Fedor V Fomin

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8117202/fedor-v-fomin-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

5,625 66 296 38 h-index g-index citations papers 6,410 320 0.9 5.99 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
296	Parameterized Complexity of Elimination Distance to First-Order Logic Properties. <i>ACM Transactions on Computational Logic</i> , 2022 , 23, 1-35	0.9	
295	Lossy Kernelization of Same-Size Clustering. Lecture Notes in Computer Science, 2022, 96-114	0.9	
294	Multiplicative Parameterization Above a Guarantee. <i>ACM Transactions on Computation Theory</i> , 2021 , 13, 1-16	0.6	
293	Subexponential Parameterized Algorithms and Kernelization on Almost Chordal Graphs. <i>Algorithmica</i> , 2021 , 83, 2170-2214	0.9	
292	Computation of Hadwiger Number and Related Contraction Problems. <i>ACM Transactions on Computation Theory</i> , 2021 , 13, 1-25	0.6	
291	Parameterized Complexity of Elimination Distance to First-Order Logic Properties 2021,		1
290	Can Romeo and Juliet Meet? or Rendezvous Games with Adversaries on Graphs. <i>Lecture Notes in Computer Science</i> , 2021 , 308-320	0.9	
289	Parameterized Complexity of Categorical Clustering with Size Constraints. <i>Lecture Notes in Computer Science</i> , 2021 , 385-398	0.9	
288	Kernelization of Graph Hamiltonicity: Proper \$H\$-Graphs. <i>SIAM Journal on Discrete Mathematics</i> , 2021 , 35, 840-892	0.7	
287	On the Tractability of Optimization Problems on H-Graphs. <i>Algorithmica</i> , 2020 , 82, 2432-2473	0.9	6
286	Subgraph Complementation. <i>Algorithmica</i> , 2020 , 82, 1859-1880	0.9	2
285	Hitting topological minors is FPT 2020 ,		4
284	Bidimensionality and Kernels. SIAM Journal on Computing, 2020, 49, 1397-1422	1.1	1
283	Knot Diagrams of Treewidth Two. Lecture Notes in Computer Science, 2020, 80-91	0.9	
282	Subexponential Algorithms for Rectilinear Steiner Tree and Arborescence Problems. <i>ACM Transactions on Algorithms</i> , 2020 , 16, 1-37	1.2	1
281	On the Parameterized Complexity of the Expected Coverage Problem. <i>Lecture Notes in Computer Science</i> , 2020 , 224-236	0.9	
280	Parameterized low-rank binary matrix approximation. <i>Data Mining and Knowledge Discovery</i> , 2020 , 34, 478-532	5.6	4

(2018-2020)

279	On the parameterized complexity of [1,j]-domination problems. <i>Theoretical Computer Science</i> , 2020 , 804, 207-218	1.1	2
278	Approximation Schemes for Low-rank Binary Matrix Approximation Problems. <i>ACM Transactions on Algorithms</i> , 2020 , 16, 1-39	1.2	4
277	CSR 2018 Special Issue on TOCS. Theory of Computing Systems, 2020, 64, 1-2	0.6	
276	Going Far from Degeneracy. SIAM Journal on Discrete Mathematics, 2020 , 34, 1587-1601	0.7	1
275	Path Contraction Faster than \$2^n\$. SIAM Journal on Discrete Mathematics, 2020, 34, 1302-1325	0.7	3
274	On the Parameterized Complexity of Graph Modification to First-Order Logic Properties. <i>Theory of Computing Systems</i> , 2020 , 64, 251-271	0.6	3
273	Editing to Connected F-Degree Graph. SIAM Journal on Discrete Mathematics, 2019, 33, 795-836	0.7	0
272	On width measures and topological problems on semi-complete digraphs. <i>Journal of Combinatorial Theory Series B</i> , 2019 , 138, 78-165	1.1	3
271	Parameterized Single-Exponential Time Polynomial Space Algorithm for Steiner Tree. <i>SIAM Journal on Discrete Mathematics</i> , 2019 , 33, 327-345	0.7	2
270	Exact Algorithms via Monotone Local Search. <i>Journal of the ACM</i> , 2019 , 66, 1-23	2	9
270 269	Exact Algorithms via Monotone Local Search. <i>Journal of the ACM</i> , 2019 , 66, 1-23 Finding, Hitting and Packing Cycles in Subexponential Time on Unit Disk Graphs. <i>Discrete and Computational Geometry</i> , 2019 , 62, 879-911	0.6	9
	Finding, Hitting and Packing Cycles in Subexponential Time on Unit Disk Graphs. <i>Discrete and</i>		
269	Finding, Hitting and Packing Cycles in Subexponential Time on Unit Disk Graphs. <i>Discrete and Computational Geometry</i> , 2019 , 62, 879-911	0.6	1
269 268	Finding, Hitting and Packing Cycles in Subexponential Time on Unit Disk Graphs. <i>Discrete and Computational Geometry</i> , 2019 , 62, 879-911 A Fixed-Parameter Perspective on #BIS. <i>Algorithmica</i> , 2019 , 81, 3844-3864	0.6	1
269 268 267	Finding, Hitting and Packing Cycles in Subexponential Time on Unit Disk Graphs. <i>Discrete and Computational Geometry</i> , 2019 , 62, 879-911 A Fixed-Parameter Perspective on #BIS. <i>Algorithmica</i> , 2019 , 81, 3844-3864 Kernelization of Graph Hamiltonicity: Proper H-Graphs. <i>Lecture Notes in Computer Science</i> , 2019 , 296-31	0.6 0.9 0.9	1 2
269 268 267 266	Finding, Hitting and Packing Cycles in Subexponential Time on Unit Disk Graphs. <i>Discrete and Computational Geometry</i> , 2019 , 62, 879-911 A Fixed-Parameter Perspective on #BIS. <i>Algorithmica</i> , 2019 , 81, 3844-3864 Kernelization of Graph Hamiltonicity: Proper H-Graphs. <i>Lecture Notes in Computer Science</i> , 2019 , 296-31 Spanning Circuits in Regular Matroids. <i>ACM Transactions on Algorithms</i> , 2019 , 15, 1-38	0.6 0.9 0.9	1 2 1
269 268 267 266 265	Finding, Hitting and Packing Cycles in Subexponential Time on Unit Disk Graphs. <i>Discrete and Computational Geometry</i> , 2019 , 62, 879-911 A Fixed-Parameter Perspective on #BIS. <i>Algorithmica</i> , 2019 , 81, 3844-3864 Kernelization of Graph Hamiltonicity: Proper H-Graphs. <i>Lecture Notes in Computer Science</i> , 2019 , 296-31 Spanning Circuits in Regular Matroids. <i>ACM Transactions on Algorithms</i> , 2019 , 15, 1-38 Finding Detours is Fixed-Parameter Tractable. <i>SIAM Journal on Discrete Mathematics</i> , 2019 , 33, 2326-23.	0.6 0.9 0.9 1.2 45.7	1 1 2 1 1

261	Preface to Special Issue Dedicated to the 60th Birthday of Gregory Gutin. Algorithmica, 2018, 80, 2513	-2515	
2 60	Algorithms Parameterized by Vertex Cover and Modular Width, Through Potential Maximal Cliques. <i>Algorithmica</i> , 2018 , 80, 1146-1169	0.9	7
259	Long directed (s,t)-path: FPT algorithm. Information Processing Letters, 2018, 140, 8-12	0.8	6
258	Matrix Rigidity from the Viewpoint of Parameterized Complexity. <i>SIAM Journal on Discrete Mathematics</i> , 2018 , 32, 966-985	0.7	1
257	Exact Algorithms for Terrain Guarding. ACM Transactions on Algorithms, 2018, 14, 1-20	1.2	8
256	Subexponential Parameterized Algorithm for I nterval C ompletion. <i>ACM Transactions on Algorithms</i> , 2018 , 14, 1-62	1.2	3
255	Fully Polynomial-Time Parameterized Computations for Graphs and Matrices of Low Treewidth. <i>ACM Transactions on Algorithms</i> , 2018 , 14, 1-45	1.2	15
254	Kernelization: Theory of Parameterized Preprocessing 2018,		31
253	Polynomial Parameter Transformation 2018 , 389-397		
252	Structured Connectivity Augmentation. SIAM Journal on Discrete Mathematics, 2018, 32, 2612-2635	0.7	
251	Covering Vectors by Spaces: Regular Matroids. SIAM Journal on Discrete Mathematics, 2018, 32, 2512-2	25 6 57	
250	What Is a Kernel? 2018 , 1-12		
249	Warm Up 2018 , 15-31		
248	Inductive Priorities 2018 , 32-49		
247	Crown Decomposition 2018 , 50-60		
246	Expansion Lemma 2018 , 61-83		
245	Hypertrees 2018 , 105-120		
244	Sunflower Lemma 2018 , 121-132		

(2017-2018)

243	Matroids 2018 , 164-182		
242	Representative Families 2018 , 183-216		
241	Greedy Packing 2018 , 217-236		
240	Euler Formula 2018 , 237-254		
239	Introduction to Treewidth 2018, 257-296		
238	Bidimensionality and Protrusions 2018 , 297-315		
237	Surgery on Graphs 2018 , 316-356		
236	Framework 2018 , 359-376		
235	Instance Selectors 2018 , 377-388		
234	Polynomial Lower Bounds 2018, 398-411		
233	Extending Distillation 2018 , 412-426		
232	Turing Kernelization 2018 , 429-439		
231	Lossy Kernelization 2018 , 440-466		
230	Graphs and SAT Notation 2018 , 474-476		
229	Problem Definitions 2018, 477-482		
228	Parameterized Complexity of Secluded Connectivity Problems. <i>Theory of Computing Systems</i> , 2017 , 61, 795-819	0.6	6
227	Faster exact algorithms for some terminal set problems. <i>Journal of Computer and System Sciences</i> , 2017 , 88, 195-207	1	9
226	Representative Families of Product Families. ACM Transactions on Algorithms, 2017, 13, 1-29	1.2	28

225	Fully polynomial-time parameterized computations for graphs and matrices of low treewidth 2017,		4
224	Metric Dimension of Bounded Tree-length Graphs. SIAM Journal on Discrete Mathematics, 2017, 31, 121	7 _© 1 7 243	B 13
223	Parameterized Complexity of Superstring Problems. <i>Algorithmica</i> , 2017 , 79, 798-813	0.9	
222	Tight Lower Bounds on Graph Embedding Problems. <i>Journal of the ACM</i> , 2017 , 64, 1-22	2	8
221	Hitting Forbidden Minors: Approximation and Kernelization. <i>SIAM Journal on Discrete Mathematics</i> , 2016 , 30, 383-410	0.7	38
220	Largest Chordal and Interval Subgraphs Faster than (2^n). <i>Algorithmica</i> , 2016 , 76, 569-594	0.9	5
219	Parameterized complexity of the anchored k-core problem for directed graphs. <i>Information and Computation</i> , 2016 , 247, 11-22	0.8	12
218	The Firefighter problem on graph classes. <i>Theoretical Computer Science</i> , 2016 , 613, 38-50	1.1	9
217	How to hunt an invisible rabbit on a graph. European Journal of Combinatorics, 2016, 52, 12-26	0.7	4
216	Vertex Cover Structural Parameterization Revisited. Lecture Notes in Computer Science, 2016, 171-182	0.9	4
215	Exact algorithms via monotone local search 2016 ,		15
214	Subexponential Parameterized Algorithms for Planar and Apex-Minor-Free Graphs via Low Treewidth Pattern Covering 2016 ,		8
213	(Meta) Kernelization. <i>Journal of the ACM</i> , 2016 , 63, 1-69	2	59
212	A \$c^k n\$ 5-Approximation Algorithm for Treewidth. <i>SIAM Journal on Computing</i> , 2016 , 45, 317-378	1.1	108
211	Efficient Computation of Representative Families with Applications in Parameterized and Exact Algorithms. <i>Journal of the ACM</i> , 2016 , 63, 1-60	2	91
210	Graph Modification Problems: A Modern Perspective. Lecture Notes in Computer Science, 2015, 3-6	0.9	1
209	Parameterized Algorithms 2015 ,		650
208	Large Induced Subgraphs via Triangulations and CMSO. SIAM Journal on Computing, 2015, 44, 54-87	1.1	54

207	Lower Bounds for the Graph Homomorphism Problem. Lecture Notes in Computer Science, 2015, 481-49	3 0.9	О
206	Metric Dimension of Bounded Width Graphs. Lecture Notes in Computer Science, 2015, 115-126	0.9	4
205	On the parameterized complexity of vertex cover and edge cover with connectivity constraints. <i>Theoretical Computer Science</i> , 2015 , 565, 1-15	1.1	8
204	Minimum Fill-in of Sparse Graphs: Kernelization and Approximation. <i>Algorithmica</i> , 2015 , 71, 1-20	0.9	2
203	Exploring the Subexponential Complexity of Completion Problems. <i>ACM Transactions on Computation Theory</i> , 2015 , 7, 1-38	0.6	15
202	Minimizing Rosenthal Potential in Multicast Games. <i>Theory of Computing Systems</i> , 2015 , 57, 81-96	0.6	
201	Computing Tree-Depth Faster Than (2^{n}). Algorithmica, 2015, 73, 202-216	0.9	3
200	A Subexponential Parameterized Algorithm for Proper Interval Completion. <i>SIAM Journal on Discrete Mathematics</i> , 2015 , 29, 1961-1987	0.7	9
199	Parameterized Single-Exponential Time Polynomial Space Algorithm for Steiner Tree. <i>Lecture Notes in Computer Science</i> , 2015 , 494-505	0.9	4
198	Parameterized Complexity of Superstring Problems. Lecture Notes in Computer Science, 2015, 89-99	0.9	
197	Parameterized complexity of connected even/odd subgraph problems. <i>Journal of Computer and System Sciences</i> , 2014 , 80, 157-179	1	4
196	Parameterized complexity of firefighting. Journal of Computer and System Sciences, 2014, 80, 1285-129	71	15
195	Preprocessing subgraph and minor problems: When does a small vertex cover help?. <i>Journal of Computer and System Sciences</i> , 2014 , 80, 468-495	1	41
194	Tight bounds for parameterized complexity of Cluster Editing with a small number of clusters. Journal of Computer and System Sciences, 2014, 80, 1430-1447	1	28
193	Efficient Computation of Representative Sets with Applications in Parameterized and Exact Algorithms 2014 ,		30
192	Large induced subgraphs via triangulations and CMSO 2014 ,		3
191	A Subexponential Parameterized Algorithm for Proper Interval Completion. <i>Lecture Notes in Computer Science</i> , 2014 , 173-184	0.9	5
190	Social choice meets graph drawing: How to get subexponential time algorithms for ranking and drawing problems. <i>Tsinghua Science and Technology</i> , 2014 , 19, 374-386	3.4	1

189	Almost Optimal Lower Bounds for Problems Parameterized by Clique-Width. <i>SIAM Journal on Computing</i> , 2014 , 43, 1541-1563	1.1	19
188	Long Circuits and Large Euler Subgraphs. SIAM Journal on Discrete Mathematics, 2014, 28, 878-892	0.7	3
187	To satisfy impatient Web surfers is hard. <i>Theoretical Computer Science</i> , 2014 , 526, 1-17	1.1	11
186	Searching for better fill-in. <i>Journal of Computer and System Sciences</i> , 2014 , 80, 1374-1383	1	
185	Enumerating Minimal Subset Feedback Vertex Sets. <i>Algorithmica</i> , 2014 , 69, 216-231	0.9	26
184	Algorithms Parameterized by Vertex Cover and Modular Width, through Potential Maximal Cliques. <i>Lecture Notes in Computer Science</i> , 2014 , 182-193	0.9	6
183	Parameterized Algorithms to Preserve Connectivity. Lecture Notes in Computer Science, 2014, 800-811	0.9	10
182	Representative Sets of Product Families. <i>Lecture Notes in Computer Science</i> , 2014 , 443-454	0.9	17
181	Computing Optimal Steiner Trees in Polynomial Space. <i>Algorithmica</i> , 2013 , 65, 584-604	0.9	9
180	Exact Algorithms for Finding Longest Cycles in Claw-Free Graphs. <i>Algorithmica</i> , 2013 , 65, 129-145	0.9	4
179	Quadratic Upper Bounds on the Erd Pea Property for a Generalization of Packing and Covering Cycles. <i>Journal of Graph Theory</i> , 2013 , 74, 417-424	0.8	4
178	An O(c^k n) 5-Approximation Algorithm for Treewidth 2013 ,		30
177	Beyond bidimensionality: Parameterized subexponential algorithms on directed graphs. <i>Information and Computation</i> , 2013 , 233, 60-70	0.8	7
176	Three complexity results on coloring Pk-free graphs. European Journal of Combinatorics, 2013, 34, 609-6	61 9 7	22
175	A linear vertex kernel for maximum internal spanning tree. <i>Journal of Computer and System Sciences</i> , 2013 , 79, 1-6	1	47
174	Distortion is Fixed Parameter Tractable. ACM Transactions on Computation Theory, 2013, 5, 1-20	0.6	8
173	A Polynomial Kernel for Proper Interval Vertex Deletion. <i>SIAM Journal on Discrete Mathematics</i> , 2013 , 27, 1964-1976	0.7	26
172	Subexponential Parameterized Algorithm for Minimum Fill-In. SIAM Journal on Computing, 2013, 42, 21	9 7.2 21	1629

171	Exact exponential algorithms. Communications of the ACM, 2013, 56, 80-88	2.5	12
170	Jungles, bundles, and fixed-parameter tractability 2013,		6
169	Computing Tree-Depth Faster Than 2n. Lecture Notes in Computer Science, 2013, 137-149	0.9	3
168	Faster Exact Algorithms for Some Terminal Set Problems. Lecture Notes in Computer Science, 2013, 150-	·16.3	4
167	On the Parameterized Complexity of Cutting a Few Vertices from a Graph. <i>Lecture Notes in Computer Science</i> , 2013 , 421-432	0.9	6
166	Largest Chordal and Interval Subgraphs Faster Than 2n. Lecture Notes in Computer Science, 2013, 193-20	0 ⊕ .9	2
165	Subexponential Parameterized Algorithm for Computing the Cutwidth of a Semi-complete Digraph. <i>Lecture Notes in Computer Science</i> , 2013 , 505-516	0.9	5
164	Kernelization Algorithms. Smart Innovation, Systems and Technologies, 2013, 1-5	0.5	
163	Long Circuits and Large Euler Subgraphs. Lecture Notes in Computer Science, 2013, 493-504	0.9	1
162	Faster algorithms for finding and counting subgraphs. <i>Journal of Computer and System Sciences</i> , 2012 , 78, 698-706	1	33
161	Local search: Is brute-force avoidable?. Journal of Computer and System Sciences, 2012, 78, 707-719	1	29
160	A Note on Exact Algorithms for Vertex Ordering Problems on Graphs. <i>Theory of Computing Systems</i> , 2012 , 50, 420-432	0.6	30
159	Cops and Robber Game Without Recharging. <i>Theory of Computing Systems</i> , 2012 , 50, 611-620	0.6	7
158	Sharp Separation and Applications to Exact and Parameterized Algorithms. <i>Algorithmica</i> , 2012 , 63, 692-	70.6	24
157	Cops and Robber with Constraints. SIAM Journal on Discrete Mathematics, 2012, 26, 571-590	0.7	4
156	Counting Subgraphs via Homomorphisms. SIAM Journal on Discrete Mathematics, 2012, 26, 695-717	0.7	17
155	Connected graph searching. Information and Computation, 2012, 219, 1-16	0.8	29
154	Treewidth computation and extremal combinatorics. <i>Combinatorica</i> , 2012 , 32, 289-308	0.9	52

153	2012,		61
152	Making Life Easier for Firefighters. <i>Lecture Notes in Computer Science</i> , 2012 , 177-188	0.9	6
151	Catalan structures and dynamic programming in H-minor-free graphs. <i>Journal of Computer and System Sciences</i> , 2012 , 78, 1606-1622	1	19
150	Fast Minor Testing in Planar Graphs. <i>Algorithmica</i> , 2012 , 64, 69-84	0.9	2
149	Parameterized Complexity of the Spanning Tree Congestion Problem. <i>Algorithmica</i> , 2012 , 64, 85-111	0.9	7
148	Kernel(s) for problems with no kernel. ACM Transactions on Algorithms, 2012, 8, 1-19	1.2	48
147	On exact algorithms for treewidth. ACM Transactions on Algorithms, 2012, 9, 1-23	1.2	20
146	Bidimensionality and Geometric Graphs 2012 ,		19
145	Subexponential Parameterized Algorithm for Minimum Fill-in 2012,		10
144	Parameterized Complexity of Firefighting Revisited. <i>Lecture Notes in Computer Science</i> , 2012 , 13-26	0.9	10
143	k-Gap Interval Graphs. Lecture Notes in Computer Science, 2012, 350-361	0.9	5
142	To Satisfy Impatient Web Surfers Is Hard. <i>Lecture Notes in Computer Science</i> , 2012 , 166-176	0.9	3
141	FPT Suspects and Tough Customers: Open Problems of Downey and Fellows. <i>Lecture Notes in Computer Science</i> , 2012 , 457-468	0.9	2
140	Preprocessing Subgraph and Minor Problems: When Does a Small Vertex Cover Help?. <i>Lecture Notes in Computer Science</i> , 2012 , 97-108	0.9	4
139	A Polynomial Kernel for Proper Interval Vertex Deletion. Lecture Notes in Computer Science, 2012, 467-	47 8 9	
138	Approximating Width Parameters of Hypergraphs with Excluded Minors. <i>SIAM Journal on Discrete Mathematics</i> , 2011 , 25, 1331-1348	0.7	1
137	Bidimensionality and EPTAS 2011 ,		19
136	Guard games on graphs: Keep the intruder out!. <i>Theoretical Computer Science</i> , 2011 , 412, 6484-6497	1.1	2

135	Faster parameterized algorithms for minor containment. <i>Theoretical Computer Science</i> , 2011 , 412, 7018	3- 7 <u>0</u> 28	17
134	Kernels for feedback arc set in tournaments. <i>Journal of Computer and System Sciences</i> , 2011 , 77, 1071-1	078	51
133	Spanners in sparse graphs. Journal of Computer and System Sciences, 2011, 77, 1108-1119	1	15
132	Implicit branching and parameterized partial cover problems. <i>Journal of Computer and System Sciences</i> , 2011 , 77, 1159-1171	1	17
131	On the complexity of some colorful problems parameterized by treewidth. <i>Information and Computation</i> , 2011 , 209, 143-153	0.8	55
130	How to Guard a Graph?. Algorithmica, 2011 , 61, 839-856	0.9	6
129	Branch and Recharge: Exact Algorithms for Generalized Domination. <i>Algorithmica</i> , 2011 , 61, 252-273	0.9	
128	Strengthening Erd Research property for minor-closed graph classes. <i>Journal of Graph Theory</i> , 2011 , 66, 235-240	0.8	10
127	On the complexity of reconstructing H-free graphs from their Star Systems. <i>Journal of Graph Theory</i> , 2011 , 68, 113-124	0.8	4
126	Contraction obstructions for treewidth. <i>Journal of Combinatorial Theory Series B</i> , 2011 , 101, 302-314	1.1	51
125	Spanners of bounded degree graphs. <i>Information Processing Letters</i> , 2011 , 111, 142-144	0.8	9
124	Subexponential algorithms for partial cover problems. <i>Information Processing Letters</i> , 2011 , 111, 814-87	1& .8	24
123	Approximation of minimum weight spanners for sparse graphs. <i>Theoretical Computer Science</i> , 2011 , 412, 846-852	1.1	2
122	An exact algorithm for minimum distortion embedding. <i>Theoretical Computer Science</i> , 2011 , 412, 3530-2	3536	8
121	Ranking and Drawing in Subexponential Time. Lecture Notes in Computer Science, 2011, 337-348	0.9	5
120	Exact Algorithm for the Maximum Induced Planar Subgraph Problem. <i>Lecture Notes in Computer Science</i> , 2011 , 287-298	0.9	8
119	Approximation Algorithms for Domination Search. Lecture Notes in Computer Science, 2011, 130-141	0.9	
118	Enumerating Minimal Subset Feedback Vertex Sets. Lecture Notes in Computer Science, 2011 , 399-410	0.9	4

117	Bidimensionality and Kernels 2010 ,		66
116	Intractability of Clique-Width Parameterizations. SIAM Journal on Computing, 2010, 39, 1941-1956	1.1	44
115	Branching. Texts in Theoretical Computer Science, 2010 , 13-30		2
114	Inclusion-Exclusion. Texts in Theoretical Computer Science, 2010, 51-75		
113	Treewidth. Texts in Theoretical Computer Science, 2010, 77-100		2
112	Measure & Conquer. Texts in Theoretical Computer Science, 2010 , 101-124		1
111	Subset Convolution. Texts in Theoretical Computer Science, 2010, 125-139		
110	Split and List. Texts in Theoretical Computer Science, 2010 , 153-160		3
109	Time Versus Space. Texts in Theoretical Computer Science, 2010, 161-170		
108	Conclusions, Open Problems and Further Directions. <i>Texts in Theoretical Computer Science</i> , 2010 , 187-1	88	
107	Exact Exponential Algorithms. Texts in Theoretical Computer Science, 2010,		200
106	Iterative compression and exact algorithms. <i>Theoretical Computer Science</i> , 2010 , 411, 1045-1053	1.1	21
106	Iterative compression and exact algorithms. <i>Theoretical Computer Science</i> , 2010 , 411, 1045-1053 Efficient Exact Algorithms on Planar Graphs: Exploiting Sphere Cut Decompositions. <i>Algorithmica</i> , 2010 , 58, 790-810	0.9	21 52
	Efficient Exact Algorithms on Planar Graphs: Exploiting Sphere Cut Decompositions. <i>Algorithmica</i> ,		
105	Efficient Exact Algorithms on Planar Graphs: Exploiting Sphere Cut Decompositions. <i>Algorithmica</i> , 2010 , 58, 790-810	0.9	52
105	Efficient Exact Algorithms on Planar Graphs: Exploiting Sphere Cut Decompositions. <i>Algorithmica</i> , 2010 , 58, 790-810 Mixed search number and linear-width of interval and split graphs. <i>Networks</i> , 2010 , 56, 207-214	0.9	52
105 104 103	Efficient Exact Algorithms on Planar Graphs: Exploiting Sphere Cut Decompositions. <i>Algorithmica</i> , 2010 , 58, 790-810 Mixed search number and linear-width of interval and split graphs. <i>Networks</i> , 2010 , 56, 207-214 Parameterized algorithm for eternal vertex cover. <i>Information Processing Letters</i> , 2010 , 110, 702-706 Algorithm for finding k-vertex out-trees and its application to k-internal out-branching problem.	0.9 1.6 0.8	5 ² 5 16

99	An Exact Algorithm for Minimum Distortion Embedding. Lecture Notes in Computer Science, 2010, 112-1	2 d.9	O
98	Fast Exact Algorithms for Hamiltonicity in Claw-Free Graphs. <i>Lecture Notes in Computer Science</i> , 2010 , 44-53	0.9	3
97	Sharp Separation and Applications to Exact and Parameterized Algorithms. <i>Lecture Notes in Computer Science</i> , 2010 , 72-83	0.9	1
96	Cops and Robber Game without Recharging. Lecture Notes in Computer Science, 2010, 273-284	0.9	2
95	Faster Parameterized Algorithms for Minor Containment. Lecture Notes in Computer Science, 2010, 322-	-3333	4
94	The Curse of Connectivity: t-Total Vertex (Edge) Cover. Lecture Notes in Computer Science, 2010, 34-43	0.9	6
93	Kernelization. Lecture Notes in Computer Science, 2010 , 107-108	0.9	2
92	Protrusions in Graphs and Their Applications. Lecture Notes in Computer Science, 2010, 3-3	0.9	
91	Fast Minor Testing in Planar Graphs. Lecture Notes in Computer Science, 2010, 97-109	0.9	3
90	Guard Games on Graphs: Keep the Intruder Out!. Lecture Notes in Computer Science, 2010, 147-158	0.9	1
89	Nondeterministic Graph Searching: From Pathwidth to Treewidth. <i>Algorithmica</i> , 2009 , 53, 358-373	0.9	19
88	On Two Techniques of Combining Branching and Treewidth. <i>Algorithmica</i> , 2009 , 54, 181-207	0.9	70
87	Sort and Search: Exact algorithms for generalized domination. <i>Information Processing Letters</i> , 2009 , 109, 795-798	0.8	5
86	Computing branchwidth via efficient triangulations and blocks. <i>Discrete Applied Mathematics</i> , 2009 , 157, 2726-2736	1	7
85	(Meta) Kernelization 2009 ,		79
84	A measure & conquer approach for the analysis of exact algorithms. <i>Journal of the ACM</i> , 2009 , 56, 1-32	2	454
83	Spanning Directed Trees with Many Leaves. SIAM Journal on Discrete Mathematics, 2009, 23, 466-476	0.7	24
82	Algorithm for Finding k-Vertex Out-trees and Its Application to k-Internal Out-branching Problem. <i>Lecture Notes in Computer Science</i> , 2009 , 37-46	0.9	4

81	Distortion Is Fixed Parameter Tractable. Lecture Notes in Computer Science, 2009, 463-474	0.9	6
80	Counting Subgraphs via Homomorphisms. Lecture Notes in Computer Science, 2009, 71-82	0.9	12
79	Contraction Bidimensionality: The Accurate Picture. Lecture Notes in Computer Science, 2009, 706-717	0.9	11
78	Three Complexity Results on Coloring Pk-Free Graphs. Lecture Notes in Computer Science, 2009, 95-104	0.9	13
77	A Linear Vertex Kernel for Maximum Internal Spanning Tree. <i>Lecture Notes in Computer Science</i> , 2009 , 275-282	0.9	3
76	Exact Algorithms for Treewidth and Minimum Fill-In. SIAM Journal on Computing, 2008, 38, 1058-1079	1.1	45
75	On tractability of Cops and Robbers game. <i>International Federation for Information Processing</i> , 2008 , 171-185		9
74	Combinatorial bounds via measure and conquer. ACM Transactions on Algorithms, 2008, 5, 1-17	1.2	66
73	Improved algorithms for feedback vertex set problems. <i>Journal of Computer and System Sciences</i> , 2008 , 74, 1188-1198	1	86
72	An annotated bibliography on guaranteed graph searching. <i>Theoretical Computer Science</i> , 2008 , 399, 236-245	1.1	222
71	Solving Connected Dominating Set Faster than 2n. Algorithmica, 2008, 52, 153-166	0.9	52
70	On the Minimum Feedback Vertex Set Problem: Exact and Enumeration Algorithms. <i>Algorithmica</i> , 2008 , 52, 293-307	0.9	78
69	Subexponential parameterized algorithms. Computer Science Review, 2008, 2, 29-39	8.3	55
68	A PTAS for the Sparsest Spanners Problem on Apex-Minor-Free Graphs. <i>Lecture Notes in Computer Science</i> , 2008 , 290-298	0.9	
67	Spanners in Sparse Graphs. Lecture Notes in Computer Science, 2008, 597-608	0.9	3
66	Treewidth Computation and Extremal Combinatorics. Lecture Notes in Computer Science, 2008, 210-221	0.9	12
65	On the Complexity of Reconstructing H-free Graphs from Their Star Systems 2008 , 194-205		1
64	Iterative Compression and Exact Algorithms. <i>Lecture Notes in Computer Science</i> , 2008 , 335-346	0.9	3

63	Faster Steiner Tree Computation in Polynomial-Space. Lecture Notes in Computer Science, 2008, 430-447	1 0.9	5
62	How to Guard a Graph?. Lecture Notes in Computer Science, 2008, 318-329	0.9	6
61	Improved Exact Algorithms for Counting 3- and 4-Colorings. <i>Lecture Notes in Computer Science</i> , 2007 , 65-74	0.9	7
60	Counting Minimum Weighted Dominating Sets. Lecture Notes in Computer Science, 2007, 165-175	0.9	
59	On self duality of pathwidth in polyhedral graph embeddings. <i>Journal of Graph Theory</i> , 2007 , 55, 42-54	0.8	5
58	Backbone colorings for graphs: Tree and path backbones. <i>Journal of Graph Theory</i> , 2007 , 55, 137-152	0.8	22
57	Eliminating graphs by means of parallel knock-out schemes. <i>Discrete Applied Mathematics</i> , 2007 , 155, 92-102	1	6
56	Exact Algorithms for Graph Homomorphisms. <i>Theory of Computing Systems</i> , 2007 , 41, 381-393	0.6	15
55	Mixed Search Number and Linear-Width of Interval and Split Graphs 2007, 304-315		4
54	Subexponential Parameterized Algorithms. Lecture Notes in Computer Science, 2007, 15-27	0.9	5
53	On the Complexity of Some Colorful Problems Parameterized by Treewidth. <i>Lecture Notes in Computer Science</i> , 2007 , 366-377	0.9	11
52	Improved Algorithms for the Feedback Vertex Set Problems. <i>Lecture Notes in Computer Science</i> , 2007 , 422-433	0.9	14
51	Branch and Recharge: Exact Algorithms for Generalized Domination. <i>Lecture Notes in Computer Science</i> , 2007 , 507-518	0.9	1
50	Better Algorithms and Bounds for Directed Maximum Leaf Problems. <i>Lecture Notes in Computer Science</i> , 2007 , 316-327	0.9	5
49	New upper bounds on the decomposability of planar graphs. Journal of Graph Theory, 2006, 51, 53-81	0.8	44
48	Dominating Sets in Planar Graphs: Branch-Width and Exponential Speed-Up. <i>SIAM Journal on Computing</i> , 2006 , 36, 281-309	1.1	65
47	Pathwidth of cubic graphs and exact algorithms. <i>Information Processing Letters</i> , 2006 , 97, 191-196	0.8	48
46	A 3-approximation for the pathwidth of Halin graphs. <i>Journal of Discrete Algorithms</i> , 2006 , 4, 499-510		11

45	Planar Graph Coloring Avoiding Monochromatic Subgraphs: Trees and Paths Make It Difficult. <i>Algorithmica</i> , 2006 , 44, 343-361	0.9	10
44	Measure and conquer 2006 ,		43
43	Solving Connected Dominating Set Faster Than 2n. Lecture Notes in Computer Science, 2006, 152-163	0.9	7
42	Fast Subexponential Algorithm for Non-local Problems on Graphs of Bounded Genus. <i>Lecture Notes in Computer Science</i> , 2006 , 172-183	0.9	16
41	Optimal Linear Arrangement of Interval Graphs. Lecture Notes in Computer Science, 2006, 267-279	0.9	14
40	On Exact Algorithms for Treewidth. <i>Lecture Notes in Computer Science</i> , 2006 , 672-683	0.9	22
39	Finding a Minimum Feedback Vertex Set in Time (mathcal{O} (1.7548^n)). <i>Lecture Notes in Computer Science</i> , 2006 , 184-191	0.9	19
38	Branching and Treewidth Based Exact Algorithms. Lecture Notes in Computer Science, 2006, 16-25	0.9	8
37	On maximum number of minimal dominating sets in graphs. <i>Electronic Notes in Discrete Mathematics</i> , 2005 , 22, 157-162	0.3	
36	Equitable colorings of bounded treewidth graphs. <i>Theoretical Computer Science</i> , 2005 , 349, 22-30	1.1	38
35	Tree decompositions with small cost. Discrete Applied Mathematics, 2005, 145, 143-154	1	13
34	Connected Graph Searching in Outerplanar Graphs. <i>Electronic Notes in Discrete Mathematics</i> , 2005 , 22, 213-216	0.3	17
33	Graph Searching, Elimination Trees, and a Generalization of Bandwidth. <i>Algorithmica</i> , 2005 , 41, 73-87	0.9	15
32	Subexponential parameterized algorithms on bounded-genus graphs and H -minor-free graphs. <i>Journal of the ACM</i> , 2005 , 52, 866-893	2	201
31	Fixed-parameter algorithms for (k , r)-center in planar graphs and map graphs. ACM Transactions on Algorithms, 2005 , 1, 33-47	1.2	72
30	Computing Branchwidth Via Efficient Triangulations and Blocks. <i>Lecture Notes in Computer Science</i> , 2005 , 374-384	0.9	2
29	Measure and Conquer: Domination 🖟 Case Study. Lecture Notes in Computer Science, 2005, 191-203	0.9	63
28	Efficient Exact Algorithms on Planar Graphs: Exploiting Sphere Cut Branch Decompositions. <i>Lecture Notes in Computer Science</i> , 2005 , 95-106	0.9	29

(2002-2005)

27	Bounding the Number of Minimal Dominating Sets: A Measure and Conquer Approach. <i>Lecture Notes in Computer Science</i> , 2005 , 573-582	0.9	16
26	Exact (Exponential) Algorithms for Treewidth and Minimum Fill-In. <i>Lecture Notes in Computer Science</i> , 2004 , 568-580	0.9	34
25	Bidimensional Parameters and Local Treewidth. Lecture Notes in Computer Science, 2004, 109-118	0.9	3
24	Searching expenditure and interval graphs. <i>Discrete Applied Mathematics</i> , 2004 , 135, 97-104	1	2
23	Algorithms for graphs with small octopus. <i>Discrete Applied Mathematics</i> , 2004 , 134, 105-128	1	4
22	AT-free graphs: linear bounds for the oriented diameter. <i>Discrete Applied Mathematics</i> , 2004 , 141, 135-	148	11
21	A 3-approximation for the pathwidth of Halin graphs. <i>Electronic Notes in Discrete Mathematics</i> , 2004 , 17, 157-162	0.3	1
20	On distance constrained labeling of disk graphs. <i>Theoretical Computer Science</i> , 2004 , 326, 261-292	1.1	13
19	Exact (Exponential) Algorithms for the Dominating Set Problem. <i>Lecture Notes in Computer Science</i> , 2004 , 245-256	0.9	53
18	Bidimensional Parameters and Local Treewidth. SIAM Journal on Discrete Mathematics, 2004, 18, 501-51	1 0.7	51
17	Radio Labeling with Preassigned Frequencies. SIAM Journal on Optimization, 2004, 15, 1-16	2	2
16	Fast Parameterized Algorithms for Graphs on Surfaces: Linear Kernel and Exponential Speed-Up. <i>Lecture Notes in Computer Science</i> , 2004 , 581-592	0.9	20
15	Pathwidth of Planar and Line Graphs. <i>Graphs and Combinatorics</i> , 2003 , 19, 91-99	0.5	1
14	On the domination search number. <i>Discrete Applied Mathematics</i> , 2003 , 127, 565-580	1	9
13	On the monotonicity of games generated by symmetric submodular functions. <i>Discrete Applied Mathematics</i> , 2003 , 131, 323-335	1	19
12	More About Subcolorings. <i>Computing (Vienna/New York)</i> , 2002 , 69, 187-203	2.2	13
11	Approximation of pathwidth of outerplanar graphs. <i>Journal of Algorithms</i> , 2002 , 43, 190-200		22
10	Approximation algorithms for time-dependent orienteering. <i>Information Processing Letters</i> , 2002 , 83, 57-62	0.8	54

9	Approximating minimum cocolorings. Information Processing Letters, 2002, 84, 285-290	0.8	26
8	The Complexity of Approximating the Oriented Diameter of Chordal Graphs. <i>Lecture Notes in Computer Science</i> , 2002 , 211-222	0.9	1
7	Bilateral Orientations and Domination. <i>Electronic Notes in Discrete Mathematics</i> , 2001 , 7, 26-29	0.3	1
6	Graph Searching and Interval Completion. SIAM Journal on Discrete Mathematics, 2000, 13, 454-464	0.7	27
5	On the Domination Search Number. Lecture Notes in Computer Science, 2000, 161-171	0.9	
4	Note on a helicopter search problem on graphs. <i>Discrete Applied Mathematics</i> , 1999 , 95, 241-249	1	6
3	Interval Completion with the Smallest Max-Degree. Lecture Notes in Computer Science, 1998, 359-371	0.9	1
2	Kernelization Methods for Fixed-Parameter Tractability260-282		4

On the Parameterized Complexity of the Expected Coverage Problem. Theory of Computing Systems, 1 \circ .6

1