
Alice B Nongonierma

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8116672/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Partitioning of starter bacteria and added exogenous enzyme activities between curd and whey during Cheddar cheese manufacture. International Dairy Journal, 2014, 34, 159-166.	1.5	268
2	Dipeptidyl peptidase IV inhibitory and antioxidative properties of milk protein-derived dipeptides and hydrolysates. Peptides, 2013, 39, 157-163.	1.2	187
3	The scientific evidence for the role of milk protein-derived bioactive peptides in humans: A Review. Journal of Functional Foods, 2015, 17, 640-656.	1.6	185
4	An in silico model to predict the potential of dietary proteins as sources of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides. Food Chemistry, 2014, 165, 489-498.	4.2	140
5	Food protein hydrolysates as a source of dipeptidyl peptidase IV inhibitory peptides for the management of type 2 diabetes. Proceedings of the Nutrition Society, 2014, 73, 34-46.	0.4	132
6	Identification of novel dipeptidyl peptidase IV (DPP-IV) inhibitory peptides in camel milk protein hydrolysates. Food Chemistry, 2018, 244, 340-348.	4.2	127
7	Susceptibility of milk protein-derived peptides to dipeptidyl peptidase IV (DPP-IV) hydrolysis. Food Chemistry, 2014, 145, 845-852.	4.2	125
8	Inhibition of dipeptidyl peptidase IV and xanthine oxidase by amino acids and dipeptides. Food Chemistry, 2013, 141, 644-653.	4.2	124
9	Quinoa (Chenopodium quinoa Willd.) protein hydrolysates with inÂvitro dipeptidyl peptidase IV (DPP-IV) inhibitory and antioxidant properties. Journal of Cereal Science, 2015, 65, 112-118.	1.8	114
10	In silico approaches to predict the potential of milk protein-derived peptides as dipeptidyl peptidase IV (DPP-IV) inhibitors. Peptides, 2014, 57, 43-51.	1.2	113
11	Tryptophan-containing milk protein-derived dipeptides inhibit xanthine oxidase. Peptides, 2012, 37, 263-272.	1.2	104
12	Structure activity relationship modelling of milk protein-derived peptides with dipeptidyl peptidase IV (DPP-IV) inhibitory activity. Peptides, 2016, 79, 1-7.	1.2	104
13	Bioactive properties of milk proteins in humans: A review. Peptides, 2015, 73, 20-34.	1.2	95
14	Inhibition of dipeptidyl peptidase IV (DPP-IV) by proline containing casein-derived peptides. Journal of Functional Foods, 2013, 5, 1909-1917.	1.6	93
15	Dipeptidyl peptidase IV inhibitory properties of a whey protein hydrolysate: Influence of fractionation, stability to simulated gastrointestinal digestion and food–drug interaction. International Dairy Journal, 2013, 32, 33-39.	1.5	90
16	Strategies for the discovery and identification of food protein-derived biologically active peptides. Trends in Food Science and Technology, 2017, 69, 289-305.	7.8	90
17	The impact of reduced sodium chloride content on Cheddar cheese quality. International Dairy Journal, 2013, 28, 45-55.	1.5	88
18	Dipeptidyl peptidase IV (DPP-IV) inhibitory properties of camel milk protein hydrolysates generated with trypsin. Journal of Functional Foods, 2017, 34, 49-58.	1.6	87

ALICE B NONGONIERMA

#	Article	IF	CITATIONS
19	Strategies for the discovery, identification and validation of milk protein-derived bioactive peptides. Trends in Food Science and Technology, 2016, 50, 26-43.	7.8	82
20	Generation and identification of angiotensin converting enzyme (ACE) inhibitory peptides from a brewers' spent grain protein isolate. Food Chemistry, 2015, 176, 64-71.	4.2	79
21	Enzymatic generation of whey protein hydrolysates under pH-controlled and non pH-controlled conditions: Impact on physicochemical and bioactive properties. Food Chemistry, 2016, 199, 246-251.	4.2	79
22	Biofunctional Properties of Caseinophosphopeptides in the Oral Cavity. Caries Research, 2012, 46, 234-267.	0.9	76
23	Mechanisms of Extraction of Aroma Compounds from Foods, Using Adsorbents. Effect of Various Parameters. Food Reviews International, 2006, 22, 51-94.	4.3	75
24	Learnings from quantitative structure–activity relationship (QSAR) studies with respect to food protein-derived bioactive peptides: a review. RSC Advances, 2016, 6, 75400-75413.	1.7	73
25	A Whey Protein Hydrolysate Promotes Insulinotropic Activity in a Clonal Pancreatic β-Cell Line and Enhances Glycemic Function in ob/ob Mice1–3. Journal of Nutrition, 2013, 143, 1109-1114.	1.3	72
26	Inhibition of dipeptidyl peptidase IV (DPP-IV) by tryptophan containing dipeptides. Food and Function, 2013, 4, 1843.	2.1	70
27	Release of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from milk protein isolate (MPI) during enzymatic hydrolysis. Food Research International, 2017, 94, 79-89.	2.9	68
28	Improved short peptide identification using HILIC–MS/MS: Retention time prediction model based on the impact of amino acid position in the peptide sequence. Food Chemistry, 2015, 173, 847-854.	4.2	64
29	Milk proteins as a source of tryptophan-containing bioactive peptides. Food and Function, 2015, 6, 2115-2127.	2.1	60
30	Prospects for the management of type 2 diabetes using food protein-derived peptides with dipeptidyl peptidase IV (DPP-IV) inhibitory activity. Current Opinion in Food Science, 2016, 8, 19-24.	4.1	59
31	Identification of short peptide sequences in the nanofiltration permeate of a bioactive whey protein hydrolysate. Food Research International, 2015, 77, 534-539.	2.9	47
32	Isolation of peptides from a novel brewers spent grain protein isolate with potential to modulate glycaemic response. International Journal of Food Science and Technology, 2017, 52, 146-153.	1.3	43
33	Flavour release at gas/matrix interfaces of stirred yoghurt models. International Dairy Journal, 2006, 16, 102-110.	1.5	41
34	Evaluation of commercial enzyme systems to accelerate Cheddar cheese ripening. International Dairy Journal, 2012, 26, 50-57.	1.5	38
35	Milk protein isolate (MPI) as a source of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides. Food Chemistry, 2017, 231, 202-211.	4.2	37
36	Insulinotropic properties of whey protein hydrolysates and impact of peptide fractionation on insulinotropic response. International Dairy Journal, 2013, 32, 163-168.	1.5	34

ALICE B NONGONIERMA

#	Article	IF	CITATIONS
37	Generation of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides during the enzymatic hydrolysis of tropical banded cricket (<i>Gryllodes sigillatus</i>) proteins. Food and Function, 2018, 9, 407-416.	2.1	32
38	Utilisation of the isobole methodology to study dietary peptide–drug and peptide–peptide interactive effects on dipeptidyl peptidase IV (DPP-IV) inhibition. Food and Function, 2015, 6, 312-319.	2.1	26
39	Strategies for the release of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides in an enzymatic hydrolyzate of α-lactalbumin. Food and Function, 2016, 7, 3437-3443.	2.1	26
40	A casein hydrolysate protects mice against high fat diet induced hyperglycemia by attenuating NLRP3 inflammasomeâ€mediated inflammation and improving insulin signaling. Molecular Nutrition and Food Research, 2016, 60, 2421-2432.	1.5	26
41	Generation of wheat gluten hydrolysates with dipeptidyl peptidase IV (DPP-IV) inhibitory properties. Food and Function, 2017, 8, 2249-2257.	2.1	26
42	Response surface methodology applied to the generation of casein hydrolysates with antioxidant and dipeptidyl peptidase <scp>IV</scp> inhibitory properties. Journal of the Science of Food and Agriculture, 2017, 97, 1093-1101.	1.7	24
43	Functional properties of bovine milk protein isolate and associated enzymatic hydrolysates. International Dairy Journal, 2018, 81, 113-121.	1.5	22
44	Evaluation of Two Food Grade Proliposomes To Encapsulate an Extract of a Commercial Enzyme Preparation by Microfluidization. Journal of Agricultural and Food Chemistry, 2009, 57, 3291-3297.	2.4	20
45	Milk protein hydrolysates activate 5-HT2C serotonin receptors: influence of the starting substrate and isolation of bioactive fractions. Food and Function, 2013, 4, 728.	2.1	15
46	Milk protein-derived peptides induce 5-HT2C-mediated satiety inÂvivo. International Dairy Journal, 2014, 38, 55-64.	1.5	15
47	Peptide composition and dipeptidyl peptidase IV inhibitory properties of β-lactoglobulin hydrolysates having similar extents of hydrolysis while generated using different enzyme-to-substrate ratios. Food Research International, 2017, 99, 84-90.	2.9	15
48	Bitterness in sodium caseinate hydrolysates: role of enzyme preparation and degree of hydrolysis. Journal of the Science of Food and Agriculture, 2017, 97, 4652-4655.	1.7	14
49	Impact of enzyme inactivation conditions during the generation of whey protein hydrolysates on their physicochemical and bioactive properties. International Journal of Food Science and Technology, 2018, 53, 219-227.	1.3	14
50	Transfers of small analytes in a multiphasic stirred fruit yoghurt model. Food Hydrocolloids, 2007, 21, 287-296.	5.6	13
51	Impact of enzyme preparation and degree of hydrolysis on peptide profile and nitrogen solubility of sodium caseinate hydrolysates. International Journal of Food Science and Technology, 2016, 51, 2123-2131.	1.3	12
52	Influence of flavour transfer between different gel phases on perceived aroma. Food Chemistry, 2007, 100, 297-305.	4.2	9
53	Encapsulation of a Lactic Acid Bacteria Cell-Free Extract in Liposomes and Use in Cheddar Cheese Ripening. Foods, 2013, 2, 100-119.	1.9	9
54	Flavour release at the interfaces of stirred fruit yoghurt models. Developments in Food Science, 2006, , 453-456.	0.0	1

#	Article	IF	CITATIONS
55	Requirement for a global design to remove fat from flavoured yoghurts. Developments in Food Science, 2006, 43, 457-460.	0.0	0