Dongdong Mu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8117115/publications.pdf

Version: 2024-02-01

516561 610775 43 635 16 24 citations g-index h-index papers 43 43 43 376 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Adaptive Sliding Mode Trajectory Tracking Control for Unmanned Surface Vehicle with Modeling Uncertainties and Input Saturation. Applied Sciences (Switzerland), 2019, 9, 1240.	1.3	52
2	Adaptive LOS Path Following for a Podded Propulsion Unmanned Surface Vehicle with Uncertainty of Model and Actuator Saturation. Applied Sciences (Switzerland), 2017, 7, 1232.	1.3	39
3	Modeling and Identification for Vector Propulsion of an Unmanned Surface Vehicle: Three Degrees of Freedom Model and Response Model. Sensors, 2018, 18, 1889.	2.1	35
4	Tracking Control of Podded Propulsion Unmanned Surface Vehicle with Unknown Dynamics and Disturbance Under Input Saturation. International Journal of Control, Automation and Systems, 2018, 16, 1905-1915.	1.6	33
5	Adaptive course control based on trajectory linearization control for unmanned surface vehicle with unmodeled dynamics and input saturation. Neurocomputing, 2019, 330, 1-10.	3.5	33
6	A Formation Autonomous Navigation System for Unmanned Surface Vehicles With Distributed Control Strategy. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 2834-2845.	4.7	32
7	A Formation Collision Avoidance System for Unmanned Surface Vehicles With Leader-Follower Structure. IEEE Access, 2019, 7, 24691-24702.	2.6	29
8	Adaptive Trajectory Tracking Control for Underactuated Unmanned Surface Vehicle Subject to Unknown Dynamics and Time-Varing Disturbances. Applied Sciences (Switzerland), 2018, 8, 547.	1.3	27
9	Modeling and Identification of Podded Propulsion Unmanned Surface Vehicle and Its Course Control Research. Mathematical Problems in Engineering, 2017, 2017, 1-13.	0.6	26
10	Course keeping Control Based on Integrated Nonlinear Feedback for a USV with Pod-like Propulsion. Journal of Navigation, 2018, 71, 878-898.	1.0	25
11	Collision Avoidance of Podded Propulsion Unmanned Surface Vehicle With COLREGs Compliance and Its Modeling and Identification. IEEE Access, 2018, 6, 55473-55491.	2.6	23
12	Path Following of Underactuated Unmanned Surface Vehicle Based on Trajectory Linearization Control with Input Saturation and External Disturbances. International Journal of Control, Automation and Systems, 2020, 18, 2108-2119.	1.6	22
13	An Automatic Navigation System for Unmanned Surface Vehicles in Realistic Sea Environments. Applied Sciences (Switzerland), 2018, 8, 193.	1.3	21
14	Collision Avoidance Using Finite Control Set Model Predictive Control for Unmanned Surface Vehicle. Applied Sciences (Switzerland), 2018, 8, 926.	1.3	19
15	Course control of USV based on fuzzy adaptive guide control. , 2016, , .		18
16	A Time-Varying Lookahead Distance of ILOS Path Following for Unmanned Surface Vehicle. Journal of Electrical Engineering and Technology, 2020, 15, 2267-2278.	1.2	17
17	Trajectory tracking control for underactuated unmanned surface vehicle subject to uncertain dynamics and input saturation. Neural Computing and Applications, 2021, 33, 12777-12789.	3.2	17
18	Path following for podded propulsion unmanned surface vehicle: Theory, simulation and experiment. IEEJ Transactions on Electrical and Electronic Engineering, 2018, 13, 911-923.	0.8	16

#	Article	IF	Citations
19	Fuzzy-Based Optimal Adaptive Line-of-Sight Path Following for Underactuated Unmanned Surface Vehicle with Uncertainties and Time-Varying Disturbances. Mathematical Problems in Engineering, 2018, 2018, 1-12.	0.6	16
20	Radar Target Tracking for Unmanned Surface Vehicle Based on Square Root Sage–Husa Adaptive Robust Kalman Filter. Sensors, 2022, 22, 2924.	2.1	16
21	Robust Adaptive Trajectory Linearization Control for Tracking Control of Surface Vessels With Modeling Uncertainties Under Input Saturation. IEEE Access, 2019, 7, 5057-5070.	2.6	15
22	Robust pathâ€following control based on trajectory linearization control for unmanned surface vehicle with uncertainty of model and actuator saturation. IEEJ Transactions on Electrical and Electronic Engineering, 2019, 14, 1681-1690.	0.8	14
23	Adaptive Course Control-Based Trajectory Linearization Control for Uncertain Unmanned Surface Vehicle Under Rudder Saturation. IEEE Access, 2019, 7, 108768-108780.	2.6	13
24	Formation Control Strategy for Underactuated Unmanned Surface Vehicles Subject to Unknown Dynamics and External Disturbances with Input Saturation. International Journal of Control, Automation and Systems, 2020, 18, 2742-2752.	1.6	13
25	Adaptive Fast Non-Singular Terminal Sliding Mode Path Following Control for an Underactuated Unmanned Surface Vehicle with Uncertainties and Unknown Disturbances. Sensors, 2021, 21, 7454.	2.1	12
26	USV model identification and course control. , 2016, , .		8
27	Collision Avoidance Controller for Unmanned Surface Vehicle Based on Improved Cuckoo Search Algorithm. Applied Sciences (Switzerland), 2021, 11, 9741.	1.3	7
28	Trajectory Tracking Control for Unmanned Surface Vehicle Subject to Unmeasurable Disturbance and Input Saturation. IEEE Access, 2020, 8, 191278-191285.	2.6	6
29	Robust Adaptive Path Following Control Strategy for Underactuated Unmanned Surface Vehicles with Model Deviation and Actuator Saturation. Applied Sciences (Switzerland), 2022, 12, 2696.	1.3	6
30	Single-parameter-learning-based robust adaptive control of dynamic positioning ships considering thruster system dynamics in the input saturation state. Nonlinear Dynamics, 2022, 110, 395-412.	2.7	6
31	An Novel Model Switching Course Control for Unmanned Surface Vehicle With Modeling Error and External Disturbance. IEEE Access, 2021, 9, 84712-84723.	2.6	4
32	An Improved Vector Control Strategy for Switched Reluctance Motor Drive Based on the Two-Degree-of-Freedom Internal Model Control. Applied Sciences (Switzerland), 2022, 12, 5407.	1.3	4
33	Real-time Collision Avoidance Control for Unmanned Surface Vehicle Based on Velocity Resolution Method., 2019,,.		2
34	Course Controller Design for Unmanned Surface Vehicle Based on Trajectory Linearization Control with Input Saturation. , 2019, , .		2
35	Fast Collision Avoidance Method Based on Velocity Resolution for Unmanned Surface Vehicle. , 2019, , .		2
36	Path Following Control Strategy for Underactuated Unmanned Surface Vehicle Subject to Multiple Constraints. IEEJ Transactions on Electrical and Electronic Engineering, 0, , .	0.8	2

3

#	Article	IF	Citations
37	Podded propulsion unmanned surface vehicle model identification based on field experiments., 2017,,.		1
38	A New Modeling Method for Switched Reluctance Motor Based on the Fuzzy Logic System. , 2018, , .		1
39	Variable Bandwidth Adaptive Course Keeping Control Strategy for Unmanned Surface Vehicle. Energies, 2020, 13, 5091.	1.6	1
40	A Novel Heading Control Strategy for Unmanned Surface Vehicle. , 2021, , .		0
41	Trajectory Tracking for Underactuated Unmanned Surface Vessel Based on Limit Segmentation. , 2021, , .		O
42	TD-Based Adaptive Output Feedback Control of Ship Heading with Stochastic Noise and Unknown Actuator Dead-Zone Input. Applied Sciences (Switzerland), 2022, 12, 1985.	1.3	0
43	Unipolar sinusoidal current excited switched reluctance motor control based on a 3D space vector modulation. IET Electric Power Applications, 0, , .	1.1	0