Sourav S Bhowmick

List of Publications by Citations

Source: https://exaly.com/author-pdf/8118317/sourav-s-bhowmick-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 188
 1,526
 19
 29

 papers
 citations
 h-index
 g-index

 219
 1,889
 2.3
 4.81

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
188	A survey of Web metrics. ACM Computing Surveys, 2002, 34, 469-503	13.4	112
187	Conformity-aware influence maximization in online social networks. VLDB Journal, 2015, 24, 117-141	3.9	55
186	Research Issues in Web Data Mining. Lecture Notes in Computer Science, 1999, 303-312	0.9	47
185	Clustering and Summarizing Protein-Protein Interaction Networks: A Survey. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2016 , 28, 638-658	4.2	43
184	Tag-based social image retrieval: An empirical evaluation. <i>Journal of the Association for Information Science and Technology</i> , 2011 , 62, 2364-2381		39
183	In search of influential event organizers in online social networks 2014 ,		38
182	DUALSIM 2016 ,		34
181	Cell-delivery therapeutics for liver regeneration. Advanced Drug Delivery Reviews, 2010, 62, 814-26	18.5	32
180	Image tag clarity 2009 ,		27
179	Time-dependent semantic similarity measure of queries using historical click-through data 2006,		27
178	Mobile data and transaction management. <i>Information Sciences</i> , 2002 , 141, 279-309	7.7	26
177	GBLENDER 2010,		25
176	Quantifying tag representativeness of visual content of social images 2010,		25
175	CASINO 2011 ,		25
174	Towards Best Region Search for Data Exploration 2016 ,		24
173	Plasmin triggers a switch-like decrease in thrombospondin-dependent activation of TGF-1. <i>Biophysical Journal</i> , 2012 , 103, 1060-8	2.9	23
172	An XML Schema integration and query mechanism system. <i>Data and Knowledge Engineering</i> , 2008 , 65, 266-303	1.5	22

171	GetReal 2015 ,		20
170	PRAGUE: Towards Blending Practical Visual Subgraph Query Formulation and Query Processing 2012 ,		20
169	FUSE: a profit maximization approach for functional summarization of biological networks. <i>BMC Bioinformatics</i> , 2012 , 13 Suppl 3, S10	3.6	19
168	DTD-Diff: A change detection algorithm for DTDs. <i>Data and Knowledge Engineering</i> , 2007 , 61, 384-402	1.5	19
167	QUBLE: towards blending interactive visual subgraph search queries on large networks. <i>VLDB Journal</i> , 2014 , 23, 401-426	3.9	18
166	The Past is Not a Foreign Country: Detecting Semantically Similar Terms across Time. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2016 , 28, 2793-2807	4.2	17
165	AutoG: a visual query autocompletion framework for graph databases. VLDB Journal, 2017, 26, 347-372	3.9	16
164	Why not, WINE? 2013 ,		16
163	Towards Efficient Authenticated Subgraph Query Service in Outsourced Graph Databases. <i>IEEE Transactions on Services Computing</i> , 2014 , 7, 696-713	4.8	15
162	Social image tag recommendation by concept matching 2011 ,		15
161	Xandy: Detecting Changes on Large Unordered XML Documents Using Relational Databases. <i>Lecture Notes in Computer Science</i> , 2005 , 711-723	0.9	15
160	DualAligner: a dual alignment-based strategy to align protein interaction networks. <i>Bioinformatics</i> , 2014 , 30, 2619-26	7.2	14
159	XML structural delta mining: Issues and challenges. <i>Data and Knowledge Engineering</i> , 2006 , 59, 627-651	1.5	14
158	DEQUE: querying the deep web. <i>Data and Knowledge Engineering</i> , 2005 , 52, 273-311	1.5	14
157	Detecting changes on unordered XML documents using relational databases 2005,		14
156	Xandy: A scalable change detection technique for ordered XML documents using relational databases. <i>Data and Knowledge Engineering</i> , 2006 , 59, 476-507	1.5	13
155	Discovering frequently changing structures from historical structural deltas of unordered XML 2004 ,		13

153	Summarizing static and dynamic big graphs. <i>Proceedings of the VLDB Endowment</i> , 2017 , 10, 1981-1984	3.1	12
152	PICASSO. Proceedings of the VLDB Endowment, 2017, 10, 1861-1864	3.1	12
151	PRISM 2014 ,		12
150	Affinity-driven prediction and ranking of products in online product review sites 2010 ,		11
149	Characterizing and predicting community members from evolutionary and heterogeneous networks 2008 ,		11
148	A transaction model and multiversion concurrency control for mobile database systems. <i>Distributed and Parallel Databases</i> , 2007 , 22, 165-196	0.9	11
147	PINOCCHIO: Probabilistic Influence-Based Location Selection over Moving Objects. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2016 , 28, 3068-3082	4.2	11
146	Asymmetric structure-preserving subgraph queries for large graphs 2015,		9
145	BOOMER 2018 ,		9
144	Authenticated Subgraph Similarity Searchin Outsourced Graph Databases. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2015 , 27, 1838-1860	4.2	9
143	Content is still king 2012 ,		9
142	AffRank: Affinity-driven ranking of products in online social rating networks. <i>Journal of the Association for Information Science and Technology</i> , 2011 , 62, 1345-1359		9
141	Efficient algorithms for generalized subgraph query processing 2012 ,		9
140	Efficient recursive XML query processing using relational database systems. <i>Data and Knowledge Engineering</i> , 2006 , 58, 207-242	1.5	9
139	AutoG. Proceedings of the VLDB Endowment, 2016, 9, 1505-1508	3.1	9
138	Mining Association Rules from Structural Deltas of Historical XML Documents. <i>Lecture Notes in Computer Science</i> , 2004 , 452-457	0.9	9
137	Mining Maximal Frequently Changing Subtree Patterns from XML Documents. <i>Lecture Notes in Computer Science</i> , 2004 , 68-76	0.9	9
136	Synergistic target combination prediction from curated signaling networks: Machine learning meets systems biology and pharmacology. <i>Methods</i> , 2017 , 129, 60-80	4.6	8

(2015-2015)

135	Structure-Preserving Subgraph Query Services. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2015 , 27, 2275-2290	4.2	8	
134	DaVinci: Data-driven visual interface construction for subgraph search in graph databases 2015 ,		8	
133	Efficient Shapelet Discovery for Time Series Classification. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2020 , 1-1	4.2	8	
132	Data-driven visual graph query interface construction and maintenance. <i>Proceedings of the VLDB Endowment</i> , 2016 , 9, 984-992	3.1	8	
131	CATAPULT 2019 ,		8	
130	QUBLE 2013 ,		8	
129	GBLENDER 2011,		8	
128	XML Data Integration Based on Content and Structure Similarity Using Keys. <i>Lecture Notes in Computer Science</i> , 2008 , 484-493	0.9	8	
127	Graph Querying Meets HCI 2017 ,		7	
126	PANDA: toward partial topology-based search on large networks in a single machine. <i>VLDB Journal</i> , 2017 , 26, 203-228	3.9	7	
125	DiffNet: automatic differential functional summarization of dE-MAP networks. <i>Methods</i> , 2014 , 69, 247-	54 .6	7	
124	MESSIAH 2013 ,		7	
123	Steady states and dynamics of urokinase-mediated plasmin activation in silico and in vitro. <i>Biophysical Journal</i> , 2011 , 101, 1825-34	2.9	7	
122	Blog cascade affinity 2009 ,		7	
121	XANADUE 2007 ,		7	
120	FRACTURE mining: Mining frequently and concurrently mutating structures from historical XML documents. <i>Data and Knowledge Engineering</i> , 2006 , 59, 320-347	1.5	7	
119	Detecting Content Changes on Ordered XML Documents Using Relational Databases. <i>Lecture Notes in Computer Science</i> , 2004 , 580-590	0.9	7	
118	Computational cell fate modelling for discovery of rewiring in apoptotic network for enhanced cancer drug sensitivity. <i>BMC Systems Biology</i> , 2015 , 9 Suppl 1, S4	3.5	6	

117	COWES: Web user clustering based on evolutionary web sessions. <i>Data and Knowledge Engineering</i> , 2009 , 68, 867-885	1.5	6
116	G-CARE: A Framework for Performance Benchmarking of Cardinality Estimation Techniques for Subgraph Matching 2020 ,		6
115	Efficient Recursive XML Query Processing in Relational Database Systems. <i>Lecture Notes in Computer Science</i> , 2004 , 493-510	0.9	6
114	SURGE: Continuous Detection of Bursty Regions over a Stream of Spatial Objects 2018,		6
113	ViSual: An HCI-inspired simulator for blending visual subgraph query construction and processing 2015 ,		5
112	Efficient evaluation of high-selective xml twig patterns with parent child edges in tree-unaware rdbms 2007 ,		5
111	Detecting and representing relevant Web deltas in WHOWEDA. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2003 , 15, 423-441	4.2	5
110	Anatomy of the coupling query in a web warehouse. <i>Information and Software Technology</i> , 2002 , 44, 51	3 ₃ 5,339	5
109	Deriving and verifying statistical distribution of a hyperlink-based Web page quality metric. <i>Data and Knowledge Engineering</i> , 2003 , 46, 291-315	1.5	5
108	Bio2X: a rule-based approach for semi-automatic transformation of semi-structured biological data to XML. <i>Data and Knowledge Engineering</i> , 2005 , 52, 249-271	1.5	5
107	Towards plug-and-play visual graph query interfaces. <i>Proceedings of the VLDB Endowment</i> , 2021 , 14, 19	9. <u>-1</u> 99	91 5
106	Discovering Pattern-Based Dynamic Structures from Versions of Unordered XML Documents. <i>Lecture Notes in Computer Science</i> , 2004 , 77-86	0.9	5
105	Efficient Support for Ordered XPath Processing in Tree-Unaware Commercial Relational Databases 2007 , 793-806		5
104	COWES: Clustering Web Users Based on Historical Web Sessions. <i>Lecture Notes in Computer Science</i> , 2006 , 541-556	0.9	5
103	DTD-Diff: A Change Detection Algorithm for DTDs. Lecture Notes in Computer Science, 2006, 817-827	0.9	5
102	PINOCCHIO: Probabilistic Influence-Based Location Selection over Moving Objects 2017,		4
101	VISUAL: Simulation of Visual Subgraph Query Formulation to Enable Automated Performance Benchmarking. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2017 , 29, 1765-1778	4.2	4
100	TENET: topological feature-based target characterization in signalling networks. <i>Bioinformatics</i> , 2015 , 31, 3306-14	7.2	4

(2020-2015)

99	2015,		4
98	Conflict of Interest Declaration and Detection System in Heterogeneous Networks 2017,		4
97	TOTEM 2017 ,		4
96	Affinity-driven blog cascade analysis and prediction. <i>Data Mining and Knowledge Discovery</i> , 2014 , 28, 442-474	5.6	4
95	Pani 2011 ,		4
94	CASIS 2012 ,		4
93	Efficient processing of XPath queries using indexes. <i>Information Systems</i> , 2007 , 32, 131-159	2.7	4
92	WAM-Miner 2005 ,		4
91	Interruption-Sensitive Empty Result Feedback 2015 ,		4
90	Path Travel Time Estimation using Attribute-related Hybrid Trajectories Network 2019 ,		4
89	Path Travel Time Estimation using Attribute-related Hybrid Trajectories Network 2019 , Information Coupling in Web Databases. <i>Lecture Notes in Computer Science</i> , 1998 , 92-106	0.9	4
		0.9	
89	Information Coupling in Web Databases. <i>Lecture Notes in Computer Science</i> , 1998 , 92-106 Efficient Evaluation of NOT-Twig Queries in Tree-Unaware Relational Databases. <i>Lecture Notes in</i>		
89 88	Information Coupling in Web Databases. <i>Lecture Notes in Computer Science</i> , 1998 , 92-106 Efficient Evaluation of NOT-Twig Queries in Tree-Unaware Relational Databases. <i>Lecture Notes in Computer Science</i> , 2011 , 511-527 MustBlend: Blending Visual Multi-Source Twig Query Formulation and Query Processing in RDBMS.	0.9	4
89 88 87	Information Coupling in Web Databases. Lecture Notes in Computer Science, 1998, 92-106 Efficient Evaluation of NOT-Twig Queries in Tree-Unaware Relational Databases. Lecture Notes in Computer Science, 2011, 511-527 MustBlend: Blending Visual Multi-Source Twig Query Formulation and Query Processing in RDBMS. Lecture Notes in Computer Science, 2013, 228-243 Efficient Database-Driven Evaluation of Security Clearance for Federated Access Control of	0.9	4
89 88 87 86	Information Coupling in Web Databases. Lecture Notes in Computer Science, 1998, 92-106 Efficient Evaluation of NOT-Twig Queries in Tree-Unaware Relational Databases. Lecture Notes in Computer Science, 2011, 511-527 MustBlend: Blending Visual Multi-Source Twig Query Formulation and Query Processing in RDBMS. Lecture Notes in Computer Science, 2013, 228-243 Efficient Database-Driven Evaluation of Security Clearance for Federated Access Control of Dynamic XML Documents. Lecture Notes in Computer Science, 2010, 299-306	0.9	4 4
89 88 87 86 85	Information Coupling in Web Databases. Lecture Notes in Computer Science, 1998, 92-106 Efficient Evaluation of NOT-Twig Queries in Tree-Unaware Relational Databases. Lecture Notes in Computer Science, 2011, 511-527 MustBlend: Blending Visual Multi-Source Twig Query Formulation and Query Processing in RDBMS. Lecture Notes in Computer Science, 2013, 228-243 Efficient Database-Driven Evaluation of Security Clearance for Federated Access Control of Dynamic XML Documents. Lecture Notes in Computer Science, 2010, 299-306 Quantifying Visual-Representativeness of Social Image Tags Using Image Tag Clarity 2011, 3-23 Oxone: A Scalable Solution for Detecting Superior Quality Deltas on Ordered Large XML	0.9	4 4 4

81	Summarizing social image search results 2014 ,		3
80	Querying XML Data: As You Shape It 2012 ,		3
79	Mapping, indexing and querying of MPEG-7 descriptors in RDBMS with IXMDB. <i>Data and Knowledge Engineering</i> , 2007 , 63, 224-257	1.5	3
78	HW-STALKER: A machine learning-based system for transforming QURE-Pagelets to XML. <i>Data and Knowledge Engineering</i> , 2005 , 54, 241-276	1.5	3
77	Mining conserved XML query paths for dynamic-conscious caching 2005,		3
76	Schemas for web data: a reverse engineering approach. <i>Data and Knowledge Engineering</i> , 2001 , 39, 105-	·1443	3
75	DB ? HCI: Towards Bridging the Chasm between Graph Data Management and HCI. <i>Lecture Notes in Computer Science</i> , 2014 , 1-11	0.9	3
74	Mining History of Changes to Web Access Patterns. Lecture Notes in Computer Science, 2004, 521-523	0.9	3
73	SINBAD: Towards Structure-Independent Querying of Common Neighbors in XML Databases. <i>Lecture Notes in Computer Science</i> , 2012 , 156-171	0.9	3
72	In the Search of NECTARs from Evolutionary Trees. Lecture Notes in Computer Science, 2009, 714-729	0.9	3
71	PPKWS: An Efficient Framework for Keyword Search on Public-Private Networks 2020,		3
70	On-demand recent personal tweets summarization on mobile devices. <i>Journal of the Association for Information Science and Technology</i> , 2019 , 70, 547-562	2.7	3
69	A Generic Ontology Framework for Indexing Keyword Search on Massive Graphs. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2021 , 33, 2322-2336	4.2	3
68	Ranking Without Learning 2018 ,		3
67	Imposing Disjunctive Constraints on Inter-document Structure. <i>Lecture Notes in Computer Science</i> , 2001 , 723-733	0.9	3
66	FLAG: Towards Graph Query Autocompletion for Large Graphs. <i>Data Science and Engineering</i> , 2022 , 7, 175	3.6	3
65	Efficient Estimation of Heat Kernel PageRank for Local Clustering 2019,		2
64	FGreat: Focused Graph Query Autocompletion 2019 ,		2

Why not, WINE? 2014, 63 2 Querying virtual hierarchies using virtual prefix-based numbers 2014, 62 2 ANDES: efficient evaluation of NOT-twig queries in relational databases. VLDB Journal, 2012, 21, 889-914.9 61 Incremental Maintenance of the Minimum Bisimulation of Cyclic Graphs. IEEE Transactions on 60 4.2 Knowledge and Data Engineering, 2013, 25, 2536-2550 Towards non-directional Xpath evaluation in a RDBMS 2009, 2 59 Fuse **2011**, 58 2 Integrating historical noisy answers for improving data utility under differential privacy 2012, 2 57 Representation of Web Data in A Web Warehouse. Computer Journal, 2003, 46, 229-262 56 1.3 LATTE: Visual Construction of Smart Contracts 2020, 2 55 Document in Context of its Time (DICT) 2019, 54 Using XMorph to transform XML data. Proceedings of the VLDB Endowment, 2010, 3, 1541-1544 53 3.1 2 Efficient XML Query Processing in RDBMS Using GUI-Driven Prefetching in a Single-User 0.9 Environment. Lecture Notes in Computer Science, 2007, 819-833 BRUNCH: Branching Structure Inference of Hybrid Multivariate Hawkes Processes with Application 0.9 2 51 to Social Media. Lecture Notes in Computer Science, 2020, 553-566 HW-STALKER: A Machine Learning-Based Approach to Transform Hidden Web Data to XML. Lecture 0.9 2 50 Notes in Computer Science, 2004, 936-946 Optimizing Incremental Maintenance of Minimal Bisimulation of Cyclic Graphs. Lecture Notes in 0.9 49 2 Computer Science, **2011**, 543-557 GFocus: User Focus-based Graph Query Autocompletion. IEEE Transactions on Knowledge and Data 48 4.2 *Engineering*, **2020**, 1-1 Every Word has its History 2018, 2 47 SM3+: An XML Database Solution for the Management of MPEG-7 Descriptions. Lecture Notes in 46 0.9 2 Computer Science, 2005, 134-144

45	iWed: An Integrated Multigraph Cut-Based Approach for Detecting Events from a Website. <i>Lecture Notes in Computer Science</i> , 2006 , 351-360	0.9	2
44	On Formulation of Disjunctive Coupling Queries in WHOWEDA. <i>Lecture Notes in Computer Science</i> , 2001 , 688-698	0.9	2
43	An Indexing Framework for Efficient Visual Exploratory Subgraph Search in Graph Databases 2019,		1
42	Mapping Entity Sets in News Archives Across Time. Data Science and Engineering, 2019, 4, 208-222	3.6	1
41	Killing Two Birds With One Stone 2018 ,		1
40	PISTIS 2018 ,		1
39	Side-Effect Estimation: A Filtering Approach to the View Update Problem. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2014 , 26, 2307-2322	4.2	1
38	XBLEND: Visual XML Query Formulation Meets Query Processing. <i>Proceedings - International Conference on Data Engineering</i> , 2009 ,	2	1
37	Efficient maintenance of common keys in archives of continuous query results from deep websites 2011 ,		1
36	FACETS: multi-faceted functional decomposition of protein interaction networks. <i>Bioinformatics</i> , 2012 , 28, 2624-31	7.2	1
35	STEROID 2012 ,		1
34	FASST Mining: Discovering Frequently Changing Semantic Structure from Versions of Unordered XML Documents. <i>Lecture Notes in Computer Science</i> , 2005 , 724-735	0.9	1
33	Cost-benefit analysis of web bag in a web warehouse: An analytical approach. <i>World Wide Web</i> , 2000 , 3, 165-184	2.9	1
32	Visualet 2020 ,		1
31	BioDIFF: An Effective Fast Change Detection Algorithm for Biological Annotations. <i>Lecture Notes in Computer Science</i> , 2007 , 275-287	0.9	1
30	PANDA. Proceedings of the VLDB Endowment, 2018 , 11, 1966-1969	3.1	1
29	CHASSIS: Conformity Meets Online Information Diffusion 2020,		1
28	Typicality-Based Across-Time Mapping of Entity Sets in Document Archives. <i>Lecture Notes in Computer Science</i> , 2019 , 350-366	0.9	1

27	i AVATAR. Proceedings of the VLDB Endowment, 2010 , 3, 1609-1612	3.1	1
26	TAPESTRY 2016 ,		1
25	Modelling and Predicting Web Page Accesses Using Burrell Model. <i>Lecture Notes in Computer Science</i> , 2002 , 172-181	0.9	1
24	Constraint-Free Join Processing on Hyperlinked Web Data. Lecture Notes in Computer Science, 2002, 25.	5-264	1
23	PIANO: Influence Maximization Meets Deep Reinforcement Learning. <i>IEEE Transactions on Computational Social Systems</i> , 2022 , 1-13	4.5	1
22	Constraint-driven join processing in a Web Warehouse. <i>Data and Knowledge Engineering</i> , 2003 , 45, 33-7	81.5	Ο
21	PRISM. Proceedings of the VLDB Endowment, 2015, 8, 1868-1871	3.1	0
20	FROST. ACM Transactions on Intelligent Systems and Technology, 2020 , 11, 1-26	8	Ο
19	SURGE: Continuous Detection of Bursty Regions Over a Stream of Spatial Objects. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2020 , 32, 2254-2268	4.2	0
18	No PANE, No Gain. SIGMOD Record, 2022, 51, 42-49	1.1	O
17	TROVE: a user-friendly tool for visualizing and analyzing cancer hallmarks in signaling networks. <i>Bioinformatics</i> , 2018 , 34, 314-316	7.2	
16	Human Interaction with Graphs: A Visual Querying Perspective. <i>Synthesis Lectures on Data Management</i> , 2018 , 10, 1-208	1.8	
15	Stars on steroids: Fast evaluation of multi-source star twig queries in path materialization-based XML databases. <i>Data and Knowledge Engineering</i> , 2013 , 88, 179-205	1.5	
14	NEAR-Miner. <i>Proceedings of the VLDB Endowment</i> , 2009 , 2, 1150-1161	3.1	
13	What can a web bag discover for you?. Data and Knowledge Engineering, 2002, 43, 79-119	1.5	
12	Formulating disjunctive coupling queries in a web warehouse. <i>Data and Knowledge Engineering</i> , 2003 , 46, 1-40	1.5	
11	Detecting Semantically Correct Changes to Relevant Unordered Hidden Web Data. <i>Lecture Notes in Computer Science</i> , 2005 , 395-405	0.9	
10	A Tale of Two Approaches: Query Performance Study of XML Storage Strategies in Relational Databases. <i>Lecture Notes in Computer Science</i> , 2006 , 149-160	0.9	

9	DANTE. SIGMOD Record, 2018 , 47, 67-72	1.1
8	Virtual eXist-db. <i>Proceedings of the VLDB Endowment</i> , 2015 , 8, 1932-1935	3.1
7	Multi-faceted Functional Decomposition. Computational Biology, 2017, 95-116	0.7
6	Plug-and-Play Queries for Temporal Data Sockets. <i>Lecture Notes in Computer Science</i> , 2017 , 124-136	0.9
5	Differential Functional Summarization. Computational Biology, 2017, 117-138	0.7
4	Functional Summarization. Computational Biology, 2017 , 59-94	0.7
3	On the Discovery of Conserved XML Query Patterns for Evolution-Conscious Caching. <i>Lecture Notes in Computer Science</i> , 2009 , 527-542	0.9
2	BIDEL: An XML-Based System for Effective Fast Change Detection of Genomic and Proteomic Data. Lecture Notes in Computer Science, 2010, 472-476	0.9
1	Stars on Steroids: Fast Evaluation of Multi-source Star Twig Queries in RDBMS. <i>Lecture Notes in Computer Science</i> , 2012 , 110-125	0.9