
Simonetta Piatti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8118850/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Downregulation of the Tem1 GTPase by Amn1 after cytokinesis involves both nuclear import and SCF-mediated degradation. Journal of Cell Science, 2021, 134, .	1.2	0
2	Cytokinesis: An Anillin–RhoGEF Module Sets the Stage for Septin Double Ring Assembly. Current Biology, 2020, 30, R347-R349.	1.8	3
3	Killing two birds with one stone: how budding yeast Mps1 controls chromosome segregation and spindle assembly checkpoint through phosphorylation of a single kinetochore protein. Current Genetics, 2020, 66, 1037-1044.	0.8	3
4	The Phosphatase PP1 Promotes Mitotic Slippage through Mad3 Dephosphorylation. Current Biology, 2020, 30, 335-343.e5.	1.8	7
5	A common molecular mechanism underlies the role of Mps1 in chromosome biorientation and the spindle assembly checkpoint. EMBO Reports, 2020, 21, e50257.	2.0	21
6	Silencing the spindle assembly checkpoint: Let $\hat{a} \in \mathbb{M}$ s play Polo!. Journal of Cell Biology, 2020, 219, .	2.3	1
7	Septin clearance from the division site triggers cytokinesis in budding yeast. Microbial Cell, 2019, 6, 296-298.	1.4	4
8	Recruitment of the mitotic exit network to yeast centrosomes couples septin displacement to actomyosin constriction. Nature Communications, 2018, 9, 4308.	5.8	31
9	Asymmetric Localization of Components and Regulators of the Mitotic Exit Network at Spindle Pole Bodies. Methods in Molecular Biology, 2017, 1505, 183-193.	0.4	4
10	The final cut: cell polarity meets cytokinesis at the bud neck in S. cerevisiae. Cellular and Molecular Life Sciences, 2016, 73, 3115-3136.	2.4	47
11	Control of Formin Distribution and Actin Cable Assembly by the E3 Ubiquitin Ligases Dma1 and Dma2. Genetics, 2016, 204, 205-220.	1.2	11
12	Asymmetry of the Budding Yeast Tem1 GTPase at Spindle Poles Is Required for Spindle Positioning But Not for Mitotic Exit. PLoS Genetics, 2015, 11, e1004938.	1.5	26
13	Rho1- and Pkc1-dependent phosphorylation of the F-BAR protein Syp1 contributes to septin ring assembly. Molecular Biology of the Cell, 2015, 26, 3245-3262.	0.9	21
14	Coupling spindle position with mitotic exit in budding yeast: The multifaceted role of the small GTPase Tem1. Small GTPases, 2015, 6, 196-201.	0.7	23
15	Yeast Haspin Kinase Regulates Polarity Cues Necessary for Mitotic Spindle Positioning and Is Required to Tolerate Mitotic Arrest. Developmental Cell, 2013, 26, 483-495.	3.1	22
16	Budding Yeast Greatwall and Endosulfines Control Activity and Spatial Regulation of PP2ACdc55 for Timely Mitotic Progression. PLoS Genetics, 2013, 9, e1003575.	1.5	53
17	Budding Yeast Dma Proteins Control Septin Dynamics and the Spindle Position Checkpoint by Promoting the Recruitment of the Elm1 Kinase to the Bud Neck. PLoS Genetics, 2012, 8, e1002670.	1.5	25
18	Role of the Mad2 Dimerization Interface in the Spindle Assembly Checkpoint Independent of Kinetochores. Current Biology, 2012, 22, 1900-1908.	1.8	26

SIMONETTA PIATTI

#	Article	IF	CITATIONS
19	Analysis of the rpn11-m1 proteasomal mutant reveals connection between cell cycle and mitochondrial biogenesis. FEMS Yeast Research, 2011, 11, 60-71.	1.1	6
20	The mother-bud neck as a signaling platform for the coordination between spindle position and cytokinesis in budding yeast. Biological Chemistry, 2011, 392, 805-812.	1.2	18
21	Adapt or die: how eukaryotic cells respond to prolonged activation of the spindle assembly checkpoint. Biochemical Society Transactions, 2010, 38, 1645-1649.	1.6	18
22	The RSC chromatin-remodeling complex influences mitotic exit and adaptation to the spindle assembly checkpoint by controlling the Cdc14 phosphatase. Journal of Cell Biology, 2010, 191, 981-997.	2.3	44
23	Cdc14 Inhibition by the Spindle Assembly Checkpoint Prevents Unscheduled Centrosome Separation in Budding Yeast. Molecular Biology of the Cell, 2009, 20, 2626-2637.	0.9	13
24	The spindle position checkpoint: how to deal with spindle misalignment during asymmetric cell division in budding yeast. Biochemical Society Transactions, 2008, 36, 416-420.	1.6	35
25	The budding yeast PP2ACdc55 protein phosphatase prevents the onset of anaphase in response to morphogenetic defects. Journal of Cell Biology, 2007, 177, 599-611.	2.3	16
26	Comment on "A Centrosome-Independent Role for Â-TuRC Proteins in the Spindle Assembly Checkpoint". Science, 2007, 316, 982b-982b.	6.0	2
27	Alfalfa Mob1-like proteins are involved in cell proliferation and are localized in the cell division plane during cytokinesis. Experimental Cell Research, 2006, 312, 1050-1064.	1.2	24
28	Disappearance of the budding yeast Bub2–Bfa1 complex from the mother-bound spindle pole contributes to mitotic exit. Journal of Cell Biology, 2006, 172, 335-346.	2.3	56
29	The spindle position checkpoint in budding yeast: the motherly care of MEN. Cell Division, 2006, 1, 2.	1.1	17
30	Determinants of conformational dimerization of Mad2 and its inhibition by p31comet. EMBO Journal, 2006, 25, 1273-1284.	3.5	124
31	The Saccharomyces cerevisiae 14-3-3 Proteins Are Required for the G1/S Transition, Actin Cytoskeleton Organization and Cell Wall Integrity. Genetics, 2006, 173, 661-675.	1.2	31
32	Accumulation of Mad2–Cdc20 complex during spindle checkpoint activation requires binding of open and closed conformers of Mad2 in Saccharomyces cerevisiae. Journal of Cell Biology, 2006, 174, 39-51.	2.3	51
33	Mad3/BubR1 Phosphorylation during Spindle Checkpoint Activation Depends on both Polo and Aurora Kinases in Budding Yeast. Cell Cycle, 2005, 4, 972-980.	1.3	30
34	Sen34p depletion blocks tRNA splicing in vivo and delays rRNA processing. Biochemical and Biophysical Research Communications, 2005, 337, 89-94.	1.0	25
35	Functional Characterization of Dma1 and Dma2, the Budding Yeast Homologues of Schizosaccharomyces pombe Dma1 and Human Chfr. Molecular Biology of the Cell, 2004, 15, 3796-3810.	0.9	53
36	Budding yeast PAK kinases regulate mitotic exit by two different mechanisms. Journal of Cell Biology, 2003, 160, 857-874.	2.3	27

Simonetta Piatti

#	Article	IF	CITATIONS
37	Bub3 interaction with Mad2, Mad3 and Cdc20 is mediated by WD40 repeats and does not require intact kinetochores. EMBO Journal, 2001, 20, 6648-6659.	3.5	167
38	Correct spindle elongation at the metaphase/anaphase transition is an APC-dependent event in budding yeast. Journal of Cell Biology, 2001, 155, 711-718.	2.3	34
39	Budding Yeast Bub2 Is Localized at Spindle Pole Bodies and Activates the Mitotic Checkpoint via a Different Pathway from Mad2. Journal of Cell Biology, 1999, 145, 979-991.	2.3	159
40	The β4 Integrin Interactor p27BBP/eIF6 Is an Essential Nuclear Matrix Protein Involved in 60S Ribosomal Subunit Assembly. Journal of Cell Biology, 1999, 144, 823-838.	2.3	113
41	No Evidence that Cse1p Is Required for Cyclin Proteolysis. Cell, 1998, 93, 486.	13.5	3
42	Cell cycle regulation of S phase entry in Saccharomyces cerevisiae. , 1997, 3, 143-156.		7
43	Is the yeast Anaphase Promoting Complex needed to prevent re-replication during G2 and M phases?. EMBO Journal, 1997, 16, 5988-5997.	3.5	16
44	An essential role for the Cdc6 protein in forming the pre-replicative complexes of budding yeast. Nature, 1996, 379, 180-182.	13.7	342
45	Activation of S-phase-promoting CDKs in late G1 defines a "point of no return" after which Cdc6 synthesis cannot promote DNA replication in yeast Genes and Development, 1996, 10, 1516-1531.	2.7	272
46	Genes involved in sister chromatid separation are needed for b-type cyclin proteolysis in budding yeast. Cell, 1995, 81, 269-277.	13.5	547
47	Positive cis-acting regulatory sequences mediate proper control of POL1 transcription in Saccharomyces cerevisiae. Current Genetics, 1992, 21, 183-189.	0.8	14
48	Control of DNA synthesis genes in budding yeast: involvement of the transcriptional modulatorMOT1 in the expression of the DNA polymerase 1± gene. Chromosoma, 1992, 102, S107-S113.	1.0	26
49	The Phosphatase PP1 Promotes Mitotic Slippage Through Mad3 Dephosphorylation. SSRN Electronic Journal, 0, , .	0.4	0