their Assembly 2011 , 1307-1339		2
102	Post-transcriptional gene silencing using siRNA delivered from Star Nanostructured Polymer. <i>Bone</i> , 2010 , 46, S49-S50	4.7	2
101	Gelation in Atom Transfer Radical Copolymerization with a Divinyl Cross-linker. <i>ACS Symposium Series</i> , 2009 , 203-213	0.4	2
100	Morphologies in Block Copolymers493-554		2

99	Living Ring-Opening Polymerization of Heterocyclic Monomers241-296		2
98	Industrial Applications555-603		2
97	Theory of Radical Reactions1-76		2
96	Bulk Atom Transfer Radical Polymerization. ACS Symposium Series, 1999, 96-112	0.4	2
95	Comparison of living polymerization mechanisms. Acrylates and carbocationic polymerization. <i>Makromolekulare Chemie Macromolecular Symposia</i> , 1993 , 67, 67-82		2
94	Crystalline and disordered state of poly(dihexylsilylene) copolymers. <i>Macromolecular Chemistry and Physics</i> , 1995 , 196, 1181-1194	2.6	2
93	Comments on the paper living cationic polymerization of styrene monomerslby ML. Yang, K. Li and H. D. H. Stlver. <i>Macromolecular Rapid Communications</i> , 1995 , 16, 219-221	4.8	2
92	Computer simulation of the aggregation of ion pairs in the polymerization of styrene initiated by RCl/SnCl4/NRClBystems. <i>Macromolecular Theory and Simulations</i> , 1995 , 4, 335-345	1.5	2
91	Inherently pre-strained elastomers with self-healing property: new generation of freestanding electroactuators (Conference Presentation) 2017 ,		2
90	Redox-Initiated RAFT Polymerization and (Electro)chemical Activation of RAFT Agents 2021 , 647-677		2
89	From Mechanism and Kinetics to Precise ATRP Synthesis. <i>NATO Science for Peace and Security Series A: Chemistry and Biology</i> , 2009 , 3-16	0.1	2
88	Determination of Bulk and Solution Morphologies by Transmission Electron Microscopy1649-1685		2
87	NMR Spectroscopy1937-1965		2
86	Polymer/Layered Filler Nanocomposites: An Overview from Science to Technology2071-2134		2
85	Axially Ligated Mesohemins as Bio-Mimicking Catalysts for Atom Transfer Radical Polymerization. <i>Molecules</i> , 2019 , 24,	4.8	2
84	A comprehensive analysis in one run - in-depth conformation studies of protein-polymer chimeras by asymmetrical flow field-flow fractionation. <i>Chemical Science</i> , 2021 , 12, 13848-13856	9.4	2
83	Block copolymers by transformation of Ilvinglarbocationic into Ilvingladical polymerization. II. ABA-type block copolymers comprising rubbery polyisobutene middle segment 1997 , 35, 3595		2
82	Block Copolymers for Adhesive Applications1731-1751		2

81 ATRP: A Versatile Tool toward Uniformly Crosslinked Hydrogels with Controlled Architecture and Multifunctionality169-

80	The scale-up of electrochemically mediated atom transfer radical polymerization without deoxygenation. <i>Chemical Engineering Journal</i> , 2022 , 445, 136690	14.7	2
79	Common Carbons as Water-Reducing Catalysts in Photo-Driven Hydrogen Evolution with Nitrogen-Dependent Activity. <i>ChemNanoMat</i> , 2018 , 4, 1039-1042	3.5	1
78	Cooperative, Reversible Self-Assembly of Covalently Pre-Linked Proteins into Giant Fibrous Structures. <i>Angewandte Chemie</i> , 2014 , 126, 8188-8193	3.6	1
77	Overview of Controlled/Living polymerization Methods of Vinyl Monomers 2014 , 29-44		1
76	Monomolecular films of arborescent polystyrene@raftpoly(2-vinylpyridine) copolymers: Precursors to nanostructured carbon materials. <i>European Polymer Journal</i> , 2017 , 95, 575-580	5.2	1
<i>75</i>	Polymer Brushes by Atom Transfer Radical Polymerization 2017 , 29-95		1
74	Design and fabrication strategies for high transparency polymer nanocomposites with dynamic tunable optical response 2014 ,		1
73	Atom Transfer Radical Polymerization (ATRP) and Addition (ATRA) and Applications 2012,		1
7 ²	Efficient Polymerization Inhibition Systems for Acrylic Acid Distillation: Vapor-Phase Inhibitors. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 4467-4471	3.9	1
71	Spreading and Dewetting of Single Bottle-Brush Macromolecules on Nanofacetted SrTiO3 Substrate as Induced by Different Vapours. <i>Macromolecular Chemistry and Physics</i> , 2013 , 214, 761-775	2.6	1
70	From Linear to (Hyper) Branched Polymers: Dynamics and Rheology 2011 , 1605-1648		1
69	Anionic Polymerization of Vinyl and Related Monomers 2011 , 7-55		1
68	Applications of Controlled Macromolecular Architectures to Lithography 2011 , 2295-2330		1
67	Macromolecular engineering by tempering radical behavior. <i>Akademie Der Wissenschaften Zu Goettingen Jahrbuch</i> , 2012 , 2012,		1
66	Radical Polymerization 2003,		1
65	Copolymerization 2004,		1
64	Experimental Procedures and Techniques for Radical Polymerization845-893		1

63	Phosphazene Backbones for Siloxanes and Organic Polymers. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 576, 129		1
62	Stereostructure of Polysilanes by Ring-Opening Polymerization. ACS Symposium Series, 1994 , 32-42	0.4	1
61	Morphology of (methoxyethoxy/trifluoroethoxy)phosphazene copolymers. <i>Macromolecular Chemistry and Physics</i> , 1995 , 196, 1713-1737	2.6	1
60	Tandem Living Insertion and Controlled Radical Polymerization for Polyolefin B olyvinyl Block Copolymers. <i>Angewandte Chemie</i> ,e202112742	3.6	1
59	Hairy nanoparticles by atom transfer radical polymerization in miniemulsion. <i>Reactive and Functional Polymers</i> , 2021 , 170, 105104	4.6	1
58	Biocompatible photoinduced CuAAC using sodium pyruvate. <i>Chemical Communications</i> , 2021 , 57, 1284	4- 1 . 2 84	171
57	Improved Self-Assembly of P3HT with Pyrene-Functionalized Methacrylates. ACS Omega, 2021 , 6, 2732	.5 <i>-9</i> .33	341
56	Fabrication of novel polymeric and carbonaceous nanoscale networks by the union of self-assembly and hypercrosslinking		1
55	Degradable copolymers with incorporated ester groups by radical ring-opening polymerization using atom transfer radical polymerization. <i>Polimery</i> , 2017 , 62, 262-271	3.4	1
54	High-Throughput Screening in Combinatorial Polymer Research1967-1999		1
53	Polymer Encapsulation of Metallic and Semiconductor Nanoparticles: Multifunctional Materials with Novel Optical, Electronic and Magnetic Properties2409-2449		1
52	Molecular Design and Self-Assembly of Functional Dendrimers1057-1102		1
51	Hybrid Organic Inorganic Objects1179-1207		1
50	Grafting Polymer Brushes by ATRP from Functionalized Poly(ether ether ketone) Microparticles <i>Polymers for Advanced Technologies</i> , 2021 , 32, 3948-3954	3.2	1
49	Control of Phase Morphology of Binary Polymer Grafted Nanoparticle Blend Films Direct Immersion Annealing. <i>ACS Nano</i> , 2021 ,	16.7	1
48	Hybrid Opals: Transparent Hybrid Opals with Unexpected Strong Resonance-Enhanced Photothermal Energy Conversion (Adv. Mater. 2/2021). <i>Advanced Materials</i> , 2021 , 33, 2170013	24	1
47	Ab Initio Emulsion Atom-Transfer Radical Polymerization. <i>Angewandte Chemie</i> , 2018 , 130, 8402-8406	3.6	1
46	Fe-Doped Copolymer-Templated Nitrogen-Rich Carbon as a PGM-Free Fuel Cell Catalyst. <i>ACS Applied Energy Materials</i> , 2021 , 4, 9653-9663	6.1	1

45	Competitive Equilibria in Atom Transfer Radical Polymerization60-70		1
44	Nanocrystal co-existed highly dense atomically disperse Pt@3D-hierarchical porous carbon electrocatalysts for tri-iodide and oxygen reduction reactions. <i>Chemical Engineering Journal</i> , 2022 , 446, 137249	14.7	1
43	Synthesis of High k Nanoparticles by Controlled Radical Polymerization 2019 , 181-226		0
42	Understanding the origin of softness in structurally tailored and engineered macromolecular (STEM) gels: A DPD study. <i>Polymer</i> , 2020 , 208, 122909	3.9	O
41	Tacticity 2011 , 731-773		O
40	Polymeric Dispersants 2011 , 2135-2180		O
39	Synthesis and Properties of Polysilanes Prepared by Ring-Opening Polymerization. <i>ACS Symposium Series</i> , 1995 , 433-442	0.4	0
38	Maltotriose-based star polymers as self-healing materials. European Polymer Journal, 2022, 164, 11097	2 5.2	O
37	Utilization of Polymers in Sensor Devices2493-2539		O
36	Processable Sub-5 Nanometer Organosilica Hybrid Particles for Dye Stabilization. <i>ACS Applied Polymer Materials</i> , 2021 , 3, 3631-3635	4.3	O
35	Internal Microstructure Dictates Interactions of Polymer-grafted Nanoparticles in Solution. <i>Macromolecules</i> , 2021 , 54, 7234-7243	5.5	O
34	Polymer-Stabilized Liquid Metal Nanoparticles as a Scalable Current Collector Engineering Approach Enabling Lithium Metal Anodes. <i>ACS Applied Energy Materials</i> , 2022 , 5, 3615-3625	6.1	O
33	Precision and Purity of Conjugated Polymers ©To be Ensured Before Processing 2019, 1-55		
32	Scattering from Polymer Systems 2011 , 1575-1604		
31	Predicting Mechanical Performance of Polymers 2011 , 1783-1825		
30	Applications of Polymer Bioconjugates 2011 , 2645-2687		
29	Biosynthesis of Protein-Based Polymeric Materials 2011 , 479-517		
28	Recent Trends in Macromolecular Engineering Using Ring-Opening Metathesis Polymerization 2011 , 249-293		

27	Inorganic Polymers with Precise Structures 2011 , 673-730	
26	Complex Functional Macromolecules 2011 , 1341-1385	
25	Multisegmental Block/Graft Copolymers 2011 , 839-873	
24	Simulations 2011 , 1431-1469	
23	Polymeric Surfactants 2011 , 2181-2223	
22	Palladium-Mediated Ring-Opening Reactions of Strained Cyclotetrasilanes. <i>Journal of Inorganic and Organometallic Polymers</i> , 1997 , 7, 137-150	
21	Macromol. Chem. Phys. 21/2007. Macromolecular Chemistry and Physics, 2007, 208, 2380-2380	2.6
20	ESR Study of Radicals in Conventional Radical Polymerization Using Radical Precursors Prepared by Atom Transfer Radical Polymerization99-131	
19	ESR Study and Radical Observation in Transition Metal-Mediated Polymerization: Unified View of Atom Transfer Radical Polymerization Mechanism. <i>ACS Symposium Series</i> , 2003 , 161-179	0.4
18	Small-Radical Chemistry77-115	
17	From Living Carbocationic to Living Radical Polymerization. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 1994 , 31, 989-1000	2.2
16	Catalysts and Initiators for Controlling the Structure of Polymers with Inorganic Backbones. <i>ACS Symposium Series</i> , 1992 , 215-233	0.4
15	Structural and Mechanistic Aspects of Copper Catalyzed Atom Transfer Radical Polymerization. <i>Topics in Organometallic Chemistry</i> , 2009 , 221	0.6
14	Fundamentals and Practical Aspects of Living Radical Polymerization 1995, 11-24	
13	Further of Interest2827-2827	
12	Nanocomposites2033-2070	
11	From Biomineralization Polymers to Double Hydrophilic Block and Graft Copolymers2597-2643	
10	Microelectronic Materials with Hierarchical Organization2331-2367	

LIST OF PUBLICATIONS

- 9 Polymers in Tissue Engineering2719-2742
- 8 Reactive Blending1753-1782
- 7 Transport and Electro-Optical Properties in Polymeric Self-Assembled Systems1471-1514
- 6 Atomic Force Microscopy of Polymers: Imaging, Probing and Lithography1515-1574
- 5 IUPAC Polymer Terminology and Macromolecular Nomenclature2743-2745
- Double Network Elastomers: Self-Assembly Strategy for Double Network Elastomer

 Nanocomposites with Ultralow Energy Consumption and Ultrahigh Wear Resistance (Adv. Funct. 15.6

 Mater. 34/2020). Advanced Functional Materials, 2020, 30, 2070227
- Block Copolymer Templating as a Path to Porous Nanostructured Carbons with Highly Accessible Nitrogens for Enhanced (Electro)chemical Performance **2016**, 1-19
- Nanocarbons from Synthetic Polymer Precursors and Their Catalytic Properties **2018**, 133-166
- Macromolecular Engineering by Atom Transfer Radical Polymerization1-51