Esther Udina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8116940/publications.pdf

Version: 2024-02-01

46 papers

2,299 citations

186209 28 h-index 243529 44 g-index

46 all docs 46 docs citations

46 times ranked

2807 citing authors

#	Article	IF	CITATIONS
1	New insights into peripheral nerve regeneration: The role of secretomes. Experimental Neurology, 2022, 354, 114069.	2.0	21
2	The Role and Modulation of Spinal Perineuronal Nets in the Healthy and Injured Spinal Cord. Frontiers in Cellular Neuroscience, 2022, 16 , .	1.8	5
3	Cisplatin-induced peripheral neuropathy is associated with neuronal senescence-like response. Neuro-Oncology, 2021, 23, 88-99.	0.6	36
4	Voluntary wheel running preserves lumbar perineuronal nets, enhances motor functions and prevents hyperreflexia after spinal cord injury. Experimental Neurology, 2021, 336, 113533.	2.0	21
5	"Off-the-Shelf―Nerve Matrix Preservation. Biopreservation and Biobanking, 2021, , .	0.5	1
6	Effects of Neurotoxic or Pro-regenerative Agents on Motor and Sensory Neurite Outgrowth in Spinal CordÂOrganotypic Slices and DRG Explants in Culture. Neuromethods, 2021, , 429-441.	0.2	1
7	Schwann Cell Role in Selectivity of Nerve Regeneration. Cells, 2020, 9, 2131.	1.8	61
8	EEG Biomarkers Related With the Functional State of Stroke Patients. Frontiers in Neuroscience, 2020, 14, 582.	1.4	48
9	Editorial: Peripheral Nerve Regeneration. Frontiers in Cellular Neuroscience, 2019, 13, 464.	1.8	5
10	Role of Noradrenergic Inputs From Locus Coeruleus on Changes Induced on Axotomized Motoneurons by Physical Exercise. Frontiers in Cellular Neuroscience, 2019, 13, 65.	1.8	5
11	Minocycline Does Not Reduce the Regenerative Capacity of Peripheral Motor and Sensory Neurons after a Conditioning Injury in Mice. Anatomical Record, 2018, 301, 1638-1645.	0.8	3
12	Activation of 5-HT2A Receptors Restores KCC2 Function and Reduces Neuropathic Pain after Spinal Cord Injury. Neuroscience, 2018, 387, 48-57.	1.1	53
13	Schwann cells and mesenchymal stem cells in laminin- or fibronectin-aligned matrices and regeneration across a critical size defect of 15 mm in the rat sciatic nerve. Journal of Neurosurgery: Spine, 2018, 28, 109-118.	0.9	48
14	Stabilization, Rolling, and Addition of Other Extracellular Matrix Proteins to Collagen Hydrogels Improve Regeneration in Chitosan Guides for Long Peripheral Nerve Gaps in Rats. Neurosurgery, 2017, 80, 465-474.	0.6	49
15	Effects of forced, passive, and voluntary exercise on spinal motoneurons changes after peripheral nerve injury. European Journal of Neuroscience, 2017, 46, 2885-2892.	1.2	13
16	Endogenous modulation of TrkB signaling by treadmill exercise after peripheral nerve injury. Neuroscience, 2017, 340, 188-200.	1.1	15
17	Preferential Enhancement of Sensory and Motor Axon Regeneration by Combining Extracellular Matrix Components with Neurotrophic Factors. International Journal of Molecular Sciences, 2017, 18, 65.	1.8	28
18	Substratum preferences of motor and sensory neurons in postnatal and adult rats. European Journal of Neuroscience, 2016, 43, 431-442.	1.2	19

#	Article	IF	Citations
19	Inhibition of the neuronal NFκB pathway attenuates bortezomib-induced neuropathy in a mouse model. NeuroToxicology, 2016, 55, 58-64.	1.4	22
20	Toxic Effects of Bortezomib on Primary Sensory Neurons and Schwann Cells of Adult Mice. Neurotoxicity Research, 2015, 27, 430-440.	1.3	31
21	Activity dependent therapies modulate the spinal changes that motoneurons suffer after a peripheral nerve injury. Experimental Neurology, 2015, 263, 293-305.	2.0	37
22	Treatment with anti-TNF alpha protects against the neuropathy induced by the proteasome inhibitor bortezomib in a mouse model. Experimental Neurology, 2014, 253, 165-173.	2.0	39
23	Schwann cells transduced with a lentiviral vector encoding Fgfâ€2 promote motor neuron regeneration following sciatic nerve injury. Glia, 2014, 62, 1736-1746.	2.5	46
24	Neurotoxicity induced by antineoplastic proteasome inhibitors. NeuroToxicology, 2014, 43, 28-35.	1.4	43
25	Neuroprotection and Axonal Regeneration After Lumbar Ventral Root Avulsion by Re-implantation and Mesenchymal Stem Cells Transplant Combined Therapy. Neurotherapeutics, 2013, 10, 354-368.	2.1	30
26	<scp>C3</scp> exoenzyme lacks effects on peripheral axon regeneration <i>in vivo</i> . Journal of the Peripheral Nervous System, 2013, 18, 30-36.	1.4	7
27	FGF-2 Low Molecular Weight Selectively Promotes Neuritogenesis of Motor Neurons In Vitro. Molecular Neurobiology, 2013, 47, 770-781.	1.9	19
28	Extracellular Matrix Components in Peripheral Nerve Regeneration. International Review of Neurobiology, 2013, 108, 257-275.	0.9	102
29	Specificity of peripheral nerve regeneration: Interactions at the axon level. Progress in Neurobiology, 2012, 98, 16-37.	2.8	348
30	Evaluation of preâ€existing neuropathy and bortezomib retreatment as risk factors to develop severe neuropathy in a mouse model. Journal of the Peripheral Nervous System, 2011, 16, 199-212.	1.4	21
31	Effects of activity-dependent strategies on regeneration and plasticity after peripheral nerve injuries. Annals of Anatomy, 2011, 193, 347-353.	1.0	89
32	Passive and active exercise improve regeneration and muscle reinnervation after peripheral nerve injury in the rat. Muscle and Nerve, 2011, 43, 500-509.	1.0	86
33	In vitro comparison of motor and sensory neuron outgrowth in a 3D collagen matrix. Journal of Neuroscience Methods, 2011, 198, 53-61.	1.3	54
34	Amphetamine Increases Persistent Inward Currents in Human Motoneurons Estimated From Paired Motor-Unit Activity. Journal of Neurophysiology, 2010, 103, 1295-1303.	0.9	59
35	Neurophysiological, histological and immunohistochemical characterization of bortezomib-induced neuropathy in mice. Experimental Neurology, 2010, 223, 599-608.	2.0	85
36	Chapter 6 Methods and Protocols in Peripheral Nerve Regeneration Experimental Research. International Review of Neurobiology, 2009, 87, 105-126.	0.9	70

3

#	Article	lF	CITATIONS
37	Electrical stimulation combined with exercise increase axonal regeneration after peripheral nerve injury. Experimental Neurology, 2009, 219, 258-265.	2.0	179
38	Immediate electrical stimulation enhances regeneration and reinnervation and modulates spinal plastic changes after sciatic nerve injury and repair. Experimental Neurology, 2008, 211, 180-193.	2.0	99
39	FK506 enhances regeneration of axons across long peripheral nerve gaps repaired with collagen guides seeded with allogeneic Schwann cells. Glia, 2004, 47, 120-129.	2.5	64
40	Comparison of continuous and discontinuous FK506 administration on autograft or allograft repair of sciatic nerve resection. Muscle and Nerve, 2004, 29, 812-822.	1.0	46
41	Effects of the immunophilin ligand FK506 on nerve regeneration in collagen guides seeded with Schwann cells in rats. Neuroscience Letters, 2004, 357, 99-102.	1.0	16
42	Comparative dose-dependence study of FK506 on transected mouse sciatic nerve repaired by allograft or xenograft. Journal of the Peripheral Nervous System, 2003, 8, 145-154.	1.4	50
43	FK506 enhances reinnervation by regeneration and by collateral sprouting of peripheral nerve fibers. Experimental Neurology, 2003, 183, 220-231.	2.0	81
44	Bimodal dose-dependence of FK506 on the rate of axonal regeneration in mouse peripheral nerve. Muscle and Nerve, 2002, 26, 348-355.	1.0	74
45	Effects of FK506 on nerve regeneration and reinnervation after graft or tube repair of long nerve gaps. Muscle and Nerve, 2001, 24, 905-915.	1.0	67
46	Analysis of axonal growth in organotypic neural cultures. Protocol Exchange, 0, , .	0.3	3