
Silvia Caccia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8116875/publications.pdf Version: 2024-02-01

<u> Silvia Caccia</u>

#	Article	IF	CITATIONS
1	Transgenic plants expressing immunosuppressive dsRNA improve entomopathogen efficacy against Spodoptera littoralis larvae. Journal of Pest Science, 2022, 95, 1413-1428.	3.7	10
2	Mosquito Trilogy: Microbiota, Immunity and Pathogens, and Their Implications for the Control of Disease Transmission. Frontiers in Microbiology, 2021, 12, 630438.	3.5	49
3	Enhancement of Bacillus thuringiensis toxicity by feeding Spodoptera littoralis larvae with bacteria expressing immune suppressive dsRNA. Journal of Pest Science, 2020, 93, 303-314.	3.7	34
4	Black Soldier Fly Larvae Adapt to Different Food Substrates through Morphological and Functional Responses of the Midgut. International Journal of Molecular Sciences, 2020, 21, 4955.	4.1	51
5	Ingestion and effects of polystyrene nanoparticles in the silkworm Bombyx mori. Chemosphere, 2020, 257, 127203.	8.2	25
6	Venomics of the ectoparasitoid wasp Bracon nigricans. BMC Genomics, 2020, 21, 34.	2.8	20
7	Analysis of Cellular Immune Responses in Lepidopteran Larvae. Springer Protocols, 2020, , 97-111.	0.3	2
8	The amazing complexity of insect midgut cells: types, peculiarities, and functions. Cell and Tissue Research, 2019, 377, 505-525.	2.9	79
9	A First Attempt to Produce Proteins from Insects by Means of a Circular Economy. Animals, 2019, 9, 278.	2.3	69
10	Evolution of an insect immune barrier through horizontal gene transfer mediated by a parasitic wasp. PLoS Genetics, 2019, 15, e1007998.	3.5	32
11	Structural and Functional Characterization of Hermetia illucens Larval Midgut. Frontiers in Physiology, 2019, 10, 204.	2.8	76
12	The Intestinal Microbiota of Hermetia illucens Larvae Is Affected by Diet and Shows a Diverse Composition in the Different Midgut Regions. Applied and Environmental Microbiology, 2019, 85, .	3.1	134
13	Host regulation by the ectophagous parasitoid wasp Bracon nigricans. Journal of Insect Physiology, 2017, 101, 73-81.	2.0	14
14	Effects of <i>Trichoderma viride</i> chitinases on the peritrophic matrix of Lepidoptera. Pest Management Science, 2016, 72, 980-989.	3.4	58
15	Midgut epithelium in molting silkworm: A fine balance among cell growth, differentiation, and survival. Arthropod Structure and Development, 2016, 45, 368-379.	1.4	20
16	Midgut microbiota and host immunocompetence underlie <i>Bacillus thuringiensis</i> killing mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9486-9491.	7.1	144
17	The midgut of the silkmoth Bombyx mori is able to recycle molecules derived from degeneration of the larval midgut epithelium. Cell and Tissue Research, 2015, 361, 509-528.	2.9	53
18	New synthesis and biological evaluation of uniflorine A derivatives: towards specific insect trehalase inhibitors. Organic and Biomolecular Chemistry, 2015, 13, 886-892.	2.8	16

SILVIA CACCIA

#	Article	IF	CITATIONS
19	A Virulence Factor Encoded by a Polydnavirus Confers Tolerance to Transgenic Tobacco Plants against Lepidopteran Larvae, by Impairing Nutrient Absorption. PLoS ONE, 2014, 9, e113988.	2.5	16
20	Functional analysis of an immune gene of Spodoptera littoralis by RNAi. Journal of Insect Physiology, 2014, 64, 90-97.	2.0	40
21	Host regulation and nutritional exploitation by parasitic wasps. Current Opinion in Insect Science, 2014, 6, 74-79.	4.4	41
22	Proteolytic processing of Bacillus thuringiensis Vip3A proteins by two Spodoptera species. Journal of Insect Physiology, 2014, 67, 76-84.	2.0	46
23	Delivery of dsRNA for RNAi in insects: an overview and future directions. Insect Science, 2013, 20, 4-14.	3.0	269
24	High entomotoxicity and mechanism of the fungal GalNAc/Gal-specific Rhizoctonia solani lectin in pest insects. Journal of Insect Physiology, 2013, 59, 295-305.	2.0	34
25	Association of Cry1Ac Toxin Resistance in Helicoverpa zea (Boddie) with Increased Alkaline Phosphatase Levels in the Midgut Lumen. Applied and Environmental Microbiology, 2012, 78, 5690-5698.	3.1	45
26	Mechanism of entomotoxicity of the plant lectin from Hippeastrum hybrid (Amaryllis) in Spodoptera littoralis larvae. Journal of Insect Physiology, 2012, 58, 1177-1183.	2.0	20
27	Susceptibility of Spodoptera frugiperda and S. exigua to Bacillus thuringiensis Vip3Aa insecticidal protein. Journal of Invertebrate Pathology, 2012, 110, 334-339.	3.2	69
28	Saponins show high entomotoxicity by cell membrane permeation in Lepidoptera. Pest Management Science, 2012, 68, 1199-1205.	3.4	14
29	Functional analysis of a fatty acid binding protein produced by Aphidius ervi teratocytes. Journal of Insect Physiology, 2012, 58, 621-627.	2.0	28
30	TOXICITY OF ALLYL ESTERS IN INSECT CELL LINES AND IN <i><scp>S</scp>PODOPTERA LITTORALIS</i> LARVAE. Archives of Insect Biochemistry and Physiology, 2012, 79, 18-30.	1.5	8
31	Leucine transport by the larval midgut of the parasitoid Aphidius ervi (Hymenoptera). Journal of Insect Physiology, 2010, 56, 165-169.	2.0	4
32	Constitutive Activation of the Midgut Response to Bacillus thuringiensis in Bt-Resistant Spodoptera exigua. PLoS ONE, 2010, 5, e12795.	2.5	63
33	Downregulation of a Chitin Deacetylase-Like Protein in Response to Baculovirus Infection and Its Application for Improving Baculovirus Infectivity. Journal of Virology, 2010, 84, 2547-2555.	3.4	47
34	Binding Site Alteration Is Responsible for Field-Isolated Resistance to Bacillus thuringiensis Cry2A Insecticidal Proteins in Two Helicoverpa Species. PLoS ONE, 2010, 5, e9975.	2.5	79
35	Primary culture of insect midgut cells. In Vitro Cellular and Developmental Biology - Animal, 2009, 45, 106-110.	1.5	30
36	<i>Bacillus thuringiensis</i> Cry1Ac Toxin-Binding and Pore-Forming Activity in Brush Border Membrane Vesicles Prepared from Anterior and Posterior Midgut Regions of Lepidopteran Larvae. Applied and Environmental Microbiology, 2008, 74, 1710-1716.	3.1	29

#	Article	IF	CITATIONS
37	Unexpected similarity of intestinal sugar absorption by SGLT1 and apical GLUT2 in an insect (Aphidius) Tj ETQq1	1 0.78431	4 rgBT /Over 42
	Comparative Physiology, 2007, 292, R2284-R2291.		
38	Leucine Transport Is Affected by Bacillus thuringiensis Cry1 Toxins in Brush Border Membrane Vesicles from Ostrinia nubilalis Hb (Lepidoptera: Pyralidae) and Sesamia nonagrioides Lefebvre (Lepidoptera:) Tj ETQq0 0 () n gB T /O∨	ertock 10 Tf !
39	Structure and function of the extraembryonic membrane persisting around the larvae of the parasitoid Toxoneuron nigriceps. Journal of Insect Physiology, 2006, 52, 870-880.	2.0	10
40	Toxicity and Mode of Action of Bacillus thuringiensis Cry Proteins in the Mediterranean Corn Borer, Sesamia nonagrioides (Lefebvre). Applied and Environmental Microbiology, 2006, 72, 2594-2600.	3.1	42
41	Nutrient absorption by Aphidius ervi larvae. Journal of Insect Physiology, 2005, 51, 1183-1192.	2.0	27