
Hideki Fujiwara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8117283/publications.pdf Version: 2024-02-01

Ηίδεκι Ειπιλλάδα

#	Article	IF	CITATIONS
1	Fano resonance in a multimode tapered fiber coupled with a microspherical cavity. Applied Physics Letters, 2005, 86, 261106.	3.3	78
2	Influence of Structural and Rotational Isomerism on the Triplet Blinking of Individual Dendrimer Molecules. Angewandte Chemie - International Edition, 2001, 40, 4643-4648.	13.8	68
3	Low-threshold and quasi-single-mode random laser within a submicrometer-sized ZnO spherical particle film. Applied Physics Letters, 2013, 102, .	3.3	62
4	Randomization of gold nano-brick arrays: a tool for SERS enhancement. Optics Express, 2013, 21, 13502.	3.4	53
5	Upconversion lasing of a thulium-ion-doped fluorozirconate glass microsphere. Journal of Applied Physics, 1999, 86, 2385-2388.	2.5	50
6	Photothermal fixation of laser-trapped polymer microparticles on polymer substrates. Applied Physics Letters, 1999, 75, 1506-1508.	3.3	50
7	Quantum interference fringes beating the diffraction limit. Optics Express, 2007, 15, 14244.	3.4	43
8	Rapid Swelling/Collapsing Behavior of Thermoresponsive Poly(N-isopropylacrylamide) Gel Containing Poly(2-(methacryloyloxy)decyl phosphate) Surfactant. Angewandte Chemie - International Edition, 2005, 44, 1951-1954.	13.8	41
9	ZnO nanorod array random lasers fabricated by a laser-induced hydrothermal synthesis. New Journal of Physics, 2016, 18, 103046.	2.9	40
10	Observation of Autler-Townes splitting in six-wave mixing. Optics Express, 2011, 19, 7726.	3.4	39
11	Polarization-discriminated spectra of a fiber-microsphere system. Applied Physics Letters, 2006, 89, 121107.	3.3	36
12	Detailed Observation of Multiphoton Emission Enhancement from a Single Colloidal Quantum Dot Using a Silver-Coated AFM Tip. Nano Letters, 2016, 16, 5770-5778.	9.1	36
13	Optical selection and sorting of nanoparticles according to quantum mechanical properties. Science Advances, 2021, 7, .	10.3	36
14	Photon tunneling from an optically manipulated microsphere to a surface by lasing spectral analysis. Applied Physics Letters, 1997, 70, 2647-2649.	3.3	33
15	Observation of the discrete transition of optically trapped particle position in the vicinity of an interface. Applied Physics Letters, 2004, 84, 13-15.	3.3	32
16	Resonant Frequency Control of a Microspherical Cavity by Temperature Adjustment. Japanese Journal of Applied Physics, 2004, 43, 6138-6141.	1.5	32
17	Optical manipulation of a lasing microparticle and its application to near-field microspectroscopy. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1997, 15, 2786.	1.6	28
18	Control of spontaneous emission coupling factor β in fiber-coupled microsphere resonators. Applied Physics Letters, 2008, 92, 071115.	3.3	27

Hideki Fujiwara

#	Article	IF	CITATIONS
19	Numerical analysis of resonant and lasing properties at a defect region within a random structure. Optics Express, 2009, 17, 3970.	3.4	27
20	Lasing of a Microsphere in Dye Solution. Japanese Journal of Applied Physics, 1999, 38, 5101-5104.	1.5	25
21	Enhancement of Förster Energy Transfer within a Microspherical Cavity. ChemPhysChem, 2005, 6, 2410-2416.	2.1	24
22	Fiber-microsphere laser with a submicrometer sol-gel silica glass layer codoped with erbium, aluminum, and phosphorus. Applied Physics Letters, 2007, 90, 101103.	3.3	23
23	Pyrene fluorescence dynamics within a polymer microspherical cavity. Journal of Applied Physics, 1999, 85, 2052-2056.	2.5	22
24	Nanoscale Color Sorting of Surface Plasmons in a Double-Nanogap Structure with Multipolar Plasmon Excitation. Nano Letters, 2015, 15, 7086-7090.	9.1	21
25	Double threshold behavior in a resonance-controlled ZnO random laser. APL Photonics, 2017, 2, .	5.7	20
26	Fabrication of Spherical-Shaped Submicron Particles of ZnOUsing Laser-induced Melting of Submicron-sized Source Materials. Journal of Laser Micro Nanoengineering, 2013, 8, 292-295.	0.1	20
27	Stabilizer-Concentration Effects on the Size of Gold Submicrometer-Sized Spherical Particles Prepared Using Laser-Induced Agglomeration and Melting of Colloidal Nanoparticles. Journal of Physical Chemistry C, 2018, 122, 21659-21666.	3.1	19
28	Spin–Orbit Angular-Momentum Transfer from a Nanogap Surface Plasmon to a Trapped Nanodiamond. Nano Letters, 2021, 21, 6268-6273.	9.1	19
29	Lasing with well-defined cavity modes in dye-infiltrated silica inverse opals. Optics Express, 2009, 17, 2976.	3.4	18
30	Origins of lasing emission in a resonance-controlled ZnO random laser. New Journal of Physics, 2014, 16, 093054.	2.9	18
31	Toward single-mode random lasing within a submicrometre-sized spherical ZnO particle film. Journal of Optics (United Kingdom), 2016, 18, 035202.	2.2	18
32	Tunable Raman Selectivity via Randomization of a Rectangular Pattern of Nanodisks. ACS Photonics, 2014, 1, 1006-1012.	6.6	16
33	Localized ZnO Growth on a Gold Nanoantenna by Plasmon-Assisted Hydrothermal Synthesis. Nano Letters, 2020, 20, 389-394.	9.1	16
34	Amplified spontaneous emission from a surface-modified GaN film fabricated under pulsed intense UV laser irradiation. Applied Physics Letters, 2018, 113, .	3.3	15
35	Observation of Upconversion Lasing within a Thulium-Ion-Doped Glass Powder Film Containing Titanium Dioxide Particles. Japanese Journal of Applied Physics, 2004, 43, L1337-L1339.	1.5	13
36	Analysis of Trap-State Dynamics of Single CdSe/ZnS Quantum Dots on a TiO ₂ Substrate with Different Nb Concentrations. Journal of Physical Chemistry C, 2014, 118, 20571-20575.	3.1	10

Hideki Fujiwara

#	Article	IF	CITATIONS
37	Efficient optical coupling into a single plasmonic nanostructure using a fiber-coupled microspherical cavity. Physical Review A, 2014, 89, .	2.5	10
38	Observation of optical bistability in a ZnO powder random medium. Applied Physics Letters, 2006, 89, 071115.	3.3	9
39	White light induced photo-thermal switching in a graphene-flake-mixed ZnO nanoparticle random laser. Journal of Physics Communications, 2018, 2, 035022.	1.2	9
40	Numerical analysis of resonant properties of a waveguide structure within a random medium. Optics Express, 2009, 17, 10522.	3.4	8
41	Temporal response analysis of trap states of single CdSe/ZnS quantum dots on a thin metal substrate. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 221, 160-163.	3.9	8
42	Multicolour photochromic fluorescence of a fluorophore encapsulated in a metal–organic framework. Chemical Communications, 2020, 56, 9651-9654.	4.1	8
43	Proposed method for highly selective resonant optical manipulation using counter-propagating light waves. Nanophotonics, 2020, 9, 3335-3345.	6.0	8
44	Microspherical Lasing of an Erbium-Ion-Doped Glass Particle. Japanese Journal of Applied Physics, 2002, 41, L46-L48.	1.5	7
45	Fano-like resonance in an optically driven atomic force microscope cantilever. Optics Express, 2011, 19, 2317.	3.4	7
46	Two-photon excited fluorescence from a pseudoisocyanine-attached gold-coated tip via a thin tapered fiber under a weak continuous wave excitation. Optics Express, 2013, 21, 27759.	3.4	7
47	Numerical Analysis of Random Lasing Properties of a Waveguide Defect within a Random Structure. Japanese Journal of Applied Physics, 2010, 49, 112002.	1.5	6
48	Analysis of Trap State Dynamics of Single CdSe/ZnS Quantum Dots on an Indium Tin Oxide Thin Film with Applying External Electric Field. Journal of Physical Chemistry C, 2013, 117, 2507-2510.	3.1	6
49	Direct Observation of Localized Fields in Nanogaps between Metal Particles Using a Scattering-Type Near-Field Microscope. Applied Physics Express, 2009, 2, 102002.	2.4	4
50	Second harmonic generation from the top of an Au-coated tip via a tapered fiber coupled microsphere resonator. , 2012, , .		4
51	Ultraviolet random lasing from a diamond nanoparticle film. Applied Physics Letters, 2014, 105, 011112.	3.3	4
52	Controlled optical manipulation and sorting of nanomaterials enabled by photonic and plasmonic nanodevices. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2022, 52, 100534.	11.6	4
53	Magnetic response of random lasing modes in a ZnO nanoparticle film deposited on a NiFe thin film. Applied Physics Letters, 2018, 113, .	3.3	3
54	Dynamical Analysis of Triplet Lifetime of Single Molecules by a Photon Interdetection Time Analysis Method. Journal of Physical Chemistry C, 2009, 113, 11652-11656.	3.1	2

HIDEKI FUJIWARA

#	Article	IF	CITATIONS
55	Two-photon excited fluorescence from a pseudoisocyanine-attached gold tip via a plasmonic-photonic hybrid system. Optics Express, 2015, 23, 21730.	3.4	2
56	Development of magnetic responsive random lasers fabricated by a laser-induced surface roughness. Applied Physics Letters, 2021, 119, 041105.	3.3	2
57	Analysis of Quantum Dot Fluorescence Coupled with a Microsphere Resonator. Japanese Journal of Applied Physics, 2006, 45, 6917-6921.	1.5	1
58	Investigation of the Spatial Propagation Properties of Type-I Parametric Fluorescence by Use of Tuning Curve Filtering Method. Japanese Journal of Applied Physics, 2007, 46, 5802-5808.	1.5	1
59	Numerical analysis of spatial propagation of parametric fluorescence photon pairs using the tuning-curve filtering method. Physical Review A, 2007, 75, .	2.5	1
60	Analysis of photothermally induced vibration in metal coated AFM cantilever. , 2010, , .		1
61	Quantum lithography under imperfect conditions: effects of loss and dephasing on two-photon interference fringes. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 422.	2.1	1
62	Quasi-single-mode random lasing within a ZnO nanoparticle film. , 2013, , .		1
63	Nonlinear phenomena from a PIC-attached gold tip using a plasmonic-whispering gallery mode hybrid system. Proceedings of SPIE, 2013, , .	0.8	1
64	Realization of Low Threshold ZnO Nanorod Array Random Lasers Using a Laser-Induced Hydrothermal Synthesis. , 2016, , .		1
65	Nonlinear optical phase shift obtained from two-level atoms confined in a planar microcavity. Journal of Applied Physics, 2010, 107, 054310.	2.5	Ο
66	Experimental evaluation of diffusion constant in a thin polymer film by triplet lifetime analysis of single molecules. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 238, 24-28.	3.9	0
67	Realization of single-mode random lasing within a zinc oxide nanoparticle film. , 2013, , .		Ο
68	Direct imaging of localized fields in a gold nanostructure using a scattering-type near-field microscope. , 2013, , .		0
69	Fabrication of spherical-shaped submicron particles of ZnO using laser-induced melting of submicron-sized source materials. , 2013, , .		Ο
70	Annealing temperature dependence of random lasing properties in a diamond nanoparticle film. Proceedings of SPIE, 2015, , .	0.8	0
71	Double threshold behavior in a resonance-controlled ZnO random laser. , 2015, , .		0
72	White Light Induced Mode Switching in a Graphene Flake Mixed ZnO Random Laser. , 2016, , .		0

#	Article	IF	CITATIONS
73	Localized field control at the nano-scale. , 2017, , .		0
74	Nanoparticle manipulation using a tapered fiber. , 2018, , .		0
75	Photothermal energy conversion in plasmonic nano gap antennas: application to localized ZnO growth for nanophotonics. , 2020, , .		0