Laurence R Schimleck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8118704/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nondestructive estimation of wood chemical composition of sections of radial wood strips by diffuse reflectance near infrared spectroscopy. Wood Science and Technology, 2006, 40, 709-720.	1.4	92
2	Regional variation in wood specific gravity of planted loblolly pine in the United States. Canadian Journal of Forest Research, 2008, 38, 698-710.	0.8	81
3	Non-Destructive Evaluation Techniques and What They Tell Us about Wood Property Variation. Forests, 2019, 10, 728.	0.9	81
4	Comparison of Pinus taeda L. wood property calibrations based on NIR spectra from the radial-longitudinal and radial-transverse faces of wooden strips. Holzforschung, 2005, 59, 214-218.	0.9	36
5	Determination of Basic Density and Moisture Content of Loblolly Pine Wood Disks Using a near Infrared Hyperspectral Imaging System. Journal of Near Infrared Spectroscopy, 2011, 19, 401-409.	0.8	36
6	Comparison of Pinus taeda L. whole-tree wood property calibrations using diffuse reflectance near infrared spectra obtained using a variety of sampling options. Wood Science and Technology, 2008, 42, 385-400.	1.4	33
7	Kernel regression methods for the prediction of wood properties of Pinus taeda using near infrared spectroscopy. Wood Science and Technology, 2010, 44, 561-578.	1.4	31
8	Genetic variation in Pinus taeda wood properties predicted using non-destructive techniques. Annals of Forest Science, 2011, 68, 283-293.	0.8	29
9	Regional variation in wood modulus of elasticity (stiffness) and modulus of rupture (strength) of planted loblolly pine in the United States. Canadian Journal of Forest Research, 2011, 41, 1522-1533.	0.8	26
10	Near Infrared Calibration Models for the Estimation of Wood Density in <i>Pinus Taeda</i> Using Repeated Sample Measurements. Journal of Near Infrared Spectroscopy, 2008, 16, 517-528.	0.8	25
11	Modeling the effect of initial planting density on within tree variation of stiffness in loblolly pine. Annals of Forest Science, 2012, 69, 641-650.	0.8	24
12	Wood and Fiber Quality of Plantation-Grown Conifers: A Summary of Research with an Emphasis on Loblolly and Radiata Pine. Forests, 2018, 9, 298.	0.9	23
13	Determination of Basic Density and Moisture Content of Merchantable Loblolly Pine Logs by near Infrared Spectroscopy. Journal of Near Infrared Spectroscopy, 2011, 19, 391-399.	0.8	21
14	Comparison of Whole-Tree Wood Property Maps for 13- and 22-Year-Old Loblolly Pine. Forests, 2018, 9, 287.	0.9	20
15	Effect of early age woody and herbaceous competition control on wood properties of loblolly pine. Forest Ecology and Management, 2011, 262, 1639-1647.	1.4	18
16	Regional calibration models for predicting loblolly pine tracheid properties using near-infrared spectroscopy. Wood Science and Technology, 2018, 52, 445-463.	1.4	18
17	Whole-Tree Bark and Wood Properties of Loblolly Pine from Intensively Managed Plantations. Forest Science, 2015, 61, 55-66.	0.5	17
18	Non-destructive assessment of Pinus spp. wafers subjected to Gloeophyllum trabeum in soil block decay tests by diffuse reflectance near infrared spectroscopy. Wood Science and Technology, 2011, 45, 583-595.	1.4	16

#	Article	IF	CITATIONS
19	Determination of specific gravity of green Pinus taeda samples by near infrared spectroscopy: comparison of pre-processing methods using multivariate figures of merit. Wood Science and Technology, 2009, 43, 441-456.	1.4	15
20	Specific gravity responses of slash and loblolly pine following mid-rotation fertilization. Forest Ecology and Management, 2009, 257, 2342-2349.	1.4	15
21	Near Infrared Spectroscopy and Chemometrics for Predicting Specific Gravity and Flexural Modulus of Elasticity of Pinus spp. Veneers. Journal of Near Infrared Spectroscopy, 2010, 18, 481-489.	0.8	15
22	Pinus Taeda L. Wood Property Calibrations Based on Variable Numbers of near Infrared Spectra per Core and Cores per Plantation. Journal of Near Infrared Spectroscopy, 2007, 15, 261-268.	0.8	14
23	Near-infrared spectroscopy prediction of southern pine No. 2 lumber physical and mechanical properties. Wood Science and Technology, 2017, 51, 309-322.	1.4	13
24	Models for predicting the within-tree and regional variation of tracheid length and width for plantation loblolly pine. Forestry, 2021, 94, 127-140.	1.2	13
25	Toward Global Calibrations for Estimating the Wood Properties of Tropical, Sub-Tropical and Temperate Pine Species. Journal of Near Infrared Spectroscopy, 2010, 18, 355-365.	0.8	12
26	Assessment of the early signs of decay of <i>Populus deltoides</i> wafers exposed to <i>Trametes versicolor</i> by near infrared spectroscopy. Holzforschung, 2012, 66, 515-520.	0.9	12
27	Growth and wood properties of genetically improved loblolly pine: propagation type comparison and genetic parameters. Canadian Journal of Forest Research, 2014, 44, 263-272.	0.8	11
28	Modeling and Monitoring of Wood Moisture Content Using Time-Domain Reflectometry. Forests, 2020, 11, 479.	0.9	11
29	Time-Domain Reflectometry for the Prediction of Loblolly Pine and Sweetgum Moisture Content. BioResources, 2015, 10, .	0.5	10
30	Review of near infrared hyperspectral imaging applications related to wood and wood products. Applied Spectroscopy Reviews, 2023, 58, 585-609.	3.4	10
31	Non-Destructive Estimation of Pernambuco (<i>Caesalpinia Echinata</i>) Clear Wood Properties Using near Infrared Spectroscopy, 2011, 19, 411-419.	0.8	9
32	Measuring the Moisture Content of Green Wood Using Time Domain Reflectometry. Forest Products Journal, 2011, 61, 428-434.	0.2	9
33	Development of near Infrared Calibrations for Physical and Mechanical Properties of Eucalypt Pulps of Mill-Line Origin. Journal of Near Infrared Spectroscopy, 2012, 20, 287-294.	0.8	8
34	Prediction of Douglas-Fir Lumber Properties: Comparison between a Benchtop Near-Infrared Spectrometer and Hyperspectral Imaging System. Applied Sciences (Switzerland), 2018, 8, 2602.	1.3	8
35	Whole-tree tracheid property maps for loblolly pine at different ages. Wood Science and Technology, 2020, 54, 683-701.	1.4	8
36	Identification of representative sampling heights for specific gravity and moisture content in plantation-grown loblolly pine (Pinus taeda). Canadian Journal of Forest Research, 2012, 42, 574-584.	0.8	7

#	Article	lF	CITATIONS
37	Rapid and nondestructive evaluation of hygroscopic behavior changes of thermally modified softwood and hardwood samples using near-infrared hyperspectral imaging (NIR-HSI). Holzforschung, 2021, 75, 345-357.	0.9	7
38	Classifying Wood Properties of Loblolly Pine Grown in Southern Brazil Using NIR-Hyperspectral Imaging. Forests, 2020, 11, 686.	0.9	6
39	Comparison of Sample Preparation Methods for NIR Analysis of Carbohydrate Content of Unbleached Eucalyptus Pulps. Journal of Wood Chemistry and Technology, 2010, 30, 283-298.	0.9	5
40	Species comparison of the physical properties of loblolly and slash pine wood and bark. Canadian Journal of Forest Research, 2017, 47, 1495-1505.	0.8	5
41	Comparison of whole-tree wood property maps based on near-infrared spectroscopic calibrations utilizing data at different spatial resolutions. Holzforschung, 2019, 74, 20-32.	0.9	5
42	Utilization of genetic algorithms to optimize Eucalyptus globulus pulp yield models based on NIR spectra. Wood Science and Technology, 2021, 55, 757-776.	1.4	5
43	Examination of moisture content variation within an operational wet deck. Tappi Journal, 2013, 12, 45-50.	0.2	5
44	Mapping and modeling within-tree variation for loblolly pine pulp yield and lignin content. SN Applied Sciences, 2021, 3, 1.	1.5	4
45	Examination of the potential to reduce water application rates in pine wet decks. Tappi Journal, 2015, 14, 672-679.	0.2	4
46	Classification of Pernambuco (<i>Caesalpinia Echinata</i> Lam.) Wood Quality by near Infrared Spectroscopy and Linear Discriminant Analysis. Journal of Near Infrared Spectroscopy, 2010, 18, 435-442.	0.8	3
47	Exploration of seasonal moisture variation in standing loblolly and slash pine using time domain reflectometry. European Journal of Wood and Wood Products, 2019, 77, 1045-1052.	1.3	3
48	Effects of loblolly pine tree age and wood properties on linerboard-grade pulp yield and sheet properties: Part 2. Tappi Journal, 2012, 11, 41-50.	0.2	3
49	Examination of the potential to reduce water application rates for hardwood pulp logs stored in wet decks. Tappi Journal, 2016, 15, 523-530.	0.2	3
50	Radial patterns of specific gravity variation in North American conifers. Canadian Journal of Forest Research, 2022, 52, 889-900.	0.8	3
51	Comparative Performance of NIR-Hyperspectral Imaging Systems. Foundations, 2022, 2, 523-540.	0.4	3
52	Estimation of Whole-Tree Wood Quality Traits Using near Infrared Spectra of Increment Cores. NIR News, 2007, 18, 10-12.	1.6	2
53	Utilisation of near Infrared Spectroscopy in Pinus Taeda Progeny Tests Located in Southern Brazil. Journal of Near Infrared Spectroscopy, 2010, 18, 389-396.	0.8	2
54	Relationship between attenuated total reflectance Fourier transform infrared spectroscopy of western juniper and natural resistance to fungal and termite attack. Holzforschung, 2020, 74, 246-259.	0.9	2

#	Article	IF	CITATIONS
55	ATR-FTIR Study of Alaska Yellow Cedar Extractives and Relationship with Their Natural Durability. Forests, 2021, 12, 1692.	0.9	2
56	Monitoring seasonal transpiration drying of loblolly and slash pine with time domain reflectometry. European Journal of Wood and Wood Products, 2021, 79, 1297.	1.3	1
57	Variation in Wood Density and Mechanical Properties of <i>Acacia mangium</i> Provenances Planted in Vietnam. Journal of Sustainable Forestry, 2023, 42, 518-532.	0.6	1
58	Mapping variation of handsheet properties within loblolly pine trees. Nordic Pulp and Paper Research Journal, 2021, 36, 387-398.	0.3	0