
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8116951/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antimicrobial Polymeric Materials with Quaternary Ammonium and Phosphonium Salts. International Journal of Molecular Sciences, 2015, 16, 3626-3655.	1.8	434
2	Hydrophobic-modified nano-cellulose fiber/PLA biodegradable composites for lowering water vapor transmission rate (WVTR) of paper. Carbohydrate Polymers, 2014, 111, 442-448.	5.1	220
3	Natural Polymer-Based Antimicrobial Hydrogels without Synthetic Antibiotics as Wound Dressings. Biomacromolecules, 2020, 21, 2983-3006.	2.6	207
4	Integrated production of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) using an easily recyclable di-carboxylic acid. Carbohydrate Polymers, 2017, 167, 167-176.	5.1	184
5	A stretchable, self-healing conductive hydrogels based on nanocellulose supported graphene towards wearable monitoring of human motion. Carbohydrate Polymers, 2020, 250, 116905.	5.1	184
6	Shape memory aerogels from nanocellulose and polyethyleneimine as a novel adsorbent for removal of Cu(II) and Pb(II). Carbohydrate Polymers, 2018, 196, 376-384.	5.1	159
7	Producing wood-based nanomaterials by rapid fractionation of wood at 80 °C using a recyclable acid hydrotrope. Green Chemistry, 2017, 19, 3370-3379.	4.6	158
8	Fabrication of superhydrophobic paper surface via wax mixture coating. Chemical Engineering Journal, 2014, 250, 431-436.	6.6	156
9	Lignin-Containing Cellulose Nanofibril-Reinforced Polyvinyl Alcohol Hydrogels. ACS Sustainable Chemistry and Engineering, 2018, 6, 4821-4828.	3.2	155
10	Dispersion Properties of Nanocellulose: A Review. Carbohydrate Polymers, 2020, 250, 116892.	5.1	133
11	Nanocellulose-based lightweight porous materials: A review. Carbohydrate Polymers, 2021, 255, 117489.	5.1	118
12	Ethylene scavengers for the preservation of fruits and vegetables: A review. Food Chemistry, 2021, 337, 127750.	4.2	110
13	Morphology and mechanical properties of poly(butylene adipate-co-terephthalate)/potato starch blends in the presence of synthesized reactive compatibilizer or modified poly(butylene) Tj ETQq1 1 0.784314 i	ˈgBT5/�ver	ock100 Tf 50
14	Enhanced water vapour barrier and grease resistance of paper bilayer-coated with chitosan and beeswax. Carbohydrate Polymers, 2014, 101, 401-406.	5.1	105
15	Methods and applications of nanocellulose loaded with inorganic nanomaterials: A review. Carbohydrate Polymers, 2020, 229, 115454.	5.1	103
16	Antimicrobial/Biocompatible Hydrogels Dual-Reinforced by Cellulose as Ultrastretchable and Rapid Self-Healing Wound Dressing. Biomacromolecules, 2021, 22, 1654-1663.	2.6	94
17	Recent advances in understanding the effects of lignin structural characteristics on enzymatic hydrolysis. Biotechnology for Biofuels, 2021, 14, 205.	6.2	94
18	Recyclable and Reusable Maleic Acid for Efficient Production of Cellulose Nanofibrils with Stable Performance. ACS Sustainable Chemistry and Engineering, 2019, 7, 20022-20031.	3.2	86

#	Article	IF	CITATIONS
19	Novel Composite Adsorbent Consisting of Dissolved Cellulose Fiber/Microfibrillated Cellulose for Dye Removal from Aqueous Solution. ACS Sustainable Chemistry and Engineering, 2018, 6, 6994-7002.	3.2	85
20	Contribution of lignin to the surface structure and physical performance of cellulose nanofibrils film. Cellulose, 2018, 25, 1309-1318.	2.4	85
21	Lignocellulosic nanofibrils produced using wheat straw and their pulping solid residue: From agricultural waste to cellulose nanomaterials. Waste Management, 2019, 91, 1-8.	3.7	85
22	Functionalized Masks: Powerful Materials against COVIDâ€19 and Future Pandemics. Small, 2021, 17, e2102453.	5.2	82
23	Self-Healable Electro-Conductive Hydrogels Based on Core-Shell Structured Nanocellulose/Carbon Nanotubes Hybrids for Use as Flexible Supercapacitors. Nanomaterials, 2020, 10, 112.	1.9	80
24	Novel quaternary phosphonium-type cationic polyacrylamide and elucidation of dual-functional antibacterial/antiviral activity. RSC Advances, 2014, 4, 46887-46895.	1.7	76
25	Development of Lignin and Nanocellulose Enhanced Bio PU Foams for Automotive Parts. Journal of Polymers and the Environment, 2014, 22, 279-288.	2.4	74
26	A Skin-Inspired Stretchable, Self-Healing and Electro-Conductive Hydrogel with a Synergistic Triple Network for Wearable Strain Sensors Applied in Human-Motion Detection. Nanomaterials, 2019, 9, 1737.	1.9	74
27	Synthesis of water-soluble cationic polymers with star-like structure based on cyclodextrin core via ATRP. Journal of Polymer Science Part A, 2005, 43, 6345-6354.	2.5	71
28	High wet-strength, thermally stable and transparent TEMPO-oxidized cellulose nanofibril film via cross-linking with poly-amide epichlorohydrin resin. RSC Advances, 2017, 7, 31567-31573.	1.7	69
29	Improving cellulose nanofibrillation of waste wheat straw using the combined methods of prewashing, p-toluenesulfonic acid hydrolysis, disk grinding, and endoglucanase post-treatment. Bioresource Technology, 2018, 256, 321-327.	4.8	66
30	Thermally conductive, super flexible and flame-retardant BN-OH/PVA composite film reinforced by lignin nanoparticles. Journal of Materials Chemistry C, 2019, 7, 14159-14169.	2.7	66
31	Natural lignocellulosic nanofibril film with excellent ultraviolet blocking performance and robust environment resistance. International Journal of Biological Macromolecules, 2021, 166, 1578-1585.	3.6	66
32	Recent research progress on preparation and application of N, N, N-trimethyl chitosan. Carbohydrate Research, 2016, 434, 27-32.	1.1	65
33	Biological Activities and Emerging Roles of Lignin and Lignin-Based Products─A Review. Biomacromolecules, 2021, 22, 4905-4918.	2.6	65
34	Characterization of Conformation and Locations of C–F Bonds in Graphene Derivative by Polarized ATR-FTIR. Analytical Chemistry, 2016, 88, 3926-3934.	3.2	63
35	Effect of fiber drying on properties of lignin containing cellulose nanocrystals and nanofibrils produced through maleic acid hydrolysis. Cellulose, 2017, 24, 4205-4216.	2.4	63
36	N-doped porous carbon nanofibers fabricated by bacterial cellulose-directed templating growth of MOF crystals for efficient oxygen reduction reaction and sodium-ion storage. Carbon, 2020, 168, 12-21.	5.4	63

#	Article	IF	CITATIONS
37	Temperature and pH responsive cellulose filament/poly (NIPAM-co-AAc) hybrids as novel adsorbent towards Pb(II) removal. Carbohydrate Polymers, 2018, 195, 495-504.	5.1	62
38	Highly fluorescent graphene quantum dots from biorefinery waste for tri-channel sensitive detection of Fe3+ ions. Journal of Hazardous Materials, 2021, 412, 125096.	6.5	62
39	Antibacterial modification of cellulose fibers by grafting β-cyclodextrin and inclusion with ciprofloxacin. Cellulose, 2014, 21, 1921-1932.	2.4	61
40	Functionalized porous magnetic cellulose/Fe3O4 beads prepared from ionic liquid for removal of dyes from aqueous solution. International Journal of Biological Macromolecules, 2020, 163, 309-316.	3.6	61
41	Absorbents based on maleic anhydride-modified cellulose fibers/diatomite for dye removal. Journal of Materials Science, 2014, 49, 6696-6704.	1.7	59
42	Adsorption of Hg (II) ions from aqueous solution by diethylenetriaminepentaacetic acid-modified cellulose. International Journal of Biological Macromolecules, 2019, 122, 149-156.	3.6	57
43	Beeswax–chitosan emulsion coated paper with enhanced water vapor barrier efficiency. Applied Surface Science, 2014, 300, 80-85.	3.1	56
44	Clustering-Triggered Emission of Carboxymethylated Nanocellulose. Frontiers in Chemistry, 2019, 7, 447.	1.8	55
45	Controlled Release of Agrochemicals Using pH and Redox Dual-Responsive Cellulose Nanogels. Journal of Agricultural and Food Chemistry, 2019, 67, 6700-6707.	2.4	55
46	Tailorâ€Made Antimicrobial/Antiviral Star Polymer via ATRP of Cyclodextrin and Guanidineâ€Based Macromonomer. Macromolecular Chemistry and Physics, 2015, 216, 511-518.	1,1	54
47	Controllable defluorination of fluorinated graphene and weakening of C–F bonding under the action of nucleophilic dipolar solvent. Physical Chemistry Chemical Physics, 2016, 18, 3285-3293.	1.3	54
48	Comparison of mixed enzymatic pretreatment and post-treatment for enhancing the cellulose nanofibrillation efficiency. Bioresource Technology, 2019, 293, 122171.	4.8	54
49	Bioinspired self-assembled films of carboxymethyl cellulose–dopamine/montmorillonite. Journal of Materials Chemistry A, 2019, 7, 14033-14041.	5.2	54
50	On-Demand Regulation of Lignocellulosic Nanofibrils Based on Rapid Fractionation Using Acid Hydrotrope: Kinetic Study and Characterization. ACS Sustainable Chemistry and Engineering, 2020, 8, 9569-9577.	3.2	53
51	Thermal and pH dual-responsive cellulose microfilament spheres for dye removal in single and binary systems. Journal of Hazardous Materials, 2019, 377, 88-97.	6.5	51
52	Novel cellulose/montmorillonite mesoporous composite beads for dye removal in single and binary systems. Bioresource Technology, 2019, 286, 121366.	4.8	51
53	Polycyclodextrins: Synthesis, functionalization, and applications. Carbohydrate Polymers, 2020, 242, 116277.	5.1	51
54	Reactive coating of soybean oil-based polymer on nanofibrillated cellulose film for water vapor barrier packaging. Carbohydrate Polymers, 2014, 111, 524-529.	5.1	48

#	Article	IF	CITATIONS
55	Cationic Polymers with Tailored Structures for Rendering Polysaccharide-Based Materials Antimicrobial: An Overview. Polymers, 2019, 11, 1283.	2.0	47
56	Multilayer surface construction for enhancing barrier properties of cellulose-based packaging. Carbohydrate Polymers, 2021, 255, 117431.	5.1	46
57	Antiviral/antibacterial biodegradable cellulose nonwovens as environmentally friendly and bioprotective materials with potential to minimize microplastic pollution. Journal of Hazardous Materials, 2022, 424, 127391.	6.5	46
58	Antibacterial/Antiviral Property and Mechanism of Dual-Functional Quaternized Pyridinium-type Copolymer. Polymers, 2015, 7, 2290-2303.	2.0	45
59	Laccase immobilization onto natural polysaccharides for biosensing and biodegradation. Carbohydrate Polymers, 2021, 262, 117963.	5.1	45
60	Cationic-modified cyclodextrin nanosphere/anionic polymer as flocculation/sorption systems. Journal of Colloid and Interface Science, 2005, 283, 406-413.	5.0	43
61	Non-leaching antimicrobial biodegradable PBAT films through a facile and novel approach. Materials Science and Engineering C, 2016, 58, 986-991.	3.8	43
62	Heteroatom-doped porous carbon microspheres derived from ionic liquid-lignin solution for high performance supercapacitors. Journal of Colloid and Interface Science, 2022, 614, 566-573.	5.0	43
63	Starch-Based Flexible Coating for Food Packaging Paper with Exceptional Hydrophobicity and Antimicrobial Activity. Polymers, 2018, 10, 1260.	2.0	41
64	Diisocyanate modifiable commercial filter paper with tunable hydrophobicity, enhanced wet tensile strength and antibacterial activity. Carbohydrate Polymers, 2020, 248, 116791.	5.1	41
65	Functional-modified polyurethanes for rendering surfaces antimicrobial: An overview. Advances in Colloid and Interface Science, 2020, 283, 102235.	7.0	41
66	Recyclable deep eutectic solvent coupling sodium hydroxide post-treatment for boosting woody/herbaceous biomass conversion at mild condition. Bioresource Technology, 2021, 320, 124327.	4.8	41
67	Characteristics of CO ₂ adsorption on biochar derived from biomass pyrolysis in molten salt. Canadian Journal of Chemical Engineering, 2018, 96, 2352-2360.	0.9	40
68	Theoretical modeling of water vapor transport in cellulose-based materials. Cellulose, 2016, 23, 1537-1552.	2.4	39
69	Dye removal from single and binary systems using gel-like bioadsorbent based on functional-modified cellulose. Cellulose, 2018, 25, 2559-2575.	2.4	39
70	Magnetic Fe3O4/attapulgite hybrids for Cd(II) adsorption: Performance, mechanism and recovery. Journal of Hazardous Materials, 2021, 412, 125237.	6.5	39
71	Effects of preparation approaches on optical properties of self-assembled cellulose nanopapers. RSC Advances, 2017, 7, 10463-10468.	1.7	38
72	Manufacture of Highly Transparent and Hazy Cellulose Nanofibril Films via Coating TEMPO-Oxidized Wood Fibers. Nanomaterials, 2019, 9, 107.	1.9	38

#	Article	IF	CITATIONS
73	Effect of lignin on performance of lignocellulose nanofibrils for durable superhydrophobic surface. Cellulose, 2019, 26, 933-944.	2.4	38
74	Cleaner production of lignocellulosic nanofibrils: Potential of mixed enzymatic treatment. Journal of Cleaner Production, 2020, 270, 122506.	4.6	38
75	Recent advances on the bacterial cellulose-derived carbon aerogels. Journal of Materials Chemistry C, 2021, 9, 818-828.	2.7	38
76	Thiomers of Chitosan and Cellulose: Effective Biosorbents for Detection, Removal and Recovery of Metal Ions from Aqueous Medium. Chemical Record, 2021, 21, 1876-1896.	2.9	38
77	Highly transparent and thermally stable cellulose nanofibril films functionalized with colored metal ions for ultraviolet blocking activities. Carbohydrate Polymers, 2019, 213, 10-16.	5.1	37
78	Fluorescence-sensitive adsorbent based on cellulose using for mercury detection and removal from aqueous solution with selective "on-off―response. International Journal of Biological Macromolecules, 2019, 132, 1185-1192.	3.6	36
79	Crystallization behaviors of polypropylene and functional polypropylene. Journal of Applied Polymer Science, 2003, 88, 872-877.	1.3	35
80	Synthesis and antibacterial characterization of gemini surfactant monomers and copolymers. Polymer Chemistry, 2012, 3, 907.	1.9	35
81	Immobilizing Laccase on Different Species Wood Biochar to Remove the Chlorinated Biphenyl in Wastewater. Scientific Reports, 2018, 8, 13947.	1.6	35
82	Thermally-induced cellulose nanofibril films with near-complete ultraviolet-blocking and improved water resistance. Carbohydrate Polymers, 2019, 223, 115050.	5.1	35
83	Selfâ€healing Polyol/Borax Hydrogels: Fabrications, Properties and Applications. Chemical Record, 2020, 20, 1142-1162.	2.9	35
84	Polyhedral oligomeric silsesquioxane/epoxy coatings: a review. Surface Innovations, 2021, 9, 3-16.	1.4	35
85	Dual-responsive carboxymethyl cellulose/dopamine/cystamine hydrogels driven by dynamic metal-ligand and redox linkages for controllable release of agrochemical. Carbohydrate Polymers, 2021, 253, 117188.	5.1	35
86	Formaldehyde-free self-polymerization of lignin-derived monomers for synthesis of renewable phenolic resin. International Journal of Biological Macromolecules, 2021, 166, 1312-1319.	3.6	34
87	Recent progress in direct production of furfural from lignocellulosic residues and hemicellulose. Bioresource Technology, 2022, 354, 127126.	4.8	34
88	Preparation of N, N, N-trimethyl chitosan via a novel approach using dimethyl carbonate. Carbohydrate Polymers, 2017, 169, 83-91.	5.1	33
89	Porous cellulose beads reconstituted from ionic liquid for adsorption of heavy metal ions from aqueous solutions. Cellulose, 2019, 26, 9163-9178.	2.4	32
90	Highly Efficient Lignin Depolymerization via Effective Inhibition of Condensation during Polyoxometalate-Mediated Oxidation. Energy & Fuels, 2019, 33, 6483-6490.	2.5	32

#	Article	IF	CITATIONS
91	Radical polymerization as a versatile tool for surface grafting of thin hydrogel films. Polymer Chemistry, 2020, 11, 4355-4381.	1.9	32
92	Benzenesulfonic acid-based hydrotropic system for achieving lignocellulose separation and utilization under mild conditions. Bioresource Technology, 2021, 337, 125379.	4.8	32
93	Preparation and properties of magnetic cellulose fiber composites. BioResources, 2011, 6, 3396-3409.	0.5	32
94	Cellulose fibers modified with nano-sized antimicrobial polymer latex for pathogen deactivation. Carbohydrate Polymers, 2016, 135, 94-100.	5.1	31
95	Hydrogen bonding energy determined by molecular dynamics simulation and correlation to properties of thermoplastic starch films. Carbohydrate Polymers, 2017, 166, 256-263.	5.1	31
96	Organo-modified cationic silica nanoparticles/anionic polymer asÂflocculants. Journal of Colloid and Interface Science, 2003, 267, 343-351.	5.0	30
97	Improving foamability of polypropylene by grafting modification. Journal of Applied Polymer Science, 2006, 101, 4114-4123.	1.3	30
98	Novel multi-responsive and sugarcane bagasse cellulose-based nanogels for controllable release of doxorubicin hydrochloride. Materials Science and Engineering C, 2021, 118, 111357.	3.8	30
99	Preparation and characterization of soy protein films with a durable water resistance-adjustable and antimicrobial surface. Materials Science and Engineering C, 2016, 69, 947-955.	3.8	29
100	An antibacterial composite film based on cellulose acetate/TiO ₂ nanoparticles. New Journal of Chemistry, 2020, 44, 20751-20758.	1.4	29
101	BNNS/PVA bilayer composite film with multiple-improved properties by the synergistic actions of cellulose nanofibrils and lignin nanoparticles. International Journal of Biological Macromolecules, 2020, 157, 259-266.	3.6	29
102	Copolymers of styrene with a quaternary europium complex. Journal of Applied Polymer Science, 2006, 100, 1506-1510.	1.3	28
103	Water vapor adsorption equilibria and mass transport in unmodified and modified cellulose fiber-based materials. Adsorption, 2014, 20, 863-874.	1.4	28
104	Enhancing physical performance and hydrophobicity of paper-based cellulosic material via impregnation with starch and PEI-KH560. Cellulose, 2018, 25, 1365-1375.	2.4	28
105	Adsorption of volatile organic compounds on peanut shell activated carbon. Canadian Journal of Chemical Engineering, 2019, 97, 238-246.	0.9	28
106	Co-site substitution by Mn supported on biomass-derived active carbon for enhancing magnesia desulfurization. Journal of Hazardous Materials, 2019, 365, 531-537.	6.5	28
107	Boosting the thermal conductivity of CNF-based composites by cross-linked lignin nanoparticle and BN-OH: Dual construction of 3D thermally conductive pathways. Composites Science and Technology, 2021, 204, 108641.	3.8	28
108	Degradable polyprodrugs: design and therapeutic efficiency. Chemical Society Reviews, 2022, 51, 6652-6703.	18.7	28

#	Article	IF	CITATIONS
109	Synthesis and characterization of superâ€absorbent hydrogels based on hemicellulose. Journal of Applied Polymer Science, 2015, 132, .	1.3	27
110	Morphology control for tunable optical properties of cellulose nanofibrils films. Cellulose, 2018, 25, 5909-5918.	2.4	26
111	Direct Valorization of Lignocellulosic Biomass into Value-Added Chemicals by Polyoxometalate Catalyzed Oxidation under Mild Conditions. Industrial & Engineering Chemistry Research, 2019, 58, 22996-23004.	1.8	26
112	Novel Antiâ€Microbial Hostâ€Guest Complexes Based on Cationic <i>β</i> yclodextrin Polymers and Triclosan/Butylparaben. Macromolecular Rapid Communications, 2007, 28, 2244-2248.	2.0	25
113	Hydrophobic modification of cellulose fibres by cationic-modified polyacrylate latex with core-shell structure. Cellulose, 2013, 20, 485-494.	2.4	25
114	Preparation and Characterization of Exfoliated PHBV Nanocomposites to Enhance Water Vapor Barriers of Calendared Paper. Industrial & Engineering Chemistry Research, 2015, 54, 11277-11284.	1.8	25
115	Cellulase-assisted refining of bleached softwood kraft pulp for making water vapor barrier and grease-resistant paper. Cellulose, 2016, 23, 891-900.	2.4	25
116	"Cellulose Spacer―Strategy: Anti-Aggregation-Caused Quenching Membrane for Mercury Ion Detection and Removal. ACS Sustainable Chemistry and Engineering, 2019, 7, 15182-15189.	3.2	25
117	Thermally Conductive and Electrical Insulation BNNS/CNF Aerogel Nano-Paper. Polymers, 2019, 11, 660.	2.0	24
118	Antibacterial activities and mechanisms of fluorinated graphene and guanidine-modified graphene. RSC Advances, 2016, 6, 8763-8772.	1.7	23
119	Microrheology, advances in methods and insights. Advances in Colloid and Interface Science, 2018, 257, 71-85.	7.0	23
120	Green and Superhydrophobic Coatings Based on Tailor-Modified Lignocellulose Nanofibrils for Self-Cleaning Surfaces. Industrial & Engineering Chemistry Research, 2019, 58, 20323-20330.	1.8	23
121	Binding affinity of family 4 carbohydrate binding module on cellulose films of nanocrystals and nanofibrils. Carbohydrate Polymers, 2021, 251, 116725.	5.1	23
122	Ciprofloxacin conjugated gold nanorods with pH induced surface charge transformable activities to combat drug resistant bacteria and their biofilms. Materials Science and Engineering C, 2021, 128, 112292.	3.8	23
123	Starch-Based Composite Films with Enhanced Hydrophobicity, Thermal Stability, and UV-Shielding Efficacy Induced by Lignin Nanoparticles. Biomacromolecules, 2022, 23, 829-838.	2.6	23
124	Antimicrobial paper obtained by dip-coating with modified guanidine-based particle aqueous dispersion. Cellulose, 2017, 24, 3901-3910.	2.4	22
125	Layerâ€byâ€Layer Assembly for Surface Tethering of Thinâ€Hydrogel Films: Design Strategies and Applications. Chemical Record, 2020, 20, 857-881.	2.9	22
126	Lignocellulosic nanofibril aerogel via gas phase coagulation and diisocyanate modification for solvent absorption. Carbohydrate Polymers, 2022, 278, 119011.	5.1	22

#	Article	IF	CITATIONS
127	Polystyrene prepared by reactive extrusion: kinetics and effect of processing parameters. Polymers for Advanced Technologies, 2004, 15, 185-191.	1.6	21
128	Characterization and antipathogenic evaluation of a novel quaternary phosphonium tripolyacrylamide and elucidation of the inactivation mechanisms. Journal of Biomedical Materials Research - Part A, 2016, 104, 747-757.	2.1	21
129	Novel aqueous spongy foams made of three-dimensionally dispersed wood-fiber: entrapment and stabilization with NFC/MFC within capillary foams. Cellulose, 2017, 24, 241-251.	2.4	21
130	Hydrothermal synthesis of nitrogen-doped ordered mesoporous carbon <i>via</i> lysine-assisted self-assembly for efficient CO ₂ capture. RSC Advances, 2020, 10, 2932-2941.	1.7	21
131	Effective extraction of aromatic monomers from lignin oil using a binary petroleum ether/dichloromethane solvent. Separation and Purification Technology, 2021, 267, 118599.	3.9	21
132	Biopolymer-based membranes from polysaccharides for CO2 separation: a review. Environmental Chemistry Letters, 2022, 20, 1083-1128.	8.3	21
133	Design and Construction of Fluorescent Cellulose Nanocrystals for Biomedical Applications. Advanced Materials Interfaces, 2022, 9, .	1.9	21
134	Adsorption of methyl violet using pH- and temperature-sensitive cellulose filament/poly(NIPAM-co-AAc) hybrid hydrogels. Journal of Materials Science, 2018, 53, 11837-11854.	1.7	20
135	Fluorescent paper-based analytical devices for ultra-sensitive dual-type RNA detections and accurate gastric cancer screening. Biosensors and Bioelectronics, 2022, 197, 113781.	5.3	20
136	Poly lactic acid nanocomposites containing modified nanoclay with synergistic barrier to water vapor for coated paper. Journal of Applied Polymer Science, 2014, 131, .	1.3	19
137	An Aminosalicylic Acidâ€Modified Cellulose Composite Used for Mercury (II) Removal from Single and Quarternary Aqueous Solutions. ChemistrySelect, 2018, 3, 10096-10102.	0.7	19
138	Aerogel Perfusion-Prepared h-BN/CNF Composite Film with Multiple Thermally Conductive Pathways and High Thermal Conductivity. Nanomaterials, 2019, 9, 1051.	1.9	19
139	Novel comb-like ionenes with aliphatic side chains: synthesis and antimicrobial properties. Journal of Materials Science, 2013, 48, 1162-1171.	1.7	18
140	Enhancement of the heat conduction performance of boron nitride/cellulosic fibre insulating composites. PLoS ONE, 2018, 13, e0200842.	1.1	18
141	One-dimensional nanohybrids based on cellulose nanocrystals and their SERS performance. Carbohydrate Polymers, 2022, 284, 119140.	5.1	18
142	Mass transfer of water vapor, carbon dioxide and oxygen on modified cellulose fiber-based materials. Nordic Pulp and Paper Research Journal, 2012, 27, 409-417.	0.3	17
143	Immobilizing Laccase on Modified Cellulose/CF Beads to Degrade Chlorinated Biphenyl in Wastewater. Polymers, 2018, 10, 798.	2.0	17
144	Low-cost and high-wet-strength paper-based lignocellulosic adsorbents for the removal of heavy metal ions. Industrial Crops and Products, 2020, 158, 112926.	2.5	17

#	Article	IF	CITATIONS
145	Cellulose-based adsorbents loaded with zero-valent iron for removal of metal ions from contaminated water. Environmental Science and Pollution Research, 2020, 27, 33234-33247.	2.7	17
146	Resource utilization and ionization modification of waste starch from the recycling process of old corrugated cardboard paper. Journal of Environmental Management, 2020, 271, 111031.	3.8	17
147	Near-complete enzymatic hydrolysis efficiency of Miscanthus using hydrotropic fractionation at atmospheric pressure. Industrial Crops and Products, 2020, 149, 112365.	2.5	17
148	Flexible graphene/silver nanoparticles/aluminum film paper for high-performance electromagnetic interference shielding. Materials and Design, 2022, 213, 110296.	3.3	17
149	Poly(ethylene oxide) macromonomer-grafted polymer nanoparticles synthesised by emulsifier-free emulsion polymerisation. Colloid and Polymer Science, 2003, 281, 815-822.	1.0	16
150	Lignin Redistribution for Enhancing Barrier Properties of Cellulose-Based Materials. Polymers, 2019, 11, 1929.	2.0	16
151	Characteristics of asâ€prepared biochar derived from catalytic pyrolysis within moderateâ€temperature ionic liquid for <scp>CO₂</scp> uptake. Canadian Journal of Chemical Engineering, 2020, 98, 690-704.	0.9	16
152	Naturally Occurring Exopolysaccharide Nanoparticles: Formation Process and Their Application in Glutathione Detection. ACS Applied Materials & amp; Interfaces, 2021, 13, 19756-19767.	4.0	16
153	Promoting h-BN dispersion in cellulose-based composite by lignosulfonate for regulatable effectual thermal management. Materials and Design, 2022, 214, 110379.	3.3	16
154	Study on nanometer-size styrene-butadiene multiblock copolymer synthesized by reactive extrusion. Journal of Applied Polymer Science, 2004, 91, 2265-2270.	1.3	15
155	Laccase-catalyzed chitosan-monophenol copolymer as a coating on paper enhances its hydrophobicity and strength. Progress in Organic Coatings, 2021, 151, 106026.	1.9	15
156	Amphiphilic star block copolymers as gene carrier Part I: Synthesis via ATRP using calix[4]resorcinarene-based initiators and characterization. Materials Science and Engineering C, 2013, 33, 519-526.	3.8	14
157	Study on cellulose microfilaments based composite spheres: Microwave-assisted synthesis, characterization, and application in pollutant removal. Journal of Environmental Management, 2018, 228, 85-92.	3.8	14
158	Suppressing Ammonia Re-Emission with the Aid of the Co3O4-NPs@KIT-6 Catalyst in Ammonia-Based Desulfurization. Environmental Science & Technology, 2019, 53, 13477-13485.	4.6	14
159	Impregnation of PEI in Novel Porous MgCO ₃ for Carbon Dioxide Capture from Flue Gas. Industrial & Engineering Chemistry Research, 2019, 58, 4979-4987.	1.8	14
160	Interaction of cationic modified poly vinyl alcohol with high yield pulp. Cellulose, 2010, 17, 1021-1031.	2.4	13
161	Preparation and characterization of thermoâ€sensitive poly(vinyl alcohol)â€based hydrogel as drug carrier. Journal of Applied Polymer Science, 2014, 131, .	1.3	13
162	Antimicrobial polyethylene wax emulsion and its application on active paperâ€based packaging material. Journal of Applied Polymer Science, 2015, 132, .	1.3	13

#	Article	IF	CITATIONS
163	Synthetic polymers based on lignin-derived aromatic monomers for high-performance energy-storage materials. Journal of Materials Chemistry A, 2020, 8, 24065-24074.	5.2	13
164	Nonisothermal Cure Kinetics of Epoxy/Polyvinylpyrrolidone Functionalized Superparamagnetic Nano-Fe3O4 Composites: Effect of Zn and Mn Doping. Journal of Composites Science, 2020, 4, 55.	1.4	13
165	Improvement of Oil and Water Barrier Properties of Food Packaging Paper by Coating with Microcrystalline Wax Emulsion. Polymers, 2022, 14, 1786.	2.0	13
166	High flux composite membranes based on glass/cellulose fibers for efficient oil-water emulsion separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 647, 129016.	2.3	13
167	Effects of oxidant and dopants on the properties of cellulose/PPy conductive composite hydrogels. Journal of Applied Polymer Science, 2016, 133, .	1.3	12
168	Water-resistant cellulosic filter for aerosol entrapment and water purification, Part I: production of water-resistant cellulosic filter. Environmental Technology (United Kingdom), 2016, 37, 1716-1722.	1.2	12
169	Thiol-Lactam Initiated Radical Polymerization (TLIRP): Scope and Application for the Surface Functionalization of Nanoparticles. Mini-Reviews in Organic Chemistry, 2022, 19, 416-431.	0.6	12
170	Redox- and Enzyme-Responsive Macrospheres Gatekept by Polysaccharides for Controlled Release of Agrochemicals. Journal of Agricultural and Food Chemistry, 2021, 69, 11163-11170.	2.4	12
171	Multifunctional cellulose paper-based materials and their application in complex wastewater treatment. International Journal of Biological Macromolecules, 2022, 207, 414-423.	3.6	12
172	Novel Retention System Based on (2,3-Epoxypropyl)trimethylammonium Chloride Modified Silica Nanoparticles and Anionic Polymer. Industrial & Engineering Chemistry Research, 2005, 44, 539-545.	1.8	11
173	Hybrid poly(ethylene terephthalate)/silica nanocomposites prepared by in-situ polymerization. Polymer Composites, 2007, 28, 42-46.	2.3	11
174	Amphiphilic cationic copolymers with ciprofloxacin: preparation and antimicrobial activities. New Journal of Chemistry, 2016, 40, 1354-1364.	1.4	11
175	Highly Dispersible Cellulose Nanofibrils Produced via Mechanical Pretreatment and TEMPO-mediated Oxidation. Fibers and Polymers, 2018, 19, 2237-2244.	1.1	11
176	Preparation of Novel Nano-Sized Hydrogel Microcapsules via Layer-By-Layer Assembly as Delivery Vehicles for Drugs onto Hygiene Paper. Polymers, 2018, 10, 335.	2.0	11
177	Revealing Adsorption Behaviors of Amphoteric Polyacrylamide on Cellulose Fibers and Impact on Dry Strength of Fiber Networks. Polymers, 2019, 11, 1886.	2.0	11
178	Preparation and characterization of rare earth complex europium3+-acrylate-1,10-phenanthroline grafted onto polypropylene. Journal of Applied Polymer Science, 2006, 102, 1547-1552.	1.3	10
179	Properties of a novel thermal sensitive polymer based on poly(vinyl alcohol) and its layer-by-layer assembly. Polymers for Advanced Technologies, 2007, 18, 335-345.	1.6	10
180	Characterization of the diffusion path in micro- and meso-porous materials from ZLC analysis. Adsorption, 2010, 16, 531-539.	1.4	10

#	Article	IF	CITATIONS
181	Permanent antistatic polypropylene based on polyethylene wax/polypropylene wax grafting sodium acrylate. Journal of Applied Polymer Science, 2012, 126, 83-90.	1.3	10
182	Synthesis and characterization of a novel water-soluble cationic diblock copolymer with star conformation by ATRP. Materials Science and Engineering C, 2014, 43, 350-358.	3.8	10
183	Preparation and characterization of amphoteric cellulose–montmorillonite composite beads with a controllable porous structure. Journal of Applied Polymer Science, 2019, 136, 47941.	1.3	10
184	Valorization of Alkaline Peroxide Mechanical Pulp by Metal Chloride-Assisted Hydrotropic Pretreatment for Enzymatic Saccharification and Cellulose Nanofibrillation. Polymers, 2019, 11, 331.	2.0	10
185	Facile isolation of colloidal stable chitin nano-crystals from Metapenaeus ensis shell via solid maleic acid hydrolysis and their application for synthesis of silver nanoparticles. Cellulose, 2020, 27, 9853-9875.	2.4	10
186	Impacts of degree of substitution of quaternary cellulose on the strength improvement of fiber networks. International Journal of Biological Macromolecules, 2021, 181, 41-44.	3.6	10
187	Molecular Weight Distribution and Dissolution Behavior of Lignin in Alkaline Solutions. Polymers, 2021, 13, 4166.	2.0	10
188	Preparation and retention of poly(ethylene oxide)-grafted cationic polyacrylamide microparticles. Journal of Applied Polymer Science, 2006, 101, 359-363.	1.3	9
189	Effects of renewable materials coatings on oil resistant properties of paper. Nordic Pulp and Paper Research Journal, 2015, 30, 344-349.	0.3	9
190	Self-assembly of silica nanoparticles into hollow spheres via a microwave-assisted aerosol process. Materials Research Bulletin, 2016, 74, 459-464.	2.7	9
191	Bio-Wax Latex-Modified Paper as Antimicrobial and Water-Vapor-Resistant Packaging Material. Journal of Wood Chemistry and Technology, 2016, 36, 182-191.	0.9	9
192	Dual-Functional Redox-Responsive Nanocarriers for Loading Phytohormone and Complexation with Heavy Metal Ions. Journal of Agricultural and Food Chemistry, 2020, 68, 5076-5085.	2.4	9
193	Thermodynamics of <scp>CO₂</scp> adsorption on celluloseâ€derived biochar prepared in ionic liquid. Canadian Journal of Chemical Engineering, 2021, 99, 1940-1961.	0.9	9
194	Carbohydrate-Binding Modules of Potential Resources: Occurrence in Nature, Function, and Application in Fiber Recognition and Treatment. Polymers, 2022, 14, 1806.	2.0	9
195	The characterization of rheological properties of melt grafting polypropylene for foaming. Polymer Bulletin, 2009, 63, 111-123.	1.7	8
196	Using cationic polyvinyl alcohol (C-PVA) to improve the strength of wood-free papers containing high-yield pulp (HYP). Holzforschung, 2010, 64, .	0.9	8
197	Preparation of antistatic and antimicrobial polyethylene by incorporating of comb-like ionenes. Journal of Materials Science, 2012, 47, 7201-7209.	1.7	8
198	Effect of NaOH/urea solution on enhancing grease resistance and strength of paper. Nordic Pulp and Paper Research Journal, 2014, 29, 246-252.	0.3	8

#	Article	IF	CITATIONS
199	Dimethylolurea as a Novel Slow-Release Nitrogen Source for Nitrogen Leaching Mitigation and Crop Production. Journal of Agricultural and Food Chemistry, 2019, 67, 7616-7625.	2.4	8
200	Enhanced oxidation of sulfite over a highly efficient biochar-induced silica composite for sulfur resource utilization in magnesia desulfurization. Journal of Materials Chemistry A, 2021, 9, 13288-13296.	5.2	8
201	Value-added utilization of lignin-derived aromatic oligomers as renewable charge-storage materials. Industrial Crops and Products, 2021, 171, 113848.	2.5	8
202	Excellent Low-Temperature Formaldehyde Decomposition Performance over Pt Nanoparticles Directly Loaded on Cellulose Triacetate. Industrial & Engineering Chemistry Research, 2020, 59, 21720-21728.	1.8	8
203	Tough and flexible poly(dimethylsiloxane) elastomer reinforced by conductive bacterial cellulose frameworks for high-performance microwave absorber. Cellulose, 2022, 29, 259-272.	2.4	8
204	Polystyrene sulfonate is effective for enhancing biomass enzymatic saccharification under green liquor pretreatment in bioenergy poplar. , 2022, 15, 10.		7
205	Effect of polymeric thickeners on pigment coatings: Adsorption, rheological behaviour and surface structures. Journal of Materials Science, 2004, 39, 4487-4493.	1.7	6
206	Permanent antistatic polypropylene based on polyethylene wax/polypropylene waxâ€grafting sodium acrylate. Journal of Applied Polymer Science, 2013, 127, 959-966.	1.3	6
207	Preparation and adsorption behaviour of cationic nanoparticles for sugarcane fibre modification. RSC Advances, 2016, 6, 33554-33560.	1.7	6
208	Microwave Assisted Preparation of Antimicrobial Chitosan with Guanidine Oligomers and Its Application in Hygiene Paper Products. Polymers, 2017, 9, 633.	2.0	6
209	Effect of Feedstock Concentration on Biogas Production by Inoculating Rumen Microorganisms in Biomass Solid Waste. Applied Biochemistry and Biotechnology, 2018, 184, 1219-1231.	1.4	6
210	Synthesis of Amphiphilic Copolymers Containing Ciprofloxacin and Amine Groups and Their Antimicrobial Performances As Revealed by Confocal Laser-Scanning Microscopy and Atomic-Force Microscopy. Journal of Agricultural and Food Chemistry, 2018, 66, 8406-8414.	2.4	6
211	Improving air permeability of paper with acrylic and melamine resins. Canadian Journal of Chemical Engineering, 2014, 92, 823-827.	0.9	5
212	Study of Stimuli-Sensitivities of Amphiphilic Modified Star Poly[N,N-(Dimethylamino)ethyl Methacrylate] and Its Ability of DNA Complexation. Journal of Macromolecular Science - Pure and Applied Chemistry, 2014, 51, 898-906.	1.2	5
213	Preparation of Copolymer-Based Nanoparticles with Broad-Spectrum Antimicrobial Activity. Polymers, 2017, 9, 717.	2.0	5
214	Experimental and kinetic study of the conversion of waste starch into glycolic acid over phosphomolybdic acid. RSC Advances, 2021, 11, 30961-30970.	1.7	5
215	Evaluating the refractive index, thickness and porosity of ultrathin cellulose nanocrystal films with different polymorphs by SPR technique. International Journal of Biological Macromolecules, 2021, 193, 1209-1214.	3.6	5
216	Surface properties of block and graft polystyrene–polydimethylsiloxane copolymers. Journal of Applied Polymer Science, 2006, 99, 2936-2942.	1.3	4

#	Article	IF	CITATIONS
217	Dynamic Flocculation of Ultrafine Particles of Coal-Fired Power Plant Induced by Ionic Polyacrylamides at Bench and Pilot Scales. Industrial & Engineering Chemistry Research, 2017, 56, 12438-12446.	1.8	4
218	Facile Synthesis of Highly Active Sulfated Titania Nanofibers for Viscous Acid-Catalytic Reactions. Catalysis Letters, 2021, 151, 1376-1384.	1.4	4
219	Valorization of Rice Straw via Hydrotropic Lignin Extraction and Its Characterization. Molecules, 2021, 26, 4123.	1.7	4
220	Naturally Occurring Exopolysaccharide Nanoparticles for Dye Adsorption. ACS Applied Nano Materials, 2021, 4, 10458-10466.	2.4	4
221	Efficient valorization of woody biomass using two-step oxidation toward multipurpose fractionation. Industrial Crops and Products, 2021, 167, 113509.	2.5	4
222	Phosphomolybdic acid-catalyzed oxidation of waste starch: a new strategy for handling the OCC pulping wastewater. Environmental Science and Pollution Research, 2022, , 1.	2.7	4
223	Studies on the Synthesis and the Reaction Mechanism of Epoxy-Terminated Polystyrene Oligomer. Polymer Bulletin, 2008, 60, 477-486.	1.7	3
224	Synthesis and characterization of temperatureâ€responsive poly(vinyl alcohol)â€based copolymers. Journal of Applied Polymer Science, 2008, 110, 2698-2703.	1.3	3
225	Further Studies on the Anionic Copolymerization of Styrene and Glycidyl Methacrylate in Toluene. Journal of Macromolecular Science - Pure and Applied Chemistry, 2010, 47, 626-632.	1.2	3
226	Mechanistic insights into morphological and chemical changes during benzenesulfonic acid pretreatment and simultaneous saccharification and fermentation process for ethanol production. Bioresource Technology, 2022, 360, 127586.	4.8	3
227	Synthesis of 3-dimensional mesoporous silica using a di-block copolymer template. Journal of Materials Science, 2007, 42, 4461-4469.	1.7	2
228	Effects of zein emulsion application on improving the water and water vapour barrier properties of paper. Nordic Pulp and Paper Research Journal, 2013, 28, 381-385.	0.3	2
229	Improving Water Vapor Barrier of Green-Based Nanocellulose Film via Hydrophobic Coating. , 2015, , .		2
230	Preparation and characterization of cysteineâ€formaldehyde crossâ€linked complex for CO ₂ capture. Canadian Journal of Chemical Engineering, 2019, 97, 3012-3024.	0.9	2
231	Rapid Preparation of Oxidized Starch with High Carbonyl Contents Using NaBrO as Oxidizer. Starch/Staerke, 2019, 71, 1900054.	1.1	2
232	Intermolecular interactions between \hat{l}^2 -cyclodextrin and water. RSC Advances, 2021, 11, 24807-24815.	1.7	2
233	Microwave Assisted Preparation of Antimicrobial Chitosan with Guanidine Oligomers and Its Application in Hygiene Paper Products. Polymers, 2017, 9, 633.	2.0	2
234	Crystallization Behaviors of amino-terminated polyurethane (ATPU)-grafted polypropylene. Polymer Bulletin, 2006, 56, 179-191.	1.7	1