
Yue-Wern Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8118250/publications.pdf Version: 2024-02-01

YHE-WEDN HUANC

#	Article	IF	CITATIONS
1	Bio-Membrane Internalization Mechanisms of Arginine-Rich Cell-Penetrating Peptides in Various Species. Membranes, 2022, 12, 88.	3.0	12
2	Examining Metal Contents in Primary and Secondhand Aerosols Released by Electronic Cigarettes. Chemical Research in Toxicology, 2022, 35, 954-962.	3.3	8
3	Quantifying the effect of nano-TiO2 on the toxicity of lead on C.Âdubia using a two-compartment modeling approach. Chemosphere, 2021, 263, 127958.	8.2	7
4	Cell-Penetrating Peptides as a Potential Drug Delivery System for Effective Treatment of Diabetes. Current Pharmaceutical Design, 2021, 27, 816-825.	1.9	8
5	MXene–Graphene Field-Effect Transistor Sensing of Influenza Virus and SARS-CoV-2. ACS Omega, 2021, 6, 6643-6653.	3.5	101
6	The extremely low energy cost of biosynthesis in holometabolous insect larvae. Journal of Insect Physiology, 2020, 120, 103988.	2.0	9
7	Differential Cytotoxicity Induced by Transition Metal Oxide Nanoparticles is a Function of Cell Killing and Suppression of Cell Proliferation. International Journal of Molecular Sciences, 2020, 21, 1731.	4.1	14
8	Relaxin enhances bone regeneration with BMPâ€⊋â€loaded hydroxyapatite microspheres. Journal of Biomedical Materials Research - Part A, 2020, 108, 1231-1242.	4.0	14
9	Cytotoxicity of NiO and Ni(OH)2 Nanoparticles Is Mediated by Oxidative Stress-Induced Cell Death and Suppression of Cell Proliferation. International Journal of Molecular Sciences, 2020, 21, 2355.	4.1	16
10	Modeling the load of SARS-CoV-2 virus in human expelled particles during coughing and speaking. PLoS ONE, 2020, 15, e0241539.	2.5	63
11	Polyhistidine facilitates direct membrane translocation of cell-penetrating peptides into cells. Scientific Reports, 2019, 9, 9398.	3.3	29
12	Algae (Raphidocelis) reduce combined toxicity of nano-TiO2 and lead on C. dubia. Science of the Total Environment, 2019, 686, 246-253.	8.0	7
13	The Toxicity of Nanoparticles Depends on Multiple Molecular and Physicochemical Mechanisms. International Journal of Molecular Sciences, 2017, 18, 2702.	4.1	262
14	Identification of a Short Cell-Penetrating Peptide from Bovine Lactoferricin for Intracellular Delivery of DNA in Human A549 Cells. PLoS ONE, 2016, 11, e0150439.	2.5	33
15	Cellular oxidative damage is more sensitive to biosynthetic rate than to metabolic rate: A test of the theoretical model on hornworms (Manduca sexta larvae). Experimental Gerontology, 2016, 82, 73-80.	2.8	7
16	Comparative Mechanisms of Protein Transduction Mediated by Cell-Penetrating Peptides in Prokaryotes. Journal of Membrane Biology, 2015, 248, 355-368.	2.1	12
17	Three Arginine-Rich Cell-Penetrating Peptides Facilitate Cellular Internalization of Red-Emitting Quantum Dots. Journal of Nanoscience and Nanotechnology, 2015, 15, 2067-2078.	0.9	14
18	Cellular Delivery of Noncovalently-Associated Macromolecules by Cell- Penetrating Peptides. Current Pharmaceutical Biotechnology, 2014, 15, 267-275.	1.6	29

YUE-WERN HUANG

#	Article	IF	CITATIONS
19	Synthesis, characterization and applications of carboxylated and polyethylene-glycolated bifunctionalized InP/ZnS quantum dots in cellular internalization mediated by cell-penetrating peptides. Colloids and Surfaces B: Biointerfaces, 2013, 111, 162-170.	5.0	36
20	Delivery of Nucleic Acids, Proteins, and Nanoparticles by Arginine-Rich Cell-Penetrating Peptides in Rotifers. Marine Biotechnology, 2013, 15, 584-595.	2.4	31
21	Cytotoxicity in the age of nano: The role of fourth period transition metal oxide nanoparticle physicochemical properties. Chemico-Biological Interactions, 2013, 206, 319-326.	4.0	79
22	Intracellular Delivery of Nanoparticles and DNAs by IR9 Cell-penetrating Peptides. PLoS ONE, 2013, 8, e64205.	2.5	33
23	Endocytic Trafficking of Nanoparticles Delivered by Cell-penetrating Peptides Comprised of Nona-arginine and a Penetration Accelerating Sequence. PLoS ONE, 2013, 8, e67100.	2.5	50
24	Protein transduction in human cells is enhanced by cell-penetrating peptides fused with an endosomolytic HA2 sequence. Peptides, 2012, 37, 273-284.	2.4	70
25	Intracellular delivery of quantum dots mediated by a histidine- and arginine-rich HR9 cell-penetrating peptide through the direct membrane translocation mechanism. Biomaterials, 2011, 32, 3520-3537.	11.4	145
26	A gene delivery system for human cells mediated by both a cell-penetrating peptide and a piggyBac transposase. Biomaterials, 2011, 32, 6264-6276.	11.4	42
27	Cellular Internalization of Quantum Dots Noncovalently Conjugated with Arginine-Rich Cell-Penetrating Peptides. Journal of Nanoscience and Nanotechnology, 2010, 10, 6534-6543.	0.9	65
28	Heavy metals, hematology, plasma chemistry, and parasites in adult hellbenders (<i>Cryptobranchus) Tj ETQq0</i>	0 0 rgBT /0 4.3	Dverlock 10 Tf
29	Oxidative stress, calcium homeostasis, and altered gene expression in human lung epithelial cells exposed to ZnO nanoparticles. Toxicology in Vitro, 2010, 24, 45-55.	2.4	375
30	Zinc oxide nanoparticle disruption of store-operated calcium entry in a muscarinic receptor signaling pathway. Toxicology in Vitro, 2010, 24, 1953-1961.	2.4	45
31	Toxicity of Transition Metal Oxide Nanoparticles: Recent Insights from in vitro Studies. Materials, 2010, 3, 4842-4859.	2.9	198
32	Toxicity of nano- and micro-sized ZnO particles in human lung epithelial cells. Journal of Nanoparticle Research, 2009, 11, 25-39.	1.9	338
33	Cytotoxicity and cell membrane depolarization induced by aluminum oxide nanoparticles in human lung epithelial cells A549. Toxicological and Environmental Chemistry, 2008, 90, 983-996.	1.2	82
34	Human exposure to medicinal, dietary, and environmental estrogens. Toxicological and Environmental Chemistry, 2007, 89, 141-160.	1.2	10
35	Occurrence of Organic Chemicals in Two Rivers Inhabited by Ozark Hellbenders (Cryptobranchus) Tj ETQq1 1 0.	.784314 rg 4.1	gBT /Overlock
36	Toxicity of Cerium Oxide Nanoparticles in Human Lung Cancer Cells. International Journal of Toxicology, 2006, 25, 451-457.	1.2	449

Yue-Wern Huang

#	Article	IF	CITATIONS
37	In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicology and Applied Pharmacology, 2006, 217, 252-259.	2.8	775
38	The cytotoxicity and mechanisms of 1,2-naphthoquinone thiosemicarbazone and its metal derivatives against MCF-7 human breast cancer cells. Toxicology and Applied Pharmacology, 2004, 197, 40-48.	2.8	117
39	Lead, Zinc, Copper, and Cadmium in Fish and Sediments from the Big River and Flat River Creek of Missouri's Old Lead Belt. Environmental Geochemistry and Health, 2004, 26, 37-49.	3.4	70
40	Lead Concentrations in Fish and River Sediments in the Old Lead Belt of Missouri. Environmental Science & Technology, 2002, 36, 4262-4268.	10.0	16