Margarida Campinas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8117104/publications.pdf

Version: 2024-02-01

840119 940134 19 708 11 16 citations g-index h-index papers 19 19 19 797 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Assessing PAC contribution to the NOM fouling control in PAC/UF systems. Water Research, 2010, 44, 1636-1644.	5.3	140
2	How do the HSDM and Boyd's model compare for estimating intraparticle diffusion coefficients in adsorption processes. Adsorption, 2014, 20, 737-746.	1.4	137
3	The ionic strength effect on microcystin and natural organic matter surrogate adsorption onto PAC. Journal of Colloid and Interface Science, 2006, 299, 520-529.	5.0	80
4	Evaluation of cyanobacterial cells removal and lysis by ultrafiltration. Separation and Purification Technology, 2010, 70, 345-353.	3.9	74
5	Removal of microcystins by PAC/UF. Separation and Purification Technology, 2010, 71, 114-120.	3.9	64
6	Investigating PPCP Removal from Wastewater by Powdered Activated Carbon/Ultrafiltration. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	59
7	Modelling and understanding the competitive adsorption of microcystins and tannic acid. Water Research, 2013, 47, 5690-5699.	5.3	36
8	Assessing the applicability of a new carob waste-derived powdered activated carbon to control pharmaceutical compounds in wastewater treatment. Science of the Total Environment, 2020, 743, 140791.	3.9	29
9	Pilot Studies and Cost Analysis of Hybrid Powdered Activated Carbon/Ceramic Microfiltration for Controlling Pharmaceutical Compounds and Organic Matter in Water Reclamation. Water (Switzerland), 2020, 12, 33.	1.2	21
10	Adsorption/Coagulation/Ceramic Microfiltration for Treating Challenging Waters for Drinking Water Production. Membranes, 2021, 11, 91.	1.4	14
11	To what extent may pharmaceuticals and pesticides be removed by PAC conventional addition to low-turbidity surface waters and what are the potential bottlenecks?. Journal of Water Process Engineering, 2021, 40, 101833.	2.6	14
12	Powdered activated carbon full-scale addition to the activated sludge reactor of a municipal wastewater treatment plant: Pharmaceutical compounds control and overall impact on the process. Journal of Water Process Engineering, 2022, 49, 102975.	2.6	9
13	Water reclamation with hybrid coagulation–ceramic microfiltration: first part of a long-term pilot study in Portugal. Journal of Water Reuse and Desalination, 2015, 5, 550-556.	1.2	8
14	Operational performance and cost analysis of PAC/ceramic MF for drinking water production: Exploring treatment capacity as a new indicator for performance assessment and optimization. Separation and Purification Technology, 2021, 255, 117443.	3.9	8
15	Comparing PAC/UF and conventional clarification with PAC for removing microcystins from natural waters. Desalination and Water Treatment, 2010, 16, 120-128.	1.0	7
16	Hybrid Process of Adsorption/Coagulation/Ceramic MF for Removing Pesticides in Drinking Water Treatment—Inline vs. Contact Tank PAC Dosing. Membranes, 2021, 11, 72.	1.4	5
17	Activated carbons in full-scale advanced wastewater treatment. , 2022, , 433-475.		2
18	PAC/UF for Removing Cyanobacterial Cells and Toxins from Drinking Water., 0,,.		1

#	Article	IF	CITATIONS
19	Tratamento de água com carvão ativado em pó/microfiltração cerâmica (PAC/MF) – quando e onde?. Ãguas E ResÃduos, 2017, , 17-29.	0.0	0