Silvia Caccia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8116875/publications.pdf Version: 2024-02-01

<u> SILVIA CACCIA</u>

#	Article	IF	CITATIONS
1	Delivery of dsRNA for RNAi in insects: an overview and future directions. Insect Science, 2013, 20, 4-14.	3.0	269
2	Midgut microbiota and host immunocompetence underlie <i>Bacillus thuringiensis</i> killing mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9486-9491.	7.1	144
3	The Intestinal Microbiota of Hermetia illucens Larvae Is Affected by Diet and Shows a Diverse Composition in the Different Midgut Regions. Applied and Environmental Microbiology, 2019, 85, .	3.1	134
4	The amazing complexity of insect midgut cells: types, peculiarities, and functions. Cell and Tissue Research, 2019, 377, 505-525.	2.9	79
5	Binding Site Alteration Is Responsible for Field-Isolated Resistance to Bacillus thuringiensis Cry2A Insecticidal Proteins in Two Helicoverpa Species. PLoS ONE, 2010, 5, e9975.	2.5	79
6	Structural and Functional Characterization of Hermetia illucens Larval Midgut. Frontiers in Physiology, 2019, 10, 204.	2.8	76
7	Susceptibility of Spodoptera frugiperda and S. exigua to Bacillus thuringiensis Vip3Aa insecticidal protein. Journal of Invertebrate Pathology, 2012, 110, 334-339.	3.2	69
8	A First Attempt to Produce Proteins from Insects by Means of a Circular Economy. Animals, 2019, 9, 278.	2.3	69
9	Constitutive Activation of the Midgut Response to Bacillus thuringiensis in Bt-Resistant Spodoptera exigua. PLoS ONE, 2010, 5, e12795.	2.5	63
10	Effects of <i>Trichoderma viride</i> chitinases on the peritrophic matrix of Lepidoptera. Pest Management Science, 2016, 72, 980-989.	3.4	58
11	The midgut of the silkmoth Bombyx mori is able to recycle molecules derived from degeneration of the larval midgut epithelium. Cell and Tissue Research, 2015, 361, 509-528.	2.9	53
12	Black Soldier Fly Larvae Adapt to Different Food Substrates through Morphological and Functional Responses of the Midgut. International Journal of Molecular Sciences, 2020, 21, 4955.	4.1	51
13	Mosquito Trilogy: Microbiota, Immunity and Pathogens, and Their Implications for the Control of Disease Transmission. Frontiers in Microbiology, 2021, 12, 630438.	3.5	49
14	Downregulation of a Chitin Deacetylase-Like Protein in Response to Baculovirus Infection and Its Application for Improving Baculovirus Infectivity. Journal of Virology, 2010, 84, 2547-2555.	3.4	47
15	Proteolytic processing of Bacillus thuringiensis Vip3A proteins by two Spodoptera species. Journal of Insect Physiology, 2014, 67, 76-84.	2.0	46
16	Association of Cry1Ac Toxin Resistance in Helicoverpa zea (Boddie) with Increased Alkaline Phosphatase Levels in the Midgut Lumen. Applied and Environmental Microbiology, 2012, 78, 5690-5698.	3.1	45
17	Toxicity and Mode of Action of Bacillus thuringiensis Cry Proteins in the Mediterranean Corn Borer, Sesamia nonagrioides (Lefebvre). Applied and Environmental Microbiology, 2006, 72, 2594-2600.	3.1	42
18	Unexpected similarity of intestinal sugar absorption by SGLT1 and apical GLUT2 in an insect (Aphidius) Tj ETQq0 C	0 rgBT /0 1.8	Dverlock 10 42

Comparative Physiology, 2007, 292, R2284-R2291.

SILVIA CACCIA

#	Article	IF	CITATIONS
19	Host regulation and nutritional exploitation by parasitic wasps. Current Opinion in Insect Science, 2014, 6, 74-79.	4.4	41
20	Functional analysis of an immune gene of Spodoptera littoralis by RNAi. Journal of Insect Physiology, 2014, 64, 90-97.	2.0	40
21	High entomotoxicity and mechanism of the fungal GalNAc/Gal-specific Rhizoctonia solani lectin in pest insects. Journal of Insect Physiology, 2013, 59, 295-305.	2.0	34
22	Enhancement of Bacillus thuringiensis toxicity by feeding Spodoptera littoralis larvae with bacteria expressing immune suppressive dsRNA. Journal of Pest Science, 2020, 93, 303-314.	3.7	34
23	Evolution of an insect immune barrier through horizontal gene transfer mediated by a parasitic wasp. PLoS Genetics, 2019, 15, e1007998.	3.5	32
24	Primary culture of insect midgut cells. In Vitro Cellular and Developmental Biology - Animal, 2009, 45, 106-110.	1.5	30
25	<i>Bacillus thuringiensis</i> Cry1Ac Toxin-Binding and Pore-Forming Activity in Brush Border Membrane Vesicles Prepared from Anterior and Posterior Midgut Regions of Lepidopteran Larvae. Applied and Environmental Microbiology, 2008, 74, 1710-1716.	3.1	29
26	Functional analysis of a fatty acid binding protein produced by Aphidius ervi teratocytes. Journal of Insect Physiology, 2012, 58, 621-627.	2.0	28
27	Nutrient absorption by Aphidius ervi larvae. Journal of Insect Physiology, 2005, 51, 1183-1192.	2.0	27
28	Ingestion and effects of polystyrene nanoparticles in the silkworm Bombyx mori. Chemosphere, 2020, 257, 127203.	8.2	25
29	Mechanism of entomotoxicity of the plant lectin from Hippeastrum hybrid (Amaryllis) in Spodoptera littoralis larvae. Journal of Insect Physiology, 2012, 58, 1177-1183.	2.0	20
30	Midgut epithelium in molting silkworm: A fine balance among cell growth, differentiation, and survival. Arthropod Structure and Development, 2016, 45, 368-379.	1.4	20
31	Venomics of the ectoparasitoid wasp Bracon nigricans. BMC Genomics, 2020, 21, 34.	2.8	20
32	A Virulence Factor Encoded by a Polydnavirus Confers Tolerance to Transgenic Tobacco Plants against Lepidopteran Larvae, by Impairing Nutrient Absorption. PLoS ONE, 2014, 9, e113988.	2.5	16
33	New synthesis and biological evaluation of uniflorine A derivatives: towards specific insect trehalase inhibitors. Organic and Biomolecular Chemistry, 2015, 13, 886-892.	2.8	16
34	Saponins show high entomotoxicity by cell membrane permeation in Lepidoptera. Pest Management Science, 2012, 68, 1199-1205.	3.4	14
35	Host regulation by the ectophagous parasitoid wasp Bracon nigricans. Journal of Insect Physiology, 2017, 101, 73-81.	2.0	14
36	Structure and function of the extraembryonic membrane persisting around the larvae of the parasitoid Toxoneuron nigriceps. Journal of Insect Physiology, 2006, 52, 870-880.	2.0	10

SILVIA CACCIA

#	Article	IF	CITATIONS
37	Transgenic plants expressing immunosuppressive dsRNA improve entomopathogen efficacy against Spodoptera littoralis larvae. Journal of Pest Science, 2022, 95, 1413-1428.	3.7	10
38	TOXICITY OF ALLYL ESTERS IN INSECT CELL LINES AND IN <i><scp>S</scp>PODOPTERA LITTORALIS</i> LARVAE. Archives of Insect Biochemistry and Physiology, 2012, 79, 18-30.	1.5	8
39	Leucine Transport Is Affected by Bacillus thuringiensis Cry1 Toxins in Brush Border Membrane Vesicles from Ostrinia nubilalis Hb (Lepidoptera: Pyralidae) and Sesamia nonagrioides Lefebvre (Lepidoptera:) Tj ETQq1 1	0.72814314	rgƁT /Overlo
40	Leucine transport by the larval midgut of the parasitoid Aphidius ervi (Hymenoptera). Journal of Insect Physiology, 2010, 56, 165-169.	2.0	4
41	Analysis of Cellular Immune Responses in Lepidopteran Larvae. Springer Protocols, 2020, , 97-111.	0.3	2