Shuang Men

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8116631/publications.pdf

Version: 2024-02-01

567281 454955 39 898 15 30 citations h-index g-index papers 40 40 40 1085 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Compatibilization and Toughening of Biodegradable Polylactic Acid/Cellulose Acetate Films by Polyamide Amine Dendrimers. Journal of Polymers and the Environment, 2022, 30, 1758-1771.	5.0	6
2	Electronic Effects in the Structure of 1-Ethyl-3-Methylimidazolium Ionic Liquids. Russian Journal of Physical Chemistry A, 2021, 95, 736-740.	0.6	1
3	Highâ€toughening modification of polylactic acid by longâ€chain hyperbranched polymers. Journal of Applied Polymer Science, 2021, 138, 51295.	2.6	10
4	Probing the impact of the N3-substituted alkyl chain on the electronic environment of the cation and the anion for 1,3-dialkylimidazolium ionic liquids. Physical Chemistry Chemical Physics, 2020, 22, 17394-17400.	2.8	8
5	Tuning the Cation–Anion Interactions by Methylation of the Pyridinium Cation: An X-ray Photoelectron Spectroscopy Study of Picolinium Ionic Liquids. Journal of Physical Chemistry B, 2020, 124, 6657-6663.	2.6	8
6	Tribromide Ionic Liquids: Probing the Charge Distribution of the Anion by XPS. Russian Journal of Physical Chemistry A, 2020, 94, 1053-1056.	0.6	5
7	Charge Distribution of Phosphonium Ionic Liquids: Phosphonium versus Phosphate. Russian Journal of Physical Chemistry A, 2020, 94, 2091-2095.	0.6	1
8	X-ray photoelectron spectroscopy of piperidinium ionic liquids: a comparison to the charge delocalised pyridinium analogues. Physical Chemistry Chemical Physics, 2020, 22, 11976-11983.	2.8	7
9	lonic Liquidâ€Directed Nanoporous TiNb ₂ O ₇ Anodes with Superior Performance for Fastâ€Rechargeable Lithiumâ€lon Batteries. Small, 2020, 16, e2001884.	10.0	69
10	Investigation on compatibility of PLA/PBAT blends modified by epoxy-terminated branched polymers through chemical micro-crosslinking. E-Polymers, 2020, 20, 39-54.	3.0	36
11	Insights into the Enhanced Cycle and Rate Performances of the Fâ€Substituted P2â€Type Oxide Cathodes for Sodiumâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 2000135.	19.5	57
12	The impact of cation acidity and alkyl substituents on the cation–anion interactions of 1-alkyl-2,3-dimethylimidazolium ionic liquids. Physical Chemistry Chemical Physics, 2019, 21, 11058-11065.	2.8	17
13	X-ray Photoelectron Spectroscopy of 1-Butyl-2,3-Dimethylimidazolium Ionic Liquids: Charge Correction Methods and Electronic Environment of the Anion. Russian Journal of Physical Chemistry A, 2019, 93, 2676-2680.	0.6	1
14	Simultaneously reinforcing and toughening of poly(propylene carbonate) by epoxy-terminated hyperbranched polymer(EHBP) through micro-crosslinking. Polymer Bulletin, 2019, 76, 5733-5749.	3.3	11
15	An investigation of trioctylmethylammonium ionic liquids by X-ray photoelectron spectroscopy: The cation-anion interaction. Journal of Electron Spectroscopy and Related Phenomena, 2018, 223, 79-83.	1.7	3
16	An investigation of the impact of an amino-ended hyperbranched polymer as a new type of modifier on the compatibility of PLA/PBAT blends. Journal of Polymer Engineering, 2018, 38, 223-229.	1.4	5
17	Spectroscopic Analysis of 1-Butyl-3-methylimidazolium Ionic Liquids: Selection of the Charge Reference and the Electronic Environment. Russian Journal of Physical Chemistry A, 2018, 92, 1975-1979.	0.6	2
18	Property Comparison of Cellulose Acetate Prepared Homogenously in Different Ionic Liquids. Polymer Science - Series B, 2018, 60, 647-651.	0.8	O

#	Article	IF	Citations
19	X-ray Photoelectron Spectroscopy of Imidazolium-Based Zwitterions: The Intramolecular Charge-Transfer Effect. Russian Journal of Physical Chemistry A, 2018, 92, 2337-2340.	0.6	1
20	Probing the Cellulose-Ionic Liquids Interaction by X-ray Photoelectron Spectroscopy. Polymer Science - Series A, 2018, 60, 298-302.	1.0	1
21	Synthesis of Cellulose Long-Chain Esters in 1-Butyl-3-methylimidazolium Acetate: Structure-Property Relations. Polymer Science - Series B, 2018, 60, 349-353.	0.8	7
22	The Investigation of the Toughening Mechanism of PHBV/PBAT with a Novel Hyperbranched Ethylenediamine Triazine Polymer Based Modifier: The Formation of the Transition Layer and the Microcrosslinking Structure. Journal of Polymers and the Environment, 2018, 26, 4158-4167.	5.0	12
23	Probing the Formation of the NHC-Palladium Species in Ionic Liquids by X-ray Photoelectron Spectroscopy. Russian Journal of Physical Chemistry A, 2018, 92, 1627-1630.	0.6	3
24	Spectroscopic analysis of 1-butyl-2,3-dimethylimidazolium ionic liquids: Cation-anion interactions. Chemical Physics Letters, 2017, 674, 86-89.	2.6	21
25	X-ray photoelectron spectroscopy of trihalide ionic liquids: Comparison to halide-based analogues, anion basicity and beam damage. Chemical Physics Letters, 2017, 679, 207-211.	2.6	13
26	Probing the impact of the cation acidity on the cation-anion interaction in ionic liquids by X-ray photoelectron spectroscopy. Chemical Physics Letters, 2017, 677, 60-64.	2.6	10
27	Tuning the electronic environment of the anion by using binary ionic liquid mixtures. Chemical Physics Letters, 2017, 681, 40-43.	2.6	19
28	Probing the electronic environment of binary and ternary ionic liquid mixtures by X-ray photoelectron spectroscopy. Chemical Physics Letters, 2017, 686, 74-77.	2.6	7
29	X-ray photoelectron spectroscopy as a probe of rhodium-ligand interaction in ionic liquids. Chemical Physics Letters, 2016, 645, 53-58.	2.6	12
30	X-ray photoelectron spectroscopy as a probe of the interaction between rhodium acetate and ionic liquids. Chemical Physics Letters, 2016, 646, 125-129.	2.6	12
31	Xâ€ray Photoelectron Spectroscopy of Pyridiniumâ€Based Ionic Liquids: Comparison to Imidazoliumâ€and Pyrrolidiniumâ€Based Analogues. ChemPhysChem, 2015, 16, 2211-2218.	2.1	77
32	Directly probing the effect of the solvent on a catalyst electronic environment using X-ray photoelectron spectroscopy. RSC Advances, 2015, 5, 35958-35965.	3.6	21
33	Tuning the electronic environment of cations and anions using ionic liquid mixtures. Chemical Science, 2014, 5, 2573-2579.	7.4	68
34	Acidity and basicity of halometallate-based ionic liquids from X-ray photoelectron spectroscopy. RSC Advances, 2013, 3, 9436.	3.6	42
35	Chlorostannate(II) Ionic Liquids: Speciation, Lewis Acidity, and Oxidative Stability. Inorganic Chemistry, 2013, 52, 1710-1721.	4.0	71
36	Does the influence of substituents impact upon the surface composition of pyrrolidinium-based ionic liquids? An angle resolved XPS study. Physical Chemistry Chemical Physics, 2012, 14, 5229.	2.8	38

SHUANG MEN

#	Article	IF	CITATIONS
37	X-ray photoelectron spectroscopy of pyrrolidinium-based ionic liquids: cation–anion interactions and a comparison to imidazolium-based analogues. Physical Chemistry Chemical Physics, 2011, 13, 15244.	2.8	130
38	On the diffusion of ferrocenemethanol in room-temperature ionic liquids: an electrochemical study. Physical Chemistry Chemical Physics, 2011, 13, 10155.	2.8	41
39	An ultra high vacuum-spectroelectrochemical study of the dissolution of copper in the ionic liquid (N-methylacetate)-4-picolinium bis(trifluoromethylsulfonyl)imide. Physical Chemistry Chemical Physics, 2010, 12, 1982.	2.8	45