
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8116933/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness. Journal of Power Sources, 2001, 93, 130-140.	4.0	796
2	Tensile properties, tension–tension fatigue and biological response of polyetheretherketone–hydroxyapatite composites for load-bearing orthopedic implants. Biomaterials, 2003, 24, 2245-2250.	5.7	344
3	Performance evaluation of anode-supported solid oxide fuel cells with thin film YSZ electrolyte. International Journal of Hydrogen Energy, 2004, 29, 1025-1033.	3.8	258
4	Addressing processing problems associated with plasma spraying of hydroxyapatite coatings. Biomaterials, 1996, 17, 537-544.	5.7	230
5	Low-temperature SOFC with thin film GDC electrolyte prepared in situ by solid-state reaction. Solid State Ionics, 2004, 170, 9-15.	1.3	215
6	In vitro studies of plasma-sprayed hydroxyapatite/Ti-6Al-4V composite coatings in simulated body fluid (SBF). Biomaterials, 2003, 24, 1603-1611.	5.7	213
7	Temperature Driven Morphological Changes of Chemically Precipitated Hydroxyapatite Nanoparticles. Langmuir, 2004, 20, 5196-5200.	1.6	207
8	FeB/FeB phase transformation during SPS pack-boriding: Boride layer growth kinetics. Acta Materialia, 2005, 53, 2361-2368.	3.8	204
9	Spark plasma sintering of hydroxyapatite powders. Biomaterials, 2002, 23, 37-43.	5.7	202
10	Influence of microstructure on the ionic conductivity of yttria-stabilized zirconia electrolyte. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 335, 246-252.	2.6	199
11	Effects of residual stress on the performance of plasma sprayed functionally graded ZrO2/NiCoCrAlY coatings. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 277, 64-76.	2.6	194
12	High-performance low-temperature solid oxide fuel cell with novel BSCF cathode. Journal of Power Sources, 2006, 161, 123-128.	4.0	189
13	Bone-like apatite layer formation on hydroxyapatite prepared by spark plasma sintering (SPS). Biomaterials, 2004, 25, 4127-4134.	5.7	187
14	Thermal properties of plasma-sprayed functionally graded thermal barrier coatings. Thin Solid Films, 2000, 372, 104-113.	0.8	184
15	Titanium dioxide reinforced hydroxyapatite coatings deposited by high velocity oxy-fuel (HVOF) spray. Biomaterials, 2002, 23, 85-91.	5.7	172
16	An Airâ€ S table Densely Packed Phosphorene–Graphene Composite Toward Advanced Lithium Storage Properties. Advanced Energy Materials, 2016, 6, 1600453.	10.2	167
17	A novel amperometric biosensor based on ZnO:Co nanoclusters for biosensing glucose. Biosensors and Bioelectronics, 2007, 23, 135-139.	5.3	165
18	Mechanical properties of injection molded hydroxyapatite-polyetheretherketone biocomposites. Composites Science and Technology, 2003, 63, 421-425.	3.8	164

#	Article	IF	CITATIONS
19	Simulation of a composite cathode in solid oxide fuel cells. Electrochimica Acta, 2004, 49, 1851-1861.	2.6	154
20	Interface Driven Energy Filtering of Thermoelectric Power in Spark Plasma Sintered Bi ₂ Te _{2.7} Se _{0.3} Nanoplatelet Composites. Nano Letters, 2012, 12, 4305-4310.	4.5	149
21	Multifunctional 0D–2D Ni ₂ P Nanocrystals–Black Phosphorus Heterostructure. Advanced Energy Materials, 2017, 7, 1601285.	10.2	149
22	Microstructure and mechanical properties of spark plasma sintered zirconia-hydroxyapatite nano-composite powders. Acta Materialia, 2005, 53, 2327-2335.	3.8	142
23	Transparent and flexible glucose biosensor via layer-by-layer assembly of multi-wall carbon nanotubes and glucose oxidase. Electrochemistry Communications, 2007, 9, 1269-1275.	2.3	141
24	Thermal conductivity and dielectric constant of spark plasma sintered aluminum nitride. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 347, 300-305.	2.6	139
25	Plasma-sprayed hydroxyapatite (HA) coatings with flame-spheroidized feedstock: microstructure and mechanical properties. Biomaterials, 2000, 21, 1223-1234.	5.7	135
26	An in vitro investigation of plasma sprayed hydroxyapatite (HA) coatings produced with flame-spheroidized feedstock. Biomaterials, 2002, 23, 775-785.	5.7	129
27	(La0.75Sr0.25)(Cr0.5Mn0.5)O3/YSZ composite anodes for methane oxidation reaction in solid oxide fuel cells. Solid State Ionics, 2006, 177, 149-157.	1.3	128
28	Surface characteristics and dissolution behavior of plasma-sprayed hydroxyapatite coating. Journal of Biomedical Materials Research Part B, 2002, 62, 228-236.	3.0	123
29	3D superhydrophobic reduced graphene oxide for activated NO ₂ sensing with enhanced immunity to humidity. Journal of Materials Chemistry A, 2018, 6, 478-488.	5.2	116
30	Plasma spraying of functionally graded hydroxyapatite/Ti–6Al–4V coatings. Surface and Coatings Technology, 2003, 168, 195-201.	2.2	115
31	Microstructure and mechanical properties of plasma sprayed HA/YSZ/Ti–6Al–4V composite coatings. Biomaterials, 2004, 25, 4009-4017.	5.7	115
32	Effect of spark plasma sintering on the microstructure and in vitro behavior of plasma sprayed HA coatings. Biomaterials, 2003, 24, 2695-2705.	5.7	111
33	Laminated and functionally graded hydroxyapatite/yttria stabilized tetragonal zirconia composites fabricated by spark plasma sintering. Biomaterials, 2003, 24, 667-675.	5.7	110
34	Protein expression profiles in osteoblasts in response to differentially shaped hydroxyapatite nanoparticles. Biomaterials, 2009, 30, 5385-5391.	5.7	108
35	Activity of plasma sprayed yttria stabilized zirconia reinforced hydroxyapatite/Ti–6Al–4V composite coatings in simulated body fluid. Biomaterials, 2004, 25, 3177-3185.	5.7	106
36	ldentification of O2 reduction processes at yttria stabilized zirconia doped lanthanum manganite interface. Journal of Power Sources, 2003, 123, 17-25.	4.0	104

#	Article	IF	CITATIONS
37	Effects of incorporation of HA/ZrO2 into glass ionomer cement (GIC). Biomaterials, 2005, 26, 713-720.	5.7	104
38	Plasma sprayed functionally graded thermal barrier coatings. Materials Letters, 1999, 38, 437-444.	1.3	102
39	Mixing and characterization of feedstock for powder injection molding. Materials Letters, 2000, 46, 109-114.	1.3	102
40	Production of metal matrix composite part by powder injection molding. Journal of Materials Processing Technology, 2001, 108, 398-407.	3.1	102
41	Development of (La,Sr)MnO[sub 3]-Based Cathodes for Intermediate Temperature Solid Oxide Fuel Cells. Electrochemical and Solid-State Letters, 2003, 6, A67.	2.2	102
42	Chemical analysis of silica doped hydroxyapatite biomaterials consolidated by a spark plasma sintering method. Journal of Inorganic Biochemistry, 2007, 101, 187-195.	1.5	102
43	Impact formation and microstructure characterization of thermal sprayed hydroxyapatite/titania composite coatings. Biomaterials, 2003, 24, 949-957.	5.7	97
44	Experimental studies on a new bioactive material: HAlonomer cements. Biomaterials, 2002, 23, 955-962.	5.7	95
45	HVOF spraying of nanostructured hydroxyapatite for biomedical applications. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 396, 181-187.	2.6	95
46	Controlled growth of bismuth antimony telluride Bi Sb2â^'Te3 nanoplatelets and their bulk thermoelectric nanocomposites. Nano Energy, 2015, 15, 688-696.	8.2	94
47	Micro-powder injection molding. Journal of Materials Processing Technology, 2002, 127, 165-168.	3.1	93
48	Densification of plasma sprayed YSZ electrolytes by spark plasma sintering (SPS). Journal of the European Ceramic Society, 2003, 23, 1855-1863.	2.8	93
49	Preparation and characterization of a novel hydroxyapatite/carbon nanotubes composite and its interaction with osteoblast-like cells. Materials Science and Engineering C, 2009, 29, 44-49.	3.8	92
50	Anode-supported solid oxide fuel cell with yttria-stabilized zirconia/gadolinia-doped ceria bilalyer electrolyte prepared by wet ceramic co-sintering process. Journal of Power Sources, 2006, 162, 1036-1042.	4.0	91
51	Binder system for micropowder injection molding. Materials Letters, 2001, 48, 31-38.	1.3	89
52	Sintering study of 316L stainless steel metal injection molding parts using Taguchi method: final density. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 311, 74-82.	2.6	87
53	Preparation and characterization of nano-sized hydroxyapatite powders produced in a radio frequency (rf) thermal plasma. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 374, 101-108.	2.6	86
54	Ti and Ti-6Al-4V Coatings by Cold Spraying and Microstructure Modification by Heat Treatment. Advanced Engineering Materials, 2007, 9, 418-423.	1.6	86

#	Article	IF	CITATIONS
55	Tension–tension fatigue behavior of hydroxyapatite reinforced polyetheretherketone composites. International Journal of Fatigue, 2004, 26, 49-57.	2.8	84
56	Effect of characteristics of Y2O3/ZrO2 powders on fabrication of anode-supported solid oxide fuel cells. Journal of Power Sources, 2003, 117, 26-34.	4.0	83
57	Electrochemical behavior of La(Sr)MnO3 electrode under cathodic and anodic polarization. Solid State Ionics, 2004, 167, 379-387.	1.3	83
58	Tensile properties and microstructural analysis of spheroidized hydroxyapatite–poly (etheretherketone) biocomposites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 345, 55-63.	2.6	81
59	Hydroxyapatite/titania nanocomposites derived by combining high-energy ball milling with spark plasma sintering processes. Journal of the European Ceramic Society, 2008, 28, 3083-3090.	2.8	81
60	Effect of particulate morphology on the tensile behaviour of polymer–hydroxyapatite composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 345, 47-54.	2.6	80
61	Enhanced thermoelectric performance of solution-derived bismuth telluride based nanocomposites via liquid-phase Sintering. Nano Energy, 2016, 30, 630-638.	8.2	78
62	Antibacterial Property of Cold-Sprayed HA-Ag/PEEK Coating. Journal of Thermal Spray Technology, 2009, 18, 10-15.	1.6	77
63	Influence of plasma and cold spray deposited Ti Layers on high-cycle fatigue properties of Ti6Al4V substrates. Surface and Coatings Technology, 2013, 217, 23-33.	2.2	76
64	Young's modulus and fracture toughness determination of high velocity oxy-fuel-sprayed bioceramic coatings. Surface and Coatings Technology, 2002, 155, 21-32.	2.2	75
65	Characterisation of a duplex TiO2/CaP coating on Ti6Al4V for hard tissue replacement. Biomaterials, 2005, 26, 1087-1095.	5.7	73
66	Raman spectroscopy determination of phases within thermal sprayed hydroxyapatite splats and subsequent in vitro dissolution examination. Acta Materialia, 2004, 52, 445-453.	3.8	72
67	Spark-plasma-sintering (SPS) of nanostructured titanium carbonitride powders. Journal of the European Ceramic Society, 2005, 25, 1919-1927.	2.8	72
68	Properties of heat-treated calcium phosphate coatings deposited by high-velocity oxy-fuel (HVOF) spray. Biomaterials, 2002, 23, 2105-2112.	5.7	70
69	Mechanical behavior of plasma sprayed functionally graded YSZ/NiCoCrAlY composite coatings. Surface and Coatings Technology, 2001, 139, 200-206.	2.2	68
70	Preparation yttria-stabilized zirconia electrolyte by spark-plasma sintering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 341, 43-48.	2.6	68
71	TEM and STEM analysis on heat-treated and in vitro plasma-sprayed hydroxyapatite/Ti-6Al-4V composite coatings. Biomaterials, 2003, 24, 97-105.	5.7	66
72	Influence of spraying conditions on thermal and velocity properties of plasma sprayed hydroxyapatite. Materials Science and Engineering C, 2007, 27, 340-344.	3.8	66

#	Article	IF	CITATIONS
73	Formation of hard tungsten boride layer by spark plasma sintering boriding. Thin Solid Films, 2005, 478, 232-237.	0.8	65
74	Reliability and accuracy of measured overpotential in a three-electrode fuel cell system. Journal of Applied Electrochemistry, 2001, 31, 1163-1170.	1.5	64
75	Fretting wear behaviors of thermal sprayed hydroxyapatite (HA) coating under unlubricated conditions. Wear, 1998, 217, 132-139.	1.5	63
76	Spark-plasma-sintering (SPS) of nanostructured and submicron titanium oxide powders. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 381, 16-19.	2.6	63
77	Characterization of powder injection molding feedstock. Materials Characterization, 2002, 49, 313-320.	1.9	62
78	Apparent Solubility of Hydroxyapatite in Aqueous Medium and Its Influence on the Morphology of Nanocrystallites with Precipitation Temperature. Langmuir, 2006, 22, 11002-11008.	1.6	61
79	Significance of melt-fraction in HVOF sprayed hydroxyapatite particles, splats and coatings. Biomaterials, 2004, 25, 1177-1186.	5.7	59
80	Microstructure formation in plasma-sprayed functionally graded NiCoCrAlY/yttria-stabilized zirconia coatings. Surface and Coatings Technology, 1999, 114, 181-186.	2.2	58
81	Effect of solid carbide particle size on deposition behaviour, microstructure and wear performance of HVOF cermet coatings. Materials Science and Technology, 2004, 20, 1087-1096.	0.8	56
82	Adhesive and bending failure of thermal sprayed hydroxyapatite coatings: Effect of nanostructures at interface and crack propagation phenomenon during bending. Engineering Fracture Mechanics, 2007, 74, 1894-1903.	2.0	56
83	Chitosan-mediated crystallization and assembly of hydroxyapatite nanoparticles into hybrid nanostructured films. Journal of the Royal Society Interface, 2008, 5, 427-439.	1.5	56
84	Microstructures and mechanical properties of powder injection molded Ti-6Al-4V/HA powder. Biomaterials, 2002, 23, 2927-2938.	5.7	55
85	Evaluation of adhesion strength and toughness of fluoridated hydroxyapatite coatings. Thin Solid Films, 2008, 516, 5162-5167.	0.8	54
86	Yttria stabilized zirconia reinforced hydroxyapatite coatings. Surface and Coatings Technology, 2000, 127, 66-75.	2.2	53
87	Development of LSM/YSZ composite cathode for anode-supported solid oxide fuel cells. Journal of Applied Electrochemistry, 2004, 34, 409-415.	1.5	53
88	RF plasma processing of ultra-fine hydroxyaptite powders. Journal of Materials Processing Technology, 2001, 113, 456-462.	3.1	52
89	Microstructure evolution during sintering of injection molded M2 high speed steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 293, 46-55.	2.6	49
90	Boriding of mild steel using the spark plasma sintering (SPS) technique. Surface and Coatings Technology, 2002, 157, 226-230.	2.2	49

#	Article	IF	CITATIONS
91	A simple bilayer electrolyte model for solid oxide fuel cells. Solid State Ionics, 2003, 158, 29-43.	1.3	48
92	Thermal sprayed hydroxyapatite splats: nanostructures, pore formation mechanisms and TEM characterization. Biomaterials, 2004, 25, 3463-3471.	5.7	48
93	Microstructure modifications and phase transformation in plasma-sprayed WC–Co coatings following post-spray spark plasma sintering. Surface and Coatings Technology, 2005, 194, 96-102.	2.2	47
94	High-performance (La,Sr)(Cr,Mn)O3/(Gd,Ce)O2â^'δ composite anode for direct oxidation of methane. Journal of Power Sources, 2007, 165, 34-40.	4.0	47
95	Osteoblastic cell response on magnesium-incorporated apatite coatings. Applied Surface Science, 2008, 255, 304-307.	3.1	47
96	Characterization of hydroxyapatite/nano-zirconia composite coatings deposited by high velocity oxy-fuel (HVOF) spray process. Surface and Coatings Technology, 2004, 182, 227-236.	2.2	46
97	Role of in-flight temperature and velocity of powder particles on plasma sprayed hydroxyapatite coating characteristics. Surface and Coatings Technology, 2012, 206, 2181-2191.	2.2	46
98	Minority Carrier Blocking to Enhance the Thermoelectric Performance of Solution-Processed Bi _{<i>x</i>} Sb _{2–<i>x</i>} Te ₃ Nanocomposites via a Liquid-Phase Sintering Process. ACS Applied Materials & Interfaces, 2017, 9, 12501-12510.	4.0	46
99	Sintering of injection molded M2 high-speed steel. Materials Letters, 2000, 45, 32-38.	1.3	45
100	Microstructure-property modifications in plasma sprayed 20 wt.% yttria stabilized zirconia electrolyte by spark plasma sintering (SPS) technique. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 366, 120-126.	2.6	45
101	Spark plasma sintering of Sm2O3-doped aluminum nitride. Journal of the European Ceramic Society, 2005, 25, 1057-1065.	2.8	45
102	Texture and structure evolution of tantalum powder samples during spark-plasma-sintering (SPS) and conventional hot-pressing. International Journal of Refractory Metals and Hard Materials, 2007, 25, 280-285.	1.7	44
103	Characterization of the bone-like apatite precipitated on high velocity oxy-fuel (HVOF) sprayed calcium phosphate deposits. Biomaterials, 2003, 24, 769-775.	5.7	43
104	Radio frequency (rf) plasma spheroidized HA powders: powder characterization and spark plasma sintering behavior. Biomaterials, 2005, 26, 2197-2207.	5.7	43
105	Bond strength determination of hydroxyapatite coatings on Tiâ€6Alâ€4V substrates using the LAser Shock Adhesion Test (LASAT). Journal of Biomedical Materials Research - Part A, 2010, 95A, 1096-1104.	2.1	43
106	Pulsed laser treatment of plasma-sprayed hydroxyapatite coatings. Biomaterials, 1996, 17, 1901-1904.	5.7	42
107	Processing, microstructure and mechanical properties of yttria stabilized zirconia reinforced hydroxyapatite coatings. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 316, 46-51.	2.6	42
108	Mechanical, tribological and biological properties of novel 45S5 Bioglass® composites reinforced with in situ reduced graphene oxide. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 65, 77-89.	1.5	42

#	Article	IF	CITATIONS
109	Effect of the powders' melting state on the properties of HVOF sprayed hydroxyapatite coatings. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 293, 71-80.	2.6	41
110	Non-destructive evaluation of plasma sprayed functionally graded thermal barrier coatings. Surface and Coatings Technology, 2000, 130, 233-239.	2.2	41
111	In vitro behavior of HVOF sprayed calcium phosphate splats and coatings. Biomaterials, 2003, 24, 723-735.	5.7	41
112	Graphene oxide-functionalized nanocomposites promote osteogenesis of human mesenchymal stem cells via enhancement of BMP-SMAD1/5 signaling pathway. Biomaterials, 2021, 277, 121082.	5.7	41
113	High-pressure plasma spraying of hydroxyapatite powders. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 325, 9-18.	2.6	40
114	Overcoming the effect of contaminant in solid oxide fuel cell (SOFC) electrolyte: spark plasma sintering (SPS) of 0.5wt.% silica-doped yttria-stabilized zirconia (YSZ). Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 374, 64-71.	2.6	40
115	Mechanical alloying of TiC/M2 high speed steel composite powders and sintering investigation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 311, 13-21.	2.6	39
116	Effects of debinding parameters on powder injection molded Ti-6Al-4V/HA composite parts. Advanced Powder Technology, 2001, 12, 361-370.	2.0	38
117	Processing–microstructure–property relations in HVOF sprayed calcium phosphate based bioceramic coatings. Biomaterials, 2003, 24, 2233-2243.	5.7	38
118	Effect of thermal exposure on the microstructure and properties of EB-PVD gradient thermal barrier coatings. Surface and Coatings Technology, 2003, 168, 23-29.	2.2	38
119	Restoring WC in plasma sprayed WC–Co coatings through spark plasma sintering (SPS). Surface and Coatings Technology, 2004, 182, 308-317.	2.2	38
120	Spark plasma sintered hydroxyapatite-yttria stabilized zirconia composites. Ceramics International, 2004, 30, 1793-1796.	2.3	38
121	Phase composition and heat of crystallisation of amorphous calcium phosphate in ultra-fine radio frequency suspension plasma sprayed hydroxyapatite powders. Acta Materialia, 2004, 52, 1171-1181.	3.8	38
122	Influence of oxide mixtures on mechanical properties of plasma sprayed functionally graded coating. Thin Solid Films, 2000, 368, 86-92.	0.8	37
123	Ti-6A1-4V/HA composite feedstock for injection molding. Materials Letters, 2002, 56, 522-532.	1.3	37
124	Sulfur Tolerance and Hydrocarbon Stability of La[sub 0.75]Sr[sub 0.25]Cr[sub 0.5]Mn[sub 0.5]O[sub 3]â^•Gd[sub 0.2]Ce[sub 0.8]O[sub 1.9] Composite Anode under Anodic Polarization. Journal of the Electrochemical Society, 2007, 154, B1206.	1.3	37
125	Radio frequency (RF) suspension plasma sprayed ultra-fine hydroxyapatite (HA)/zirconia composite powders. Biomaterials, 2003, 24, 2611-2621.	5.7	36
126	Spark plasma sintering of sol–gel derived 45S5 Bioglass®-ceramics: Mechanical properties and biocompatibility evaluation. Materials Science and Engineering C, 2012, 32, 494-502.	3.8	36

#	Article	IF	CITATIONS
127	Effect of spark plasma sintering (SPS) on the microstructure and mechanical properties of randomly packed hollow sphere (RHS) cell wall. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 356, 130-135.	2.6	35
128	Development of zirconia-glass ionomer cement composites. Journal of Non-Crystalline Solids, 2005, 351, 508-514.	1.5	35
129	Preparation and characterization of bioactive monolayer and functionally graded coatings. Journal of Materials Science: Materials in Medicine, 1999, 10, 269-273.	1.7	34
130	The effects of ZrO2 on the phase compositions of plasma sprayed HA/YSZ composite coatings. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 276, 160-166.	2.6	34
131	Boride layer growth kinetics during boriding of molybdenum by the Spark Plasma Sintering (SPS) technology. Surface and Coatings Technology, 2006, 201, 2849-2853.	2.2	34
132	Processing of HA-coated Ti–6Al–4V by a ceramic slurry approach: an in vitro study. Biomaterials, 2001, 22, 1225-1232.	5.7	33
133	Process-microstructure-property relationships in controlled atmosphere plasma spraying of ceramics. Surface and Coatings Technology, 2004, 183, 204-211.	2.2	33
134	Characterization of hydroxyapatite– and bioglass–316L fibre composites prepared by spark plasma sintering. Materials Letters, 2004, 58, 304-307.	1.3	33
135	(La0.8Sr0.2)0.9MnO3–Gd0.2Ce0.8O1.9 composite cathodes prepared from (Gd, Ce)(NO3) x -modified (La0.8Sr0.2)0.9MnO3 for intermediate-temperature solid oxide fuel cells. Journal of Solid State Electrochemistry, 2006, 10, 339-347.	1.2	33
136	Antibacterial Property of Cold Sprayed Chitosan-Cu/Al Coating. Journal of Thermal Spray Technology, 2009, 18, 600-608.	1.6	33
137	Spark plasma reaction sintering of ZrO2–mullite composites from plasma spheroidized zircon/alumina powders. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 339, 286-296.	2.6	32
138	Phase reaction and sintering behavior of a Al2O3–20wt%AlN–5wt%Y2O3 system. Acta Materialia, 2001, 49, 3117-3127.	3.8	31
139	High temperature in-situ XRD of plasma sprayed HA coatings. Biomaterials, 2002, 23, 381-387.	5.7	31
140	Comparative proteomics profile of osteoblasts cultured on dissimilar hydroxyapatite biomaterials: An iTRAQâ€coupled 2â€D LCâ€MS/MS analysis. Proteomics, 2008, 8, 4249-4258.	1.3	31
141	Single-Step Process toward Achieving Superhydrophobic Reduced Graphene Oxide. ACS Applied Materials & Interfaces, 2016, 8, 10985-10994.	4.0	29
142	Fretting wear behavior of thermal sprayed hydroxyapatite coating lubricated with bovine albumin. Wear, 1999, 230, 98-102.	1.5	28
143	Cyclic voltammetry of (La,Sr)MnO3 electrode on YSZ substrate. Solid State Ionics, 2003, 164, 17-25.	1.3	28
144	Characteristics of the nanostructures in thermal sprayed hydroxyapatite coatings and their influence on coating properties. Surface and Coatings Technology, 2006, 201, 2147-2154.	2.2	28

#	Article	IF	CITATIONS
145	Multilayer assembly of positively charged polyelectrolyte and negatively charged glucose oxidase on a 3D Nafion network for detecting glucose. Biosensors and Bioelectronics, 2007, 22, 3256-3260.	5.3	28
146	Initial attachment of osteoblastic cells onto solâ€gel derived fluoridated hydroxyapatite coatings. Journal of Biomedical Materials Research - Part A, 2008, 84A, 769-776.	2.1	28
147	An electrolyte model for ceramic oxygen generator and solid oxide fuel cell. Journal of Power Sources, 2002, 111, 320-328.	4.0	27
148	Defect Chemistry of La[sub 1â^'x]Sr[sub x]MnO[sub 3±Î] under Cathodic Polarization. Electrochemical and Solid-State Letters, 2004, 7, A144.	2.2	27
149	An Improved Anode Micro Model of SOFC. Electrochemical and Solid-State Letters, 2004, 7, A63.	2.2	26
150	Characterization of spark plasma sintered Ag nanopowders. Nanotechnology, 2010, 21, 115707.	1.3	26
151	Biocompatible Nanostructured High-Velocity Oxyfuel Sprayed Titania Coating: Deposition, Characterization, and Mechanical Properties. Journal of Thermal Spray Technology, 2006, 15, 623-627.	1.6	24
152	Synthesis and Characterization of Neodymium(III) and Gadolinium(III)‣ubstituted Hydroxyapatite as Biomaterials. International Journal of Applied Ceramic Technology, 2009, 6, 501-512.	1.1	24
153	In vivo evaluation of titanium oxide and hydroxyapatite as an artificial cornea skirt. Journal of Materials Science: Materials in Medicine, 2012, 23, 1063-1072.	1.7	24
154	Thermally induced crystallization of amorphous calcium phosphate in plasma-spheroidised hydroxyapatite powders. Materials Letters, 2000, 46, 229-233.	1.3	23
155	Crystallization behaviors in the plasma-spheroidized alumina/zircon mixtures. Materials Letters, 2001, 48, 57-63.	1.3	23
156	Influence of Cold-Sprayed, Warm-Sprayed, and Plasma-Sprayed Layers Deposition on Fatigue Properties of Steel Specimens. Journal of Thermal Spray Technology, 2015, 24, 758-768.	1.6	23
157	Spark plasma sintering and in vitro study of ultra-fine HA and ZrO2–HA powders. Journal of Materials Processing Technology, 2003, 140, 420-425.	3.1	22
158	The adhesion strength and residual stress of colloidal-sol gel derived β-Tricalcium-Phosphate/Fluoridated-Hydroxyapatite biphasic coatings. Thin Solid Films, 2008, 516, 3251-3255.	0.8	22
159	Neutron diffraction residual strain measurements in nanostructured hydroxyapatite coatings for orthopaedic implants. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 2043-2054.	1.5	21
160	Mechanical properties of the plasma-sprayed Al2O3/ZrSiO4 coatings. Surface and Coatings Technology, 2002, 150, 143-150.	2.2	20
161	An interfacial study of sol–gel-derived magnesium apatite coatings on Ti6Al4V substrates. Thin Solid Films, 2008, 516, 5172-5175.	0.8	20
162	Fabrication and spectroscopic characterization of Ce3+ doped Sr2Y8(SiO4)6O2 translucent ceramics. Optical Materials, 2012, 34, 1155-1160.	1.7	20

#	Article	IF	CITATIONS
163	Application of Graphene as Candidate Biomaterial for Synthetic Keratoprosthesis Skirt. , 2015, 56, 6605.		20
164	Microstructure and composition analysis in plasma sprayed coatings of Al2O3/ZrSiO4 mixtures. Surface and Coatings Technology, 2002, 150, 125-132.	2.2	19
165	Conductometric Study of Precursor Compound Formation during Wet-Chemical Synthesis of Nanocrystalline Hydroxyapatite. Journal of Physical Chemistry B, 2006, 110, 24457-24462.	1.2	19
166	Injection molding of 316L stainless steel microstructures. Microsystem Technologies, 2003, 9, 507-510.	1.2	18
167	Physicochemical differences after densifying radio frequency plasma sprayed hydroxyapatite powders using spark plasma and conventional sintering techniques. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 457, 24-32.	2.6	18
168	Residual stress of ruthenium powder samples compacted by spark-plasma-sintering (SPS) determined by X-ray diffraction. International Journal of Refractory Metals and Hard Materials, 2009, 27, 105-110.	1.7	18
169	Synthesis and characterization on atomphospheric plasma sprayed amorphous silica doped hydrxoyapatite coatings. Surface and Coatings Technology, 2012, 206, 4659-4665.	2.2	18
170	Optical and biological properties of transparent nanocrystalline hydroxyapatite obtained through spark plasma sintering. Materials Science and Engineering C, 2016, 69, 956-966.	3.8	18
171	Pressureless spark plasma sintering of alumina micro-channel part produced by micro powder injection molding. Scripta Materialia, 2011, 64, 237-240.	2.6	17
172	Modification of Plasma-sprayed TiO2 Coatings Characteristics via Controlling the In-flight Temperature and Velocity of the Powder Particles. Journal of Thermal Spray Technology, 2014, 23, 1339-1349.	1.6	17
173	Effect of Steam Treatment During Plasma Spraying on the Microstructure of Hydroxyapatite Splats and Coatings. Journal of Thermal Spray Technology, 2006, 15, 610-616.	1.6	16
174	Preparation and Properties of Coatings and Thin Films on Metal Implants. , 2019, , 203-212.		16
175	Production of micro components by micro powder injection molding. Journal of Materials Science Letters, 2001, 20, 307-309.	0.5	15
176	The evaluation of powder processing on microstructure and mechanical properties of hydroxyapatite (HA)/yttria stabilized zirconia (YSZ) composite coatings. Surface and Coatings Technology, 2001, 140, 263-268.	2.2	15
177	In-Flight Temperature and Velocity of Powder Particles of Plasma-Sprayed TiO2. Journal of Thermal Spray Technology, 2013, 22, 1320-1327.	1.6	15
178	Multifunctional bioceramic-based composites reinforced with silica-coated carbon nanotube core-shell structures. Ceramics International, 2017, 43, 16084-16093.	2.3	15
179	In vitro effect of magnesium inclusion in sol–gel derived apatite. Thin Solid Films, 2008, 516, 5176-5180.	0.8	14
180	Residual stress in spark-plasma-sintered and hot-pressed tantalum samples determined by X-ray diffraction methods. International Journal of Refractory Metals and Hard Materials, 2008, 26, 312-317.	1.7	14

#	Article	IF	CITATIONS
181	Viscoelastic properties of plasma sprayed NiCoCrAlY coatings. Thin Solid Films, 2002, 405, 146-152.	0.8	12
182	Multifunctional Alumina Composites with Toughening and Crackâ€Healing Features Via Incorporation of NiAl Particles. Journal of the American Ceramic Society, 2015, 98, 1618-1625.	1.9	12
183	Al-Li/SiCp composites and Ti-AI alloy powders and coatings prepared by a plasma spray atomization (PSA) technique. Journal of Thermal Spray Technology, 1994, 3, 162-168.	1.6	11
184	Aluminium nitride by plasma spraying of an Al2O3–C–Sm2O3 system. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 300, 203-210.	2.6	11
185	In vitro effect of a corrosive hostile ocular surface on candidate biomaterials for keratoprosthesis skirt. British Journal of Ophthalmology, 2012, 96, 1252-1258.	2.1	11
186	High Temperature Damping Behavior of Plasma Sprayed NiCoCrAlY Coatings. Journal of Thermal Spray Technology, 2002, 11, 359-364.	1.6	10
187	Neutron Diffraction Residual Strain Measurements in Plasma Sprayed Nanostructured Hydroxyapatite Coatings for Orthopaedic Implants. Materials Science Forum, 0, 652, 309-314.	0.3	10
188	Transparent Hydroxyapatite Obtained through Spark Plasma Sintering: Optical and Mechanical Properties. Key Engineering Materials, 0, 631, 51-56.	0.4	10
189	A sintered graphene/titania material as a synthetic keratoprosthesis skirt for end-stage corneal disorders. Acta Biomaterialia, 2019, 94, 585-596.	4.1	10
190	Analysis of phase changes in plasma-sprayed Ti–6Al–4V/hydroxyapatite composite coatings by DSC. Materials Letters, 2001, 51, 88-93.	1.3	9
191	The effect of boron-pack refreshment on the boriding of mild steel by the spark plasma sintering (SPS) process. Surface and Coatings Technology, 2008, 202, 2830-2836.	2.2	9
192	Incorporating silicaâ€coated graphene in bioceramic nanocomposites to simultaneously enhance mechanical and biological performance. Journal of Biomedical Materials Research - Part A, 2020, 108, 1016-1027.	2.1	9
193	A Study of Processing Parameters in Thermal-Sprayed Alumina and Zircon Mixtures. Journal of Thermal Spray Technology, 2002, 11, 186-194.	1.6	8
194	Discharge and densification in the spark plasma sintering of quasicrystal particles. Journal of Materials Science, 2019, 54, 8727-8742.	1.7	8
195	On the Kinetics of Apatite Growth on Substrates under Physiological Conditions. Langmuir, 2006, 22, 269-276.	1.6	7
196	Influence of Input Parameters on Splat Formation and Coating Thermal Diffusivity in Plasma Spraying. Advanced Engineering Materials, 2006, 8, 645-650.	1.6	7
197	Development of Translucent Oxyapatite Ceramics by Spark Plasma Sintering. Journal of the American Ceramic Society, 2010, 93, 3060-3063.	1.9	7
198	Dynamic mechanical properties of ZrO2/NiCoCrAlY composite coatings. Thin Solid Films, 2000, 358, 139-145.	0.8	6

#	Article	IF	CITATIONS
199	Determination of the residual stress depth profile of uniaxial compacted ruthenium powder samples by X-ray diffraction. International Journal of Refractory Metals and Hard Materials, 2009, 27, 1004-1008.	1.7	6
200	Optimization of spark plasma sintered titania for potential application as a keratoprosthesis skirt. Journal of Biomedical Materials Research - Part A, 2017, 105, 3502-3513.	2.1	6
201	Processing of biocomposite Ti-6Al-4V/HA powder. Journal of Materials Science Letters, 2003, 22, 775-778.	0.5	4
202	Effects of Titania Content and Sintering Temperature on Structural, Mechanical and Bioactive Behaviors of Titania Reinforced Hydroxyapatite Nanocomposites. Advanced Engineering Materials, 2008, 10, B53.	1.6	3
203	Lithium Storage: An Air-Stable Densely Packed Phosphorene-Graphene Composite Toward Advanced Lithium Storage Properties (Adv. Energy Mater. 12/2016). Advanced Energy Materials, 2016, 6, .	10.2	2
204	Hydroxyapatite Bioceramics Reinforced with Silica-Coated Graphene. Key Engineering Materials, 2017, 758, 150-154.	0.4	2
205	Liâ€ŀon Batteries: Multifunctional 0D–2D Ni ₂ P Nanocrystals–Black Phosphorus Heterostructure (Adv. Energy Mater. 2/2017). Advanced Energy Materials, 2017, 7, .	10.2	0
206	The emergence of graphene research topics through interactions within and beyond. Quantitative Science Studies, 2022, 3, 457-484.	1.6	0