
Yannan Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/811727/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Surfactant-Free Assembly of Mesoporous Carbon Hollow Spheres with Large Tunable Pore Sizes. ACS Nano, 2016, 10, 4579-4586.	14.6	374
2	Antibioticâ€Free Antibacterial Strategies Enabled by Nanomaterials: Progress and Perspectives. Advanced Materials, 2020, 32, e1904106.	21.0	368
3	Silica Nanopollens Enhance Adhesion for Long-Term Bacterial Inhibition. Journal of the American Chemical Society, 2016, 138, 6455-6462.	13.7	219
4	Anion Assisted Synthesis of Large Pore Hollow Dendritic Mesoporous Organosilica Nanoparticles: Understanding the Composition Gradient. Chemistry of Materials, 2016, 28, 704-707.	6.7	199
5	Advances in silica based nanoparticles for targeted cancer therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 317-332.	3.3	145
6	Structure-Dependent and Glutathione-Responsive Biodegradable Dendritic Mesoporous Organosilica Nanoparticles for Safe Protein Delivery. Chemistry of Materials, 2016, 28, 9008-9016.	6.7	142
7	Coreâ€Cone Structured Monodispersed Mesoporous Silica Nanoparticles with Ultraâ€large Cavity for Protein Delivery. Small, 2015, 11, 5949-5955.	10.0	140
8	Glutathione-depletion mesoporous organosilica nanoparticles as a self-adjuvant and Co-delivery platform for enhanced cancer immunotherapy. Biomaterials, 2018, 175, 82-92.	11.4	135
9	Multiâ€shelled Dendritic Mesoporous Organosilica Hollow Spheres: Roles of Composition and Architecture in Cancer Immunotherapy. Angewandte Chemie - International Edition, 2017, 56, 8446-8450.	13.8	128
10	Silica-Based Nanoparticles for Biomedical Applications: From Nanocarriers to Biomodulators. Accounts of Chemical Research, 2020, 53, 1545-1556.	15.6	128
11	Mechanism of Iron Oxide-Induced Macrophage Activation: The Impact of Composition and the Underlying Signaling Pathway. Journal of the American Chemical Society, 2019, 141, 6122-6126.	13.7	126
12	FeOOH@Metal–Organic Framework Core–Satellite Nanocomposites for the Serum Metabolic Fingerprinting of Gynecological Cancers. Angewandte Chemie - International Edition, 2020, 59, 10831-10835.	13.8	113
13	Plasmid DNA Delivery: Nanotopography Matters. Journal of the American Chemical Society, 2017, 139, 18247-18254.	13.7	109
14	Hybrid Nanoreactors: Enabling an Offâ€theâ€Shelf Strategy for Concurrently Enhanced Chemoâ€immunotherapy. Angewandte Chemie - International Edition, 2018, 57, 11764-11769.	13.8	108
15	Asymmetric Silica Nanoparticles with Tunable Head–Tail Structures Enhance Hemocompatibility and Maturation of Immune Cells. Journal of the American Chemical Society, 2017, 139, 6321-6328.	13.7	105
16	Hollow Mesoporous Carbon Nanocubes: Rigidâ€Interfaceâ€Induced Outward Contraction of Metalâ€Organic Frameworks. Advanced Functional Materials, 2018, 28, 1705253.	14.9	100
17	Self-Organized Mesostructured Hollow Carbon Nanoparticles via a Surfactant-Free Sequential Heterogeneous Nucleation Pathway. Chemistry of Materials, 2015, 27, 6297-6304.	6.7	99
18	Stepwise Degradable Nanocarriers Enabled Cascade Delivery for Synergistic Cancer Therapy. Advanced Functional Materials, 2018, 28, 1800706.	14.9	96

YANNAN YANG

#	Article	IF	CITATIONS
19	Small-sized and large-pore dendritic mesoporous silica nanoparticles enhance antimicrobial enzyme delivery. Journal of Materials Chemistry B, 2016, 4, 2646-2653.	5.8	87
20	Biphasic Synthesis of Largeâ€Pore and Wellâ€Dispersed Benzene Bridged Mesoporous Organosilica Nanoparticles for Intracellular Protein Delivery. Small, 2015, 11, 2743-2749.	10.0	82
21	Al-modified dendritic mesoporous silica nanospheres-supported NiMo catalysts for the hydrodesulfurization of dibenzothiophene: Efficient accessibility of active sites and suitable metal–support interaction. Journal of Catalysis, 2017, 356, 269-282.	6.2	81
22	Eliciting Immunogenic Cell Death via a Unitized Nanoinducer. Nano Letters, 2020, 20, 6246-6254.	9.1	80
23	Openwork@Dendritic Mesoporous Silica Nanoparticles for Lactate Depletion and Tumor Microenvironment Regulation. Angewandte Chemie - International Edition, 2020, 59, 22054-22062.	13.8	76
24	Understanding the contribution of surface roughness and hydrophobic modification of silica nanoparticles to enhanced therapeutic protein delivery. Journal of Materials Chemistry B, 2016, 4, 212-219.	5.8	75
25	Mesoporous Magnesium Oxide Hollow Spheres as Superior Arsenite Adsorbent: Synthesis and Adsorption Behavior. ACS Applied Materials & Interfaces, 2016, 8, 25306-25312.	8.0	69
26	Ferroptosis-Strengthened Metabolic and Inflammatory Regulation of Tumor-Associated Macrophages Provokes Potent Tumoricidal Activities. Nano Letters, 2021, 21, 6471-6479.	9.1	65
27	Tailoring mesoporous-silica nanoparticles for robust immobilization of lipase and biocatalysis. Nano Research, 2017, 10, 605-617.	10.4	63
28	Room temperature synthesis of dendritic mesoporous silica nanoparticles with small sizes and enhanced mRNA delivery performance. Journal of Materials Chemistry B, 2018, 6, 4089-4095.	5.8	52
29	Functional Nanoparticles with a Reducible Tetrasulfide Motif to Upregulate mRNA Translation and Enhance Transfection in Hardâ€toâ€Transfect Cells. Angewandte Chemie - International Edition, 2020, 59, 2695-2699.	13.8	49
30	Kinetically Controlled Dendritic Mesoporous Silica Nanoparticles: From Dahlia- to Pomegranate-like Structures by Micelle Filling. Chemistry of Materials, 2018, 30, 5770-5776.	6.7	45
31	Electron Tomography: A Unique Tool Solving Intricate Hollow Nanostructures. Advanced Materials, 2019, 31, e1801564.	21.0	43
32	Asymmetric mesoporous silica nanoparticles as potent and safe immunoadjuvants provoke high immune responses. Chemical Communications, 2018, 54, 2020-2023.	4.1	41
33	Amine functionalized cubic mesoporous silica nanoparticles as an oral delivery system for curcumin bioavailability enhancement. Nanotechnology, 2016, 27, 505605.	2.6	40
34	Synthesis of silica nanoparticles with controllable surface roughness for therapeutic protein delivery. Journal of Materials Chemistry B, 2015, 3, 8477-8485.	5.8	36
35	Understanding the Effect of Surface Chemistry of Mesoporous Silica Nanorods on Their Vaccine Adjuvant Potency. Advanced Healthcare Materials, 2017, 6, 1700466.	7.6	36
36	Nanostructured Organosilica Nitric Oxide Donors Intrinsically Regulate Macrophage Polarization with Antitumor Effect. ACS Nano, 2022, 16, 10943-10957.	14.6	33

Yannan Yang

#	Article	IF	CITATIONS
37	Designed synthesis of organosilica nanoparticles for enzymatic biodiesel production. Materials Chemistry Frontiers, 2018, 2, 1334-1342.	5.9	31
38	Size-dependent gene delivery of amine-modified silica nanoparticles. Nano Research, 2016, 9, 291-305.	10.4	30
39	Responsively Aggregatable Sub-6 nm Nanochelators Induce Simultaneous Antiangiogenesis and Vascular Obstruction for Enhanced Tumor Vasculature Targeted Therapy. Nano Letters, 2019, 19, 7750-7759.	9.1	29
40	Immune-regulating bimetallic metal-organic framework nanoparticles designed for cancer immunotherapy. Biomaterials, 2022, 280, 121261.	11.4	29
41	Nanotechnology enabled reactive species regulation in biosystems for boosting cancer immunotherapy. Nano Today, 2021, 36, 101035.	11.9	28
42	Hybrid Nanoreactors: Enabling an Offâ€theâ€5helf Strategy for Concurrently Enhanced Chemoâ€immunotherapy. Angewandte Chemie, 2018, 130, 11938-11943.	2.0	27
43	Mg(OH) ₂ –MgO@reduced graphene oxide nanocomposites: the roles of composition and nanostructure in arsenite sorption. Journal of Materials Chemistry A, 2017, 5, 24484-24492.	10.3	26
44	Bottom-up self-assembly of heterotrimeric nanoparticles and their secondary Janus generations. Chemical Science, 2019, 10, 10388-10394.	7.4	26
45	Preparation of fluorescent mesoporous hollow silica–fullerene nanoparticles via selective etching for combined chemotherapy and photodynamic therapy. Nanoscale, 2015, 7, 11894-11898.	5.6	25
46	Synthesis of biphenyl bridged dendritic mesoporous organosilica with extremely high adsorption of pyrene. Journal of Materials Chemistry A, 2019, 7, 12029-12037.	10.3	25
47	Synthesis of SBA-15 rods with small sizes for enhanced cellular uptake. Journal of Materials Chemistry B, 2014, 2, 4929-4934.	5.8	23
48	Core–Shellâ€ s tructured Dendritic Mesoporous Silica Nanoparticles for Combined Photodynamic Therapy and Antibody Delivery. Chemistry - an Asian Journal, 2017, 12, 1465-1469.	3.3	23
49	Dendritic Mesoporous Silica Nanoparticle Adjuvants Modified with Binuclear Aluminum Complex: Coordination Chemistry Dictates Adjuvanticity. Angewandte Chemie - International Edition, 2020, 59, 19610-19617.	13.8	22
50	Kinetically Controlled Assembly of Nitrogenâ€Đoped Invaginated Carbon Nanospheres with Tunable Mesopores. Chemistry - A European Journal, 2016, 22, 14962-14967.	3.3	21
51	Confined growth of ZIF-8 in dendritic mesoporous organosilica nanoparticles as bioregulators for enhanced mRNA delivery <i>in vivo</i> . National Science Review, 2021, 8, nwaa268.	9.5	21
52	A Sub-6 nm MnFe2O4-dichloroacetic acid nanocomposite modulates tumor metabolism and catabolism for reversing tumor immunosuppressive microenvironment and boosting immunotherapy. Biomaterials, 2022, 284, 121533.	11.4	19
53	An Approach to Prepare Polyethylenimine Functionalized Silica-Based Spheres with Small Size for siRNA Delivery. ACS Applied Materials & Interfaces, 2014, 6, 15626-15631.	8.0	17
54	DNA Vaccine Mediated by Rambutan‣ike Mesoporous Silica Nanoparticles. Advanced Therapeutics, 2020, 3, 1900154.	3.2	17

YANNAN YANG

#	Article	IF	CITATIONS
55	Multiâ€shelled Dendritic Mesoporous Organosilica Hollow Spheres: Roles of Composition and Architecture in Cancer Immunotherapy. Angewandte Chemie, 2017, 129, 8566-8570.	2.0	16
56	Oxidative Dissolution of Resoles: A Versatile Approach to Intricate Nanostructures. Angewandte Chemie - International Edition, 2018, 57, 654-658.	13.8	16
57	Superhydrophobic dendritic mesoporous organosilica nano-particles with ultrahigh-content of gradient organic moieties. Journal of Materials Chemistry A, 2018, 6, 17579-17586.	10.3	16
58	Openwork@Dendritic Mesoporous Silica Nanoparticles for Lactate Depletion and Tumor Microenvironment Regulation. Angewandte Chemie, 2020, 132, 22238-22246.	2.0	16
59	Nanodispersed UV blockers in skin-friendly silica vesicles with superior UV-attenuating efficiency. Journal of Materials Chemistry B, 2014, 2, 7673-7678.	5.8	15
60	Facile synthesis of ultra-small hybrid silica spheres for enhanced penetration in 3D glioma spheroids. Chemical Communications, 2014, 50, 1527-1529.	4.1	15
61	Dendritic mesoporous silica–titania nanospheres with enhanced photocatalytic activities. New Journal of Chemistry, 2017, 41, 8754-8760.	2.8	15
62	Post translational modification-assisted cancer immunotherapy for effective breast cancer treatment. Chemical Science, 2020, 11, 10421-10430.	7.4	14
63	Antibioticâ€Free Strategies: Antibioticâ€Free Antibacterial Strategies Enabled by Nanomaterials: Progress and Perspectives (Adv. Mater. 18/2020). Advanced Materials, 2020, 32, 2070138.	21.0	14
64	FeOOH@Metal–Organic Framework Core–Satellite Nanocomposites for the Serum Metabolic Fingerprinting of Gynecological Cancers. Angewandte Chemie, 2020, 132, 10923-10927.	2.0	14
65	Asymmetric Silica Nanoparticles with Tailored Spiky Coverage Derived from Silica–Polymer Cooperative Assembly for Enhanced Hemocompatibility and Gene Delivery. ACS Applied Materials & Interfaces, 2021, 13, 50695-50704.	8.0	14
66	Functional Nanoparticles with a Reducible Tetrasulfide Motif to Upregulate mRNA Translation and Enhance Transfection in Hardâ€ŧoâ€īransfect Cells. Angewandte Chemie, 2020, 132, 2717-2721.	2.0	13
67	Quantum dots' size matters for balancing their quantity and quality in label materials to improve lateral flow immunoassay performance for C-reactive protein determination. Biosensors and Bioelectronics, 2022, 199, 113892.	10.1	12
68	Solvothermal-assisted evaporation-induced self-assembly of ordered mesoporous alumina with improved performance. Journal of Colloid and Interface Science, 2018, 529, 432-443.	9.4	10
69	Pore architecture influences the enzyme immobilization performance of mesoporous silica nanospheres. Microporous and Mesoporous Materials, 2022, 338, 111963.	4.4	10
70	Large scale synthesis of self-assembled shuttlecock-shaped silica nanoparticles with minimized drag as advanced catalytic nanomotors. Chemical Engineering Journal, 2021, 417, 127971.	12.7	9
71	Nanoâ€resolesâ€Enabled Elegant Nanostructured Materials. Chemistry - A European Journal, 2018, 24, 14598-14607.	3.3	8
72	Designer Anticancer Nanoprodrugs with Selfâ€Toxification Activity Realized by Acidâ€ŧriggered Biodegradation and Inâ€Situ Fragment Complexation. Angewandte Chemie - International Edition, 2021, 60, 11504-11513.	13.8	8

YANNAN YANG

#	Article	IF	CITATIONS
73	Modulating the Void Space of Nitrogenâ€Doped Hollow Mesoporous Carbon Spheres for Lithiumâ€Sulfur Batteries. ChemNanoMat, 2020, 6, 925-929.	2.8	7
74	Surfactant-free synthesis of monodispersed organosilica particles with pure sulfide-bridged silsesquioxane framework chemistry via extension of Stöber method. Journal of Colloid and Interface Science, 2021, 591, 129-138.	9.4	7
75	In-situ synthesis of Drug-Containing bactericidal rough silica nanoparticles for antibacterial coating. Chemical Engineering Journal, 2022, 440, 135837.	12.7	7
76	Silicaâ€based Nanoparticles for Enzyme Immobilization and Delivery. Chemistry - an Asian Journal, 2022, 17, .	3.3	7
77	A Concentration-Dependent Insulin Immobilization Behavior of Alkyl-Modified Silica Vesicles: The Impact of Alkyl Chain Length. Langmuir, 2018, 34, 5011-5019.	3.5	6
78	Lyophilization enabled disentanglement of polyethylenimine on rambutan-like silica nanoparticles for enhanced plasmid DNA delivery. Journal of Materials Chemistry B, 2020, 8, 4593-4600.	5.8	5
79	Effects of synthetic routes on the compositional and structural properties of dendritic mesoporous organosilica nanoparticles: The unexpected reversed "double-edged sword―role of reaction time. Microporous and Mesoporous Materials, 2020, 294, 109914.	4.4	4
80	Synthesis of dendritic mesoporous organosilica nanoparticles under a mild acidic condition with homogeneous wall structure and near-neutral surface. Chemical Communications, 2021, 57, 4416-4419.	4.1	4
81	Dendritic Mesoporous Silica Nanoparticle Adjuvants Modified with Binuclear Aluminum Complex: Coordination Chemistry Dictates Adjuvanticity. Angewandte Chemie, 2020, 132, 19778-19785.	2.0	3
82	3D-Nanosponge enabled segregation: a versatile approach for highly dispersed and high content functionalization of metal oxide species. Materials Chemistry Frontiers, 2020, 4, 1739-1746.	5.9	3
83	Designer Anticancer Nanoprodrugs with Selfâ€Toxification Activity Realized by Acidâ€triggered Biodegradation and Inâ€Situ Fragment Complexation. Angewandte Chemie, 2021, 133, 11605-11614.	2.0	3
84	Synthesis of Silica Vesicles with Small Sizes and Reduced Aggregation for Photodynamic Therapy. Chemistry Letters, 2014, 43, 316-318.	1.3	2
85	Oxidative Dissolution of Resoles: A Versatile Approach to Intricate Nanostructures. Angewandte Chemie, 2018, 130, 662-666.	2.0	1
86	Hollow Nanostructures: Electron Tomography: A Unique Tool Solving Intricate Hollow Nanostructures (Adv. Mater. 38/2019). Advanced Materials, 2019, 31, 1970272.	21.0	1
87	Rücktitelbild: Oxidative Dissolution of Resoles: A Versatile Approach to Intricate Nanostructures (Angew. Chem. 3/2018). Angewandte Chemie, 2018, 130, 862-862.	2.0	0
88	Frontispiece: Nano-resoles-Enabled Elegant Nanostructured Materials. Chemistry - A European Journal, 2018, 24, .	3.3	0