

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8115790/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures. Analytical Chemistry, 2015, 87, 230-249.	3.2	1,220
2	Singleâ€Atom Electrocatalysts. Angewandte Chemie - International Edition, 2017, 56, 13944-13960.	7.2	1,040
3	Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures. Chemical Society Reviews, 2016, 45, 517-531.	18.7	800
4	Robust noble metal-based electrocatalysts for oxygen evolution reaction. Chemical Society Reviews, 2019, 48, 3181-3192.	18.7	756
5	Engineering Ordered and Nonordered Porous Noble Metal Nanostructures: Synthesis, Assembly, and Their Applications in Electrochemistry. Chemical Reviews, 2015, 115, 8896-8943.	23.0	576
6	Graphene based materials for biomedical applications. Materials Today, 2013, 16, 365-373.	8.3	571
7	Hierarchically Porous M–N–C (M = Co and Fe) Singleâ€Atom Electrocatalysts with Robust MN <i>_x</i> Active Moieties Enable Enhanced ORR Performance. Advanced Energy Materials, 2018, 8, 1801956.	10.2	540
8	Sensitive Immunosensor for Cancer Biomarker Based on Dual Signal Amplification Strategy of Graphene Sheets and Multienzyme Functionalized Carbon Nanospheres. Analytical Chemistry, 2010, 82, 2989-2995.	3.2	438
9	When Nanozymes Meet Singleâ€Atom Catalysis. Angewandte Chemie - International Edition, 2020, 59, 2565-2576.	7.2	422
10	Bimetallic Cobaltâ€Based Phosphide Zeolitic Imidazolate Framework: CoP <i>_x</i> Phaseâ€Dependent Electrical Conductivity and Hydrogen Atom Adsorption Energy for Efficient Overall Water Splitting. Advanced Energy Materials, 2017, 7, 1601555.	10.2	340
11	Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials. Biosensors and Bioelectronics, 2016, 76, 195-212.	5.3	321
12	Functionalized Graphene Oxide as a Nanocarrier in a Multienzyme Labeling Amplification Strategy for Ultrasensitive Electrochemical Immunoassay of Phosphorylated p53 (S392). Analytical Chemistry, 2011, 83, 746-752.	3.2	305
13	Metalâ€Organic Frameworkâ€Derived Nonâ€Precious Metal Nanocatalysts for Oxygen Reduction Reaction. Advanced Energy Materials, 2017, 7, 1700363.	10.2	297
14	Single-Atom Catalysts for Electrochemical Water Splitting. ACS Energy Letters, 2018, 3, 1713-1721.	8.8	294
15	MnO ₂ Nanosheet-Carbon Dots Sensing Platform for Sensitive Detection of Organophosphorus Pesticides. Analytical Chemistry, 2018, 90, 2618-2624.	3.2	288
16	Drug-Derived Bright and Color-Tunable N-Doped Carbon Dots for Cell Imaging and Sensitive Detection of Fe ³⁺ in Living Cells. ACS Applied Materials & Interfaces, 2017, 9, 7399-7405.	4.0	267
17	Carbon quantum dots as fluorescence resonance energy transfer sensors for organophosphate pesticides determination. Biosensors and Bioelectronics, 2017, 94, 292-297.	5.3	263
18	pH-Sensitive ZnO Quantum Dots–Doxorubicin Nanoparticles for Lung Cancer Targeted Drug Delivery. ACS Applied Materials & Interfaces, 2016, 8, 22442-22450.	4.0	259

#	⊧ Article		IF	CITATIONS
1	9 Fe–N–C Single-Atom Nanozymes for the Intracellula Chemistry, 2019, 91, 11994-11999.	^r Hydrogen Peroxide Detection. Analytical	3.2	256
2	Selfâ€Assembled Fe–Nâ€Doped Carbon Nanotube Aer Highâ€Efficiency Oxygen Reduction Electrocatalysts. Sm	ogels with Singleâ€Atom Catalyst Feature as all, 2017, 13, 1603407.	5.2	254
2	21 Recent Advances in Electrochemical Immunosensors. And	alytical Chemistry, 2017, 89, 138-156.	3.2	254
2	Clucose Oxidase-Integrated Metal–Organic Framework Ultrasensitive Glucose Biosensing. ACS Applied Materials	e Hybrids as Biomimetic Cascade Nanozymes for & Interfaces, 2019, 11, 22096-22101.	4.0	249
2	Nanomaterial-based biosensors for environmental and bio pesticides and nerve agents. TrAC - Trends in Analytical C	ological monitoring of organophosphorus hemistry, 2014, 54, 1-10.	5.8	227
2	Craphene-like two-dimensional layered nanomaterials: ap Nanoscale, 2015, 7, 14217-14231.	plications in biosensors and nanomedicine.	2.8	227
2	Graphene-like 2D nanomaterial-based biointerfaces for bi Bioelectronics, 2017, 89, 43-55.	osensing applications. Biosensors and	5.3	221
2	Red carbon dots: Optical property regulations and applic	ations. Materials Today, 2019, 30, 52-79.	8.3	221
2	Graphene Quantum Dot–MnO ₂ Nanoshe Fluorescence "Turn Off–On―Nanosensor for Glut Applied Materials & Interfaces, 2016, 8, 21990-219	et Based Optical Sensing Platform: A Sensitive athione Detection and Intracellular Imaging. ACS 96.	4.0	220
2	Self assembly of acetylcholinesterase on a gold nanopart organophosphate pesticide detection using polyelectroly Chemistry, 2011, 21, 5319.	icles–graphene nanosheet hybrid for rte as a linker. Journal of Materials	6.7	219
2	Efficient Synthesis of MCu (M = Pd, Pt, and Au) Aerogels High Electrocatalytic Activity. Advanced Materials, 2016,	with Accelerated Celation Kinetics and their 28, 8779-8783.	11.1	213
3	Singleâ€Atom Nanozyme Based on Nanoengineered Feât for Ultrasensitive Bioassays. Small, 2019, 15, e1901485.	€"N–C Catalyst with Superior Peroxidase‣ike Activity	5.2	209
3	Oxidaseâ€Like Feâ€Nâ€C Singleâ€Atom Nanozymes for 2019, 15, e1903108.	the Detection of Acetylcholinesterase Activity. Small,	5.2	207
3	Nanozyme-Mediated Dual Immunoassay Integrated with of Pathogens. ACS Applied Materials & amp; Interfaces, 2	Smartphone for Use in Simultaneous Detection 017, 9, 40671-40680.	4.0	205
3	Overcoming blood–brain barrier transport: Advances ir Materials Today, 2020, 37, 112-125.	n nanoparticle-based drug delivery strategies.	8.3	196
3	Oxidase-mimicking activity of ultrathin MnO _{2acetylcholinesterase activity. Nanoscale, 2017, 9, 2317-2}	>>nanosheets in colorimetric assay of 1323.	2.8	194
3	Recent advances in carbon dots for bioimaging applicatio	ons. Nanoscale Horizons, 2020, 5, 218-234.	4.1	192
3	Unprecedented peroxidase-mimicking activity of single-a Fe–Nx moieties hosted by MOF derived porous carbon	tom nanozyme with atomically dispersed Biosensors and Bioelectronics, 2019, 142, 111495	5.3	186

#	Article	IF	CITATIONS
37	Recent advances in functionalized MnO ₂ nanosheets for biosensing and biomedicine applications. Nanoscale Horizons, 2019, 4, 321-338.	4.1	185
38	Recent progress in nanomaterials for gene delivery applications. Biomaterials Science, 2016, 4, 1291-1309.	2.6	183
39	Quantum Dot-Based Immunochromatographic Fluorescent Biosensor for Biomonitoring Trichloropyridinol, a Biomarker of Exposure to Chlorpyrifos. Analytical Chemistry, 2010, 82, 5125-5133.	3.2	178
40	Facile One-Step Synthesis of Three-Dimensional Pd–Ag Bimetallic Alloy Networks and Their Electrocatalytic Activity toward Ethanol Oxidation. ACS Applied Materials & Interfaces, 2015, 7, 13842-13848.	4.0	176
41	Enhanced Photoelectrochemical Immunosensing Platform Based on CdSeTe@CdS:Mn Core–Shell Quantum Dots-Sensitized TiO ₂ Amplified by CuS Nanocrystals Conjugated Signal Antibodies. Analytical Chemistry, 2016, 88, 3392-3399.	3.2	174
42	Facilely Tuning Porous NiCo ₂ O ₄ Nanosheets with Metal Valence tate Alteration and Abundant Oxygen Vacancies as Robust Electrocatalysts Towards Water Splitting. Chemistry - A European Journal, 2016, 22, 4000-4007.	1.7	172
43	Metal–organic framework based nanozymes: promising materials for biochemical analysis. Chemical Communications, 2020, 56, 11338-11353.	2.2	170
44	One-step electrochemical deposition of a graphene-ZrO2 nanocomposite: Preparation, characterization and application for detection of organophosphorus agents. Journal of Materials Chemistry, 2011, 21, 8032.	6.7	169
45	Farâ€Red to Nearâ€Infrared Carbon Dots: Preparation and Applications in Biotechnology. Small, 2019, 15, e1901507.	5.2	169
46	Singleâ€Atom Iron Boosts Electrochemiluminescence. Angewandte Chemie - International Edition, 2020, 59, 3534-3538.	7.2	167
47	Nanomaterial-enhanced paper-based biosensors. TrAC - Trends in Analytical Chemistry, 2014, 58, 31-39.	5.8	165
48	Acetylcholinesterase biosensor based on a gold nanoparticle–polypyrrole–reduced graphene oxide nanocomposite modified electrode for the amperometric detection of organophosphorus pesticides. Analyst, The, 2014, 139, 3055.	1.7	165
49	Acetylcholinesterase biosensor design based on carbon nanotube-encapsulated polypyrrole and polyaniline copolymer for amperometric detection of organophosphates. Biosensors and Bioelectronics, 2010, 25, 2503-2508.	5.3	161
50	Recent Advances in Biosensors for Detecting Cancer-Derived Exosomes. Trends in Biotechnology, 2019, 37, 1236-1254.	4.9	155
51	Immobilization of acetylcholinesterase on gold nanoparticles embedded in sol–gel film for amperometric detection of organophosphorous insecticide. Biosensors and Bioelectronics, 2007, 23, 130-134.	5.3	152
52	Metal–organic frameworks-based catalysts for electrochemical oxygen evolution. Materials Horizons, 2019, 6, 684-702.	6.4	149
53	Secondary-Atom-Assisted Synthesis of Single Iron Atoms Anchored on N-Doped Carbon Nanowires for Oxygen Reduction Reaction. ACS Catalysis, 2019, 9, 5929-5934.	5.5	149
54	Graphene and graphene-like 2D materials for optical biosensing and bioimaging: a review. 2D Materials, 2015, 2, 032004.	2.0	148

#	Article	IF	CITATIONS
55	Recent advances in emerging 2D nanomaterials for biosensing and bioimaging applications. Materials Today, 2018, 21, 164-177.	8.3	145
56	Covalent coupling of organophosphorus hydrolase loaded quantum dots to carbon nanotube/Au nanocomposite for enhanced detection of methyl parathion. Biosensors and Bioelectronics, 2010, 25, 1370-1375.	5.3	143
57	Single-atom catalysts boost signal amplification for biosensing. Chemical Society Reviews, 2021, 50, 750-765.	18.7	142
58	Highly Ordered Mesoporous Bimetallic Phosphides as Efficient Oxygen Evolution Electrocatalysts. ACS Energy Letters, 2016, 1, 792-796.	8.8	139
59	Aptasensor based on fluorophore-quencher nano-pair and smartphone spectrum reader for on-site quantification of multi-pesticides. Biosensors and Bioelectronics, 2018, 117, 75-83.	5.3	137
60	Development of acetylcholinesterase biosensor based on CdTe quantum dots/gold nanoparticles modified chitosan microspheres interface. Biosensors and Bioelectronics, 2008, 24, 475-479.	5.3	133
61	Amperometric detection of triazophos pesticide using acetylcholinesterase biosensor based on multiwall carbon nanotube–chitosan matrix. Sensors and Actuators B: Chemical, 2007, 127, 531-535.	4.0	132
62	Application of multiwalled carbon nanotubes for solid-phase extraction of organophosphate pesticide. Electrochemistry Communications, 2008, 10, 85-89.	2.3	132
63	Nanomaterial-based electrochemical biosensors for food safety. Journal of Electroanalytical Chemistry, 2016, 781, 147-154.	1.9	131
64	Nanozyme-involved biomimetic cascade catalysis for biomedical applications. Materials Today, 2021, 44, 211-228.	8.3	131
65	Sensitive detection of Escherichia coli O157:H7 using Pt–Au bimetal nanoparticles with peroxidase-like amplification. Biosensors and Bioelectronics, 2016, 77, 687-694.	5.3	130
66	Nanovoid Incorporated Ir _{<i>x</i>} Cu Metallic Aerogels for Oxygen Evolution Reaction Catalysis. ACS Energy Letters, 2018, 3, 2038-2044.	8.8	129
67	Bioinspired Synthesis of Allâ€inâ€One Organic–Inorganic Hybrid Nanoflowers Combined with a Handheld pH Meter for Onâ€5ite Detection of Food Pathogen. Small, 2016, 12, 3094-3100.	5.2	127
68	3D graphene-based hybrid materials: synthesis and applications in energy storage and conversion. Nanoscale, 2016, 8, 15414-15447.	2.8	127
69	Colorimetric and chemiluminescent dual-readout immunochromatographic assay for detection of pesticide residues utilizing g-C3N4/BiFeO3 nanocomposites. Biosensors and Bioelectronics, 2018, 106, 43-49.	5.3	124
70	Electrochemical behavior of epinephrine at ?-cysteine self-assembled monolayers modified gold electrode. Talanta, 2002, 57, 687-692.	2.9	123
71	Integrated Lateral Flow Test Strip with Electrochemical Sensor for Quantification of Phosphorylated Cholinesterase: Biomarker of Exposure to Organophosphorus Agents. Analytical Chemistry, 2012, 84, 1380-1385.	3.2	122
72	Biosensor based on Prussian blue nanocubes/reduced graphene oxide nanocomposite for detection of organophosphorus pesticides. Nanoscale, 2012, 4, 4674.	2.8	118

#	Article	IF	CITATIONS
73	Ultrafine and highly disordered Ni2Fe1 nanofoams enabled highly efficient oxygen evolution reaction in alkaline electrolyte. Nano Energy, 2018, 44, 319-326.	8.2	118
74	Porous Carbonâ€Hosted Atomically Dispersed Iron–Nitrogen Moiety as Enhanced Electrocatalysts for Oxygen Reduction Reaction in a Wide Range of pH. Small, 2018, 14, e1703118.	5.2	117
75	When Nanozymes Meet Singleâ€Atom Catalysis. Angewandte Chemie, 2020, 132, 2585-2596.	1.6	117
76	2D Graphene Oxide/Fe-MOF Nanozyme Nest with Superior Peroxidase-Like Activity and Its Application for Detection of Woodsmoke Exposure Biomarker. Analytical Chemistry, 2019, 91, 13847-13854.	3.2	116
77	A Nanozyme- and Ambient Light-Based Smartphone Platform for Simultaneous Detection of Dual Biomarkers from Exposure to Organophosphorus Pesticides. Analytical Chemistry, 2018, 90, 7391-7398.	3.2	114
78	Recent advances in nanomaterials-based electrochemical (bio)sensors for pesticides detection. TrAC - Trends in Analytical Chemistry, 2020, 132, 116041.	5.8	113
79	2D Singleâ€Atom Catalyst with Optimized Iron Sites Produced by Thermal Melting of Metal–Organic Frameworks for Oxygen Reduction Reaction. Small Methods, 2020, 4, 1900827.	4.6	113
80	The vital function of Fe3O4@Au nanocomposites for hydrolase biosensor design and its application in detection of methyl parathion. Nanoscale, 2013, 5, 1121.	2.8	112
81	Emerging applications of nanozymes in environmental analysis: Opportunities and trends. TrAC - Trends in Analytical Chemistry, 2019, 120, 115653.	5.8	108
82	Paperâ€Based Electrochemical Biosensors: From Test Strips to Paperâ€Based Microfluidics. Electroanalysis, 2014, 26, 1214-1223.	1.5	107
83	Biomedical Potential of Ultrafine Ag/AgCl Nanoparticles Coated on Graphene with Special Reference to Antimicrobial Performances and Burn Wound Healing. ACS Applied Materials & Interfaces, 2016, 8, 15067-15075.	4.0	106
84	One-pot synthesis of B-doped three-dimensional reduced graphene oxide via supercritical fluid for oxygen reduction reaction. Green Chemistry, 2015, 17, 3552-3560.	4.6	105
85	An Improved Ultrasensitive Enzyme-Linked Immunosorbent Assay Using Hydrangea-Like Antibody–Enzyme–Inorganic Three-in-One Nanocomposites. ACS Applied Materials & Interfaces, 2016, 8, 6329-6335.	4.0	104
86	Multiplexed Electrochemical Immunoassay of Phosphorylated Proteins Based on Enzyme-Functionalized Gold Nanorod Labels and Electric Field-Driven Acceleration. Analytical Chemistry, 2011, 83, 6580-6585.	3.2	103
87	One-step synthesis of multiwalled carbon nanotubes-gold nanocomposites for fabricating amperometric acetylcholinesterase biosensor. Sensors and Actuators B: Chemical, 2010, 143, 524-529.	4.0	102
88	Polydopamine apped Bimetallic AuPt Hydrogels Enable Robust Biosensor for Organophosphorus Pesticide Detection. Small, 2019, 15, e1900632.	5.2	102
89	Lysosome-targeted carbon dots for ratiometric imaging of formaldehyde in living cells. Nanoscale, 2019, 11, 8458-8463.	2.8	102
90	Aptamer functionalized nanomaterials for biomedical applications: Recent advances and new horizons. Nano Today, 2021, 39, 101177.	6.2	100

#	Article	IF	CITATIONS
91	Einzelatomâ€Elektrokatalysatoren. Angewandte Chemie, 2017, 129, 14132-14148.	1.6	99
92	Dual-Readout Immunochromatographic Assay by Utilizing MnO ₂ Nanoflowers as the Unique Colorimetric/Chemiluminescent Probe. Analytical Chemistry, 2018, 90, 5147-5152.	3.2	97
93	Electrochemical Antitumor Drug Sensitivity Test for Leukemia K562 Cells at a Carbon-Nanotube-Modified Electrode. Chemistry - A European Journal, 2005, 11, 1467-1472.	1.7	96
94	Electrochemical pesticide sensitivity test using acetylcholinesterase biosensor based on colloidal gold nanoparticle modified sol–gel interface. Talanta, 2008, 74, 766-772.	2.9	96
95	Multiwalled carbon nanotubes microcolumn preconcentration and determination of gold in geological and water samples by flame atomic absorption spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2008, 63, 714-717.	1.5	92
96	An amperometric acetylthiocholine sensor based on immobilization of acetylcholinesterase on a multiwall carbon nanotube–cross-linked chitosan composite. Analytical and Bioanalytical Chemistry, 2007, 387, 1059-1065.	1.9	91
97	One-step electrochemically deposited interface of chitosan–gold nanoparticles for acetylcholinesterase biosensor design. Journal of Electroanalytical Chemistry, 2007, 605, 53-60.	1.9	88
98	Integrating ionic liquids with molecular imprinting technology for biorecognition and biosensing: A review. Biosensors and Bioelectronics, 2020, 149, 111830.	5.3	88
99	Sensitive acetylcholinesterase biosensor based on assembly of Î ² -cyclodextrins onto multiwall carbon nanotubes for detection of organophosphates pesticide. Sensors and Actuators B: Chemical, 2010, 146, 337-341.	4.0	87
100	Comparison of pesticide sensitivity by electrochemical test based on acetylcholinesterase biosensor. Biosensors and Bioelectronics, 2007, 23, 285-289.	5.3	86
101	In Vitro Study of Receptor-Mediated Silica Nanoparticles Delivery across Blood–Brain Barrier. ACS Applied Materials & Interfaces, 2017, 9, 20410-20416.	4.0	86
102	A portable smart-phone device for rapid and sensitive detection of E. coli O157:H7 in Yoghurt and Egg. Biosensors and Bioelectronics, 2018, 99, 479-485.	5.3	86
103	Au@Pd Nanopopcorn and Aptamer Nanoflower Assisted Lateral Flow Strip for Thermal Detection of Exosomes. Analytical Chemistry, 2019, 91, 13986-13993.	3.2	86
104	Detection of p53 Protein Based on Mesoporous Pt–Pd Nanoparticles with Enhanced Peroxidase-like Catalysis. ACS Sensors, 2016, 1, 717-724.	4.0	85
105	A dopamine-induced Au hydrogel nanozyme for enhanced biomimetic catalysis. Chemical Communications, 2019, 55, 9865-9868.	2.2	85
106	Trends in Cell-Based Electrochemical Biosensors. Current Medicinal Chemistry, 2008, 15, 3160-3170.	1.2	82
107	3-D printed adjustable microelectrode arrays for electrochemical sensing and biosensing. Sensors and Actuators B: Chemical, 2016, 230, 600-606.	4.0	82
108	Biomonitoring of Organophosphorus Agent Exposure by Reactivation of Cholinesterase Enzyme Based on Carbon Nanotube-Enhanced Flow-Injection Amperometric Detection. Analytical Chemistry, 2009, 81, 9314-9320.	3.2	81

#	Article	IF	CITATIONS
109	Molecularly imprinted polypyrrole nanotubes based electrochemical sensor for glyphosate detection. Biosensors and Bioelectronics, 2021, 191, 113434.	5.3	81
110	Colloidal gold nanoparticle modified carbon paste interface for studies of tumor cell adhesion and viability. Biomaterials, 2005, 26, 6487-6495.	5.7	80
111	Electropolymerized multiwalled carbon nanotubes/polypyrrole fiber for solid-phase microextraction and its applications in the determination of pyrethroids. Talanta, 2011, 84, 104-108.	2.9	80
112	Graphene-based immunosensor for electrochemical quantification of phosphorylated p53 (S15). Analytica Chimica Acta, 2011, 699, 44-48.	2.6	80
113	Smart Drug Delivery System-Inspired Enzyme-Linked Immunosorbent Assay Based on Fluorescence Resonance Energy Transfer and Allochroic Effect Induced Dual-Modal Colorimetric and Fluorescent Detection. Analytical Chemistry, 2018, 90, 1976-1982.	3.2	79
114	Smart phone based immunosensor coupled with nanoflower signal amplification for rapid detection of Salmonella Enteritidis in milk, cheese and water. Sensors and Actuators B: Chemical, 2018, 261, 75-82.	4.0	79
115	Electrochemical immunoassay for CA125 based on cellulose acetate stabilized antigen/colloidal gold nanoparticles membrane. Electrochimica Acta, 2006, 51, 1208-1214.	2.6	78
116	Magnetic Electrochemical Sensing Platform for Biomonitoring of Exposure to Organophosphorus Pesticides and Nerve Agents Based on Simultaneous Measurement of Total Enzyme Amount and Enzyme Activity. Analytical Chemistry, 2011, 83, 3770-3777.	3.2	78
117	Ultrasonic-assisted synthesis of Pd–Pt/carbon nanotubes nanocomposites for enhanced electro-oxidation of ethanol and methanol in alkaline medium. Ultrasonics Sonochemistry, 2016, 28, 192-198.	3.8	78
118	Intermetallic Pd ₃ Pb nanowire networks boost ethanol oxidation and oxygen reduction reactions with significantly improved methanol tolerance. Journal of Materials Chemistry A, 2017, 5, 23952-23959.	5.2	78
119	One-step electrochemical deposition of Prussian Blue–multiwalled carbon nanotube nanocomposite thin-film: preparation, characterization and evaluation for H ₂ O ₂ sensing. Journal of Materials Chemistry, 2010, 20, 1532-1537.	6.7	77
120	Electrochemical Immunoassay of Membrane P-glycoprotein by Immobilization of Cells on Gold Nanoparticles Modified on a Methoxysilyl-Terminated Butyrylchitosan Matrix. Biochemistry, 2005, 44, 11539-11545.	1.2	76
121	A Novel Nanoparticle-Based Disposable Electrochemical Immunosensor for Diagnosis of Exposure to Toxic Organophosphorus Agents. Advanced Functional Materials, 2011, 21, 4371-4378.	7.8	76
122	Fluorescent silicon nanoparticles-based ratiometric fluorescence immunoassay for sensitive detection of ethyl carbamate in red wine. Sensors and Actuators B: Chemical, 2018, 255, 2742-2749.	4.0	75
123	Recent progress in biosensors based on organic-inorganic hybrid nanoflowers. Biosensors and Bioelectronics, 2018, 120, 175-187.	5.3	75
124	Cathodic electrochemical analysis of methyl parathion at bismuth-film-modified glassy carbon electrochimica Acta, 2008, 53, 4478-4484.	2.6	73
125	Optimization of cobalt/nitrogen embedded carbon nanotubes as an efficient bifunctional oxygen electrode for rechargeable zinc–air batteries. Journal of Materials Chemistry A, 2016, 4, 4864-4870. ————————————————————————————————————	5.2	72
126	Tandem catalysis driven by enzymes directed hybrid nanoflowers for on-site ultrasensitive detection of organophosphorus pesticide. Biosensors and Bioelectronics, 2019, 141, 111473.	5.3	72

#	Article	IF	CITATIONS
127	Determination of trace aluminum in biological and water samples by cloud point extraction preconcentration and graphite furnace atomic absorption spectrometry detection. Journal of Hazardous Materials, 2008, 154, 1127-1132.	6.5	71
128	CdSe/ZnS quantum dots based electrochemical immunoassay for the detection of phosphorylated bovine serum albumin. Biosensors and Bioelectronics, 2010, 26, 1109-1113.	5.3	71
129	One-pot bioinspired synthesis of all-inclusive protein–protein nanoflowers for point-of-care bioassay: detection of E. coli O157:H7 from milk. Nanoscale, 2016, 8, 18980-18986.	2.8	71
130	Boosting the activity of Fe-Nx moieties in Fe-N-C electrocatalysts via phosphorus doping for oxygen reduction reaction. Science China Materials, 2020, 63, 965-971.	3.5	71
131	A novel immunochromatographic electrochemical biosensor for highly sensitive and selective detection of trichloropyridinol, a biomarker of exposure to chlorpyrifos. Biosensors and Bioelectronics, 2011, 26, 2835-2840.	5.3	70
132	Pt–Ni(OH)2 nanosheets amplified two-way lateral flow immunoassays with smartphone readout for quantification of pesticides. Biosensors and Bioelectronics, 2019, 142, 111498.	5.3	70
133	Stripping voltammetric analysis of organophosphate pesticides based on solid-phase extraction at zirconia nanoparticles modified electrode. Electrochemistry Communications, 2008, 10, 686-690.	2.3	69
134	Immunological assay for carbohydrate antigen 19-9 using an electrochemical immunosensor and antigen immobilization in titania sol–gel matrix. Journal of Immunological Methods, 2003, 283, 67-75.	0.6	68
135	PdCuPt Nanocrystals with Multibranches for Enzyme-Free Glucose Detection. ACS Applied Materials & Interfaces, 2016, 8, 22196-22200.	4.0	68
136	Mitochondrial-targeted multifunctional mesoporous Au@Pt nanoparticles for dual-mode photodynamic and photothermal therapy of cancers. Nanoscale, 2017, 9, 15813-15824.	2.8	67
137	A 3D-Printed, Portable, Optical-Sensing Platform for Smartphones Capable of Detecting the Herbicide 2,4-Dichlorophenoxyacetic Acid. Analytical Chemistry, 2017, 89, 9339-9346.	3.2	67
138	Review—Nanozyme-Based Immunosensors and Immunoassays: Recent Developments and Future Trends. Journal of the Electrochemical Society, 2020, 167, 037508.	1.3	67
139	Low Pt-content ternary PdCuPt nanodendrites: an efficient electrocatalyst for oxygen reduction reaction. Nanoscale, 2017, 9, 1279-1284.	2.8	66
140	Singleâ€Atomic Site Catalyst with Heme Enzymesâ€Like Active Sites for Electrochemical Sensing of Hydrogen Peroxide. Small, 2021, 17, e2100664.	5.2	66
141	Sugar Blowingâ€Induced Porous Cobalt Phosphide/Nitrogenâ€Doped Carbon Nanostructures with Enhanced Electrochemical Oxidation Performance toward Water and Other Small Molecules. Small, 2017, 13, 1700796.	5.2	65
142	A review of optical probes based on nanomaterials for the detection of hydrogen sulfide in biosystems. Analytica Chimica Acta, 2019, 1061, 1-12.	2.6	65
143	Micro additive manufacturing of glucose biosensors: A feasibility study. Analytica Chimica Acta, 2018, 1043, 142-149.	2.6	64
144	Ultrasonic-assisted synthesis of carbon nanotube supported bimetallic Pt–Ru nanoparticles for effective methanol oxidation. Journal of Materials Chemistry A, 2015, 3, 8459-8465.	5.2	63

#	Article	IF	CITATIONS
145	Three-dimensional PtNi hollow nanochains as an enhanced electrocatalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2016, 4, 8755-8761.	5.2	63
146	A review on emerging principles and strategies for colorimetric and fluorescent detection of alkaline phosphatase activity. Analytica Chimica Acta, 2019, 1086, 29-45.	2.6	63
147	Recent progress on single-atom catalysts for CO2 electroreduction. Materials Today, 2021, 48, 95-114.	8.3	63
148	Recognition of dimethoate carried by bi-layer electrodeposition of silver nanoparticles and imprinted poly-o-phenylenediamine. Electrochimica Acta, 2008, 53, 6589-6595.	2.6	62
149	A bare-eye-based lateral flow immunoassay based on the use of gold nanoparticles for simultaneous detection of three pesticides. Mikrochimica Acta, 2014, 181, 1565-1572.	2.5	61
150	A Facile Method for Synthesizing Dendritic Core–Shell Structured Ternary Metallic Aerogels and Their Enhanced Electrochemical Performances. Chemistry of Materials, 2016, 28, 7928-7934.	3.2	60
151	Methyl parathion hydrolase based nanocomposite biosensors for highly sensitive and selective determination of methyl parathion. Biosensors and Bioelectronics, 2011, 26, 4320-4325.	5.3	59
152	Reagentless amperometric carbohydrate antigen 19-9 immunosensor based on direct electrochemistry of immobilized horseradish peroxidase. Talanta, 2007, 71, 1257-1262.	2.9	58
153	Preparation, characterization of Fe3O4 at TiO2 magnetic nanoparticles and their application for immunoassay of biomarker of exposure to organophosphorus pesticides. Biosensors and Bioelectronics, 2013, 41, 669-674.	5.3	58
154	Hyaluronic acid-conjugated apoferritin nanocages for lung cancer targeted drug delivery. Biomaterials Science, 2015, 3, 1386-1394.	2.6	58
155	Smartphone Optosensing Platform Using a DVD Grating to Detect Neurotoxins. ACS Sensors, 2016, 1, 366-373.	4.0	58
156	Highly Sensitive and Selective Immuno-Capture/Electrochemical Assay of Acetylcholinesterase Activity in Red Blood Cells: A Biomarker of Exposure to Organophosphorus Pesticides and Nerve Agents. Environmental Science & Technology, 2012, 46, 1828-1833.	4.6	57
157	One-step electrodeposition of a molecularly imprinting chitosan/phenyltrimethoxysilane/AuNPs hybrid film and its application in the selective determination of p-nitrophenol. Analyst, The, 2013, 138, 2761.	1.7	57
158	Mesoporous Pt Nanotubes as a Novel Sensing Platform for Sensitive Detection of Intracellular Hydrogen Peroxide. ACS Applied Materials & Interfaces, 2015, 7, 24288-24295.	4.0	57
159	Hyaluronic Acid-Modified Multifunctional Q-Graphene for Targeted Killing of Drug-Resistant Lung Cancer Cells. ACS Applied Materials & Interfaces, 2016, 8, 4048-4055.	4.0	57
160	Enhanced Electrocatalytic Activities of PtCuCoNi Three-Dimensional Nanoporous Quaternary Alloys for Oxygen Reduction and Methanol Oxidation Reactions. ACS Applied Materials & Interfaces, 2016, 8, 6110-6116.	4.0	57
161	Protein-based nanomaterials and nanosystems for biomedical applications: A review. Materials Today, 2021, 43, 166-184.	8.3	57
162	Carbon nanotube-linked hollow carbon nanospheres doped with iron and nitrogen as single-atom catalysts for the oxygen reduction reaction in acidic solutions. Journal of Materials Chemistry A, 2019. 7. 14478-14482.	5.2	56

#	Article	IF	CITATIONS
163	Nanomaterial-enhanced 3D-printed sensor platform for simultaneous detection of atrazine and acetochlor. Biosensors and Bioelectronics, 2021, 184, 113238.	5.3	56
164	Highly branched PtCu bimetallic alloy nanodendrites with superior electrocatalytic activities for oxygen reduction reactions. Nanoscale, 2016, 8, 5076-5081.	2.8	55
165	Determination of carbaryl pesticide using amperometric acetylcholinesterase sensor formed by electrochemically deposited chitosan. Colloids and Surfaces B: Biointerfaces, 2007, 58, 145-150.	2.5	54
166	Rhodamine-based ratiometric fluorescence sensing for the detection of mercury(II) in aqueous solution. Talanta, 2010, 81, 433-437.	2.9	54
167	One-Pot Fabrication of Mesoporous Core–Shell Au@PtNi Ternary Metallic Nanoparticles and Their Enhanced Efficiency for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2016, 8, 4739-4744.	4.0	54
168	Highly photoluminescent carbon dots derived from linseed and their applications in cellular imaging and sensing. Journal of Materials Chemistry B, 2018, 6, 3181-3187.	2.9	54
169	Ultrathin dendritic IrTe nanotubes for an efficient oxygen evolution reaction in a wide pH range. Journal of Materials Chemistry A, 2018, 6, 8855-8859.	5.2	54
170	Graphene-like Metal-Free 2D Nanosheets for Cancer Imaging and Theranostics. Trends in Biotechnology, 2018, 36, 1145-1156.	4.9	54
171	Ultrafine Pd ensembles anchored-Au2Cu aerogels boost ethanol electrooxidation. Nano Energy, 2018, 53, 206-212.	8.2	54
172	Differential pulse voltammetry determination of ascorbic acid with ferrocene-l-cysteine self-assembled supramolecular film modified electrode. Sensors and Actuators B: Chemical, 2004, 97, 373-378.	4.0	53
173	Development of acetylcholinesterase biosensor based on CdTe quantum dots modified cysteamine self-assembled monolayers. Journal of Electroanalytical Chemistry, 2008, 623, 81-85.	1.9	53
174	Application of chemisorption/desorption process of thiocholine for pesticide detection based on acetylcholinesterase biosensor. Sensors and Actuators B: Chemical, 2008, 134, 908-912.	4.0	53
175	Immobilization of acetylcholinesterase based on the controllable adsorption of carbon nanotubes onto an alkanethiol monolayer for carbaryl sensing. Analyst, The, 2008, 133, 1790.	1.7	53
176	Kinetically Controlled Synthesis of Pt-Based One-Dimensional Hierarchically Porous Nanostructures with Large Mesopores as Highly Efficient ORR Catalysts. ACS Applied Materials & Interfaces, 2016, 8, 35213-35218.	4.0	53
177	Noble Metal Aerogels. ACS Applied Materials & amp; Interfaces, 2020, 12, 52234-52250.	4.0	53
178	Studies on the Electrochemical Behaviour of Hydroquinone at L-cysteine Self-Assembled Monolayers Modified Gold Electrode. Sensors, 2002, 2, 41-49.	2.1	52
179	Glucose encapsulating liposome for signal amplification for quantitative detection of biomarkers with glucometer readout. Biosensors and Bioelectronics, 2015, 72, 348-354.	5.3	52
180	Nitrogen and Fluorine odoped Carbon Nanowire Aerogels as Metalâ€Free Electrocatalysts for Oxygen Reduction Reaction. Chemistry - A European Journal, 2017, 23, 10460-10464.	1.7	52

#	Article	IF	CITATIONS
181	Versatile Barometer Biosensor Based on Au@Pt Core/Shell Nanoparticle Probe. ACS Sensors, 2017, 2, 789-795.	4.0	52
182	SWCNTs@GQDs composites as nanocarriers for enzyme-free dual-signal amplification electrochemical immunoassay of cancer biomarker. Analytica Chimica Acta, 2018, 1042, 44-51.	2.6	52
183	An Ionâ€Imprinting Derived Strategy to Synthesize Singleâ€Atom Iron Electrocatalysts for Oxygen Reduction. Small, 2021, 17, e2004454.	5.2	52
184	Single-Atom Nanozymes Linked Immunosorbent Assay for Sensitive Detection of A <i>β</i> 1-40: A Biomarker of Alzheimer's Disease. Research, 2020, 2020, 4724505.	2.8	52
185	Graphene-based materials for biosensing and bioimaging. MRS Bulletin, 2012, 37, 1290-1296.	1.7	51
186	Magnetic Fe3O4@TiO2 nanoparticles-based test strip immunosensing device for rapid detection of phosphorylated butyrylcholinesterase. Biosensors and Bioelectronics, 2013, 50, 486-491.	5.3	51
187	Integrating <i>in situ</i> formation of nanozymes with three-dimensional dendritic mesoporous silica nanospheres for hypoxia-overcoming photodynamic therapy. Nanoscale, 2018, 10, 22937-22945.	2.8	51
188	Bioinspired Peptoid Nanotubes for Targeted Tumor Cell Imaging and Chemoâ€Photodynamic Therapy. Small, 2019, 15, e1902485.	5.2	51
189	Nanomaterial-based sensors and biosensors for enhanced inorganic arsenic detection: A functional perspective. Sensors and Actuators B: Chemical, 2020, 315, 128100.	4.0	51
190	Comparison of drug sensitivity using acetylcholinesterase biosensor based on nanoparticles–chitosan sol–gel composite. Journal of Electroanalytical Chemistry, 2007, 611, 60-66.	1.9	50
191	One-step synthesis of cobalt and nitrogen co-doped carbon nanotubes and their catalytic activity for the oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 12718-12722.	5.2	50
192	Metal-organic framework derived hierarchically porous nitrogen-doped carbon nanostructures as novel electrocatalyst for oxygen reduction reaction. Electrochimica Acta, 2015, 178, 287-293.	2.6	50
193	Graphene loaded bimetallic Au@Pt nanodendrites enhancing ultrasensitive electrochemical immunoassay of AFP. Sensors and Actuators B: Chemical, 2016, 231, 513-519.	4.0	50
194	High-performance dual-channel ratiometric colorimetric sensing of phosphate ion based on target-induced differential oxidase-like activity changes of Ce-Zr bimetal-organic frameworks. Sensors and Actuators B: Chemical, 2020, 321, 128546.	4.0	50
195	Electrochemical thiocholine inhibition sensor based on biocatalytic growth of Au nanoparticles using chitosan as template. Sensors and Actuators B: Chemical, 2007, 127, 317-322.	4.0	49
196	Assembly of carbon nanotubes on a nanoporous gold electrode for acetylcholinesterase biosensor design. Sensors and Actuators B: Chemical, 2014, 199, 284-290.	4.0	49
197	Recent progress on nanomaterial-based biosensors for veterinary drug residues in animal-derived food. TrAC - Trends in Analytical Chemistry, 2016, 83, 95-101.	5.8	49
198	Core–shell PdPb@Pd aerogels with multiply-twinned intermetallic nanostructures: facile synthesis with accelerated gelation kinetics and their enhanced electrocatalytic properties. Journal of Materials Chemistry A, 2018, 6, 7517-7521.	5.2	49

#	Article	IF	CITATIONS
199	Atomically Isolated Iron Atom Anchored on Carbon Nanotubes for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2019, 11, 39820-39826.	4.0	49
200	Self-Assembly of All-Inclusive Allochroic Nanoparticles for the Improved ELISA. Analytical Chemistry, 2019, 91, 8461-8465.	3.2	49
201	Preparation and characterization of Au–ZrO2–SiO2 nanocomposite spheres and their application in enrichment and detection of organophosphorus agents. Journal of Materials Chemistry, 2012, 22, 4977.	6.7	48
202	Electrically Switched Ion Exchange Based on Polypyrrole and Carbon Nanotube Nanocomposite for the Removal of Chromium(VI) from Aqueous Solution. Industrial & Engineering Chemistry Research, 2018, 57, 768-774.	1.8	48
203	Graphene–silver nanohybrids for ultrasensitive surface enhanced Raman spectroscopy: size dependence of silver nanoparticles. Journal of Materials Chemistry C, 2014, 2, 6850.	2.7	47
204	Newly Designed Graphene Cellular Monolith Functionalized with Hollow Pt-M (M = Ni, Co) Nanoparticles as the Electrocatalyst for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2016, 8, 25863-25874.	4.0	46
205	Catalytic Activity of Co–X (X = S, P, O) and Its Dependency on Nanostructure/Chemical Composition in Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2018, 1, 7014-7021.	2.5	46
206	A disposable impedance sensor for electrochemical study and monitoring of adhesion and proliferation of K562 leukaemia cells. Electrochemistry Communications, 2007, 9, 953-958.	2.3	45
207	Oxidative desorption of thiocholine assembled on core–shell Fe3O4/AuNPs magnetic nanocomposites for highly sensitive determination of acetylcholinesterase activity: An exposure biomarker of organophosphates. Biosensors and Bioelectronics, 2011, 26, 4231-4235.	5.3	45
208	Bioinspired nanoscale materials for biomedical and energy applications. Journal of the Royal Society Interface, 2014, 11, 20131067.	1.5	45
209	Two-Dimensional N,S-Codoped Carbon/Co ₉ S ₈ Catalysts Derived from Co(OH) ₂ Nanosheets for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2017, 9, 36755-36761.	4.0	45
210	Tri-functional Fe–Zr bi-metal–organic frameworks enable high-performance phosphate ion ratiometric fluorescent detection. Nanoscale, 2020, 12, 19383-19389.	2.8	45
211	A disposable sensor based on immobilization of acetylcholinesterase to multiwall carbon nanotube modified screen-printed electrode for determination of carbaryl. Journal of Applied Electrochemistry, 2008, 38, 1217-1222.	1.5	44
212	Highly uniform distribution of Pt nanoparticles on N-doped hollow carbon spheres with enhanced durability for oxygen reduction reaction. RSC Advances, 2017, 7, 6303-6308.	1.7	44
213	Kinetically controlled synthesis of AuPt bi-metallic aerogels and their enhanced electrocatalytic performances. Journal of Materials Chemistry A, 2017, 5, 19626-19631.	5.2	44
214	Interconnected Fe, S, N-Codoped Hollow and Porous Carbon Nanorods as Efficient Electrocatalysts for the Oxygen Reduction Reaction. ACS Applied Materials & amp; Interfaces, 2017, 9, 40298-40306.	4.0	44
215	Nanoparticle-based immunosensor with apoferritin templated metallic phosphate label for quantification of phosphorylated acetylcholinesterase. Biosensors and Bioelectronics, 2011, 26, 3857-3863.	5.3	43
216	Enzyme-linked immunosorbent assay for detection of organophosphorylated butyrylcholinesterase: A biomarker of exposure to organophosphate agents. Analytica Chimica Acta, 2011, 693, 1-6.	2.6	43

#	Article	IF	CITATIONS
217	Tubular titanium oxide/reduced graphene oxide-sulfur composite for improved performance of lithium sulfur batteries. Carbon, 2018, 128, 63-69.	5.4	43
218	Ambient light sensor based colorimetric dipstick reader for rapid monitoring organophosphate pesticides on a smart phone. Analytica Chimica Acta, 2019, 1092, 126-131.	2.6	43
219	Rapid determination of triazophos using acetylcholinesterase biosensor based on sol–gel interface assembling multiwall carbon nanotubes. Journal of Applied Electrochemistry, 2007, 37, 893-898.	1.5	41
220	Rational design and application of molecularly imprinted sol–gel polymer for the electrochemically selective and sensitive determination of Sudan I. Talanta, 2011, 84, 451-456.	2.9	41
221	Rapid and sensitive detection of microRNA via the capture of fluorescent dyes-loaded albumin nanoparticles around functionalized magnetic beads. Biosensors and Bioelectronics, 2017, 94, 56-62.	5.3	41
222	pH-Responsive ZnO Nanocluster for Lung Cancer Chemotherapy. ACS Applied Materials & Interfaces, 2017, 9, 5739-5747.	4.0	40
223	Rapid and selective detection of Fe (III) by using a smartphone-based device as a portable detector and hydroxyl functionalized metal-organic frameworks as the fluorescence probe. Analytica Chimica Acta, 2019, 1077, 160-166.	2.6	40
224	Ternary PtRuCu aerogels for enhanced methanol electrooxidation. Nanoscale, 2019, 11, 10575-10580.	2.8	40
225	Nanozyme Enhanced Colorimetric Immunoassay for Naked-Eye Detection of Salmonella Enteritidis. Journal of Analysis and Testing, 2019, 3, 99-106.	2.5	39
226	pH-responsive allochroic nanoparticles for the multicolor detection of breast cancer biomarkers. Biosensors and Bioelectronics, 2020, 148, 111780.	5.3	38
227	Electrochemical Detection of Dual Exposure Biomarkers of Organophosphorus Agents Based on Reactivation of Inhibited Cholinesterase. Analytical Chemistry, 2013, 85, 9686-9691.	3.2	36
228	A nonenzymatic electrochemical glucose sensor based on mesoporous Au/Pt nanodendrites. RSC Advances, 2015, 5, 82617-82622.	1.7	36
229	One-step synthesis of carbon nanosheet-decorated carbon nanofibers as a 3D interconnected porous carbon scaffold for lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 23737-23743.	5.2	36
230	A gold nanoparticle labeling strategy for the sensitive kinetic assay of the carbamate–acetylcholinesterase interaction by surface plasmon resonance. Talanta, 2009, 78, 1036-1042.	2.9	35
231	Polyoxometalateâ€Graphene Nanocomposite Modified Electrode for Electrocatalytic Detection of Ascorbic Acid. Electroanalysis, 2014, 26, 178-183.	1.5	34
232	Electrochemical Immunoassays Based on Graphene: A Review. Electroanalysis, 2016, 28, 4-12.	1.5	34
233	"On-Off-On―fluorescence sensor based on g-C 3 N 4 nanosheets for selective and sequential detection of Ag + and S 2 Talanta, 2017, 168, 168-173.	2.9	34
234	Template-directed synthesis of nitrogen- and sulfur-codoped carbon nanowire aerogels with enhanced electrocatalytic performance for oxygen reduction. Nano Research, 2017, 10, 1888-1895.	5.8	34

#	Article	IF	CITATIONS
235	Efficient Cytosolic Delivery Using Crystalline Nanoflowers Assembled from Fluorinated Peptoids. Small, 2018, 14, e1803544.	5.2	34
236	Switchable Photoacoustic Imaging of Glutathione Using MnO ₂ Nanotubes for Cancer Diagnosis. ACS Applied Materials & Interfaces, 2018, 10, 44231-44239.	4.0	34
237	CdTe nanocrystal-based electrochemical biosensor for the recognition of neutravidin by anodic stripping voltammetry at electrodeposited bismuth film. Biosensors and Bioelectronics, 2008, 24, 863-868.	5.3	33
238	MnO ₂ Nanotube-Based NanoSearchlight for Imaging of Multiple MicroRNAs in Live Cells. ACS Applied Materials & Interfaces, 2017, 9, 23325-23332.	4.0	33
239	Controlling the Charge State and Redox Properties of Supported Polyoxometalates via Soft Landing of Mass-Selected Ions. Journal of Physical Chemistry C, 2014, 118, 27611-27622.	1.5	32
240	Cytotoxic cassaine diterpenoid–diterpenoid amide dimers and diterpenoid amides from the leaves of Erythrophleum fordii. Phytochemistry, 2010, 71, 1749-1755.	1.4	31
241	Nanoparticle-based immunochromatographic test strip with fluorescent detector for quantification of phosphorylated acetylcholinesterase: an exposure biomarker of organophosphorus agents. Analyst, The, 2013, 138, 5431.	1.7	31
242	Direct analysis of trichloropyridinol in human saliva using an Au nanoparticles-based immunochromatographic test strip for biomonitoring of exposure to chlorpyrifos. Talanta, 2013, 114, 261-267.	2.9	31
243	Solvent co-mediated synthesis of ultrathin BiOCl nanosheets with highly efficient visible-light photocatalytic activity. RSC Advances, 2017, 7, 10235-10241.	1.7	31
244	Highly Dispersed Platinum Atoms on the Surface of AuCu Metallic Aerogels for Enabling H ₂ O ₂ Production. ACS Applied Energy Materials, 2019, 2, 7722-7727.	2.5	31
245	Preparation and electrochemical properties of Keggin-type phosphomolybdic anions in electrostaticly linked l-cysteine self-assembled monolayers. Sensors and Actuators B: Chemical, 2003, 94, 282-289.	4.0	30
246	In situ electrodeposited nanoparticles for facilitating electron transfer across self-assembled monolayers in biosensor design. Talanta, 2008, 74, 1337-1343.	2.9	30
247	Iron-Imprinted Single-Atomic Site Catalyst-Based Nanoprobe for Detection of Hydrogen Peroxide in Living Cells. Nano-Micro Letters, 2021, 13, 146.	14.4	30
248	Electrochemical Immunoassay of Human Chorionic Gonadotrophin Based on Its Immobilization in Gold Nanoparticles-Chitosan Membrane. Electroanalysis, 2006, 18, 670-676.	1.5	29
249	A "sense-and-treat―ELISA using zeolitic imidazolate framework-8 as carriers for dual-modal detection of carcinoembryonic antigen. Sensors and Actuators B: Chemical, 2019, 297, 126760.	4.0	29
250	Amperometric sarcosine biosensor with strong anti-interference capabilities based on mesoporous organic-inorganic hybrid materials. Biosensors and Bioelectronics, 2019, 141, 111431.	5.3	29
251	Dispersive Single-Atom Metals Anchored on Functionalized Nanocarbons for Electrochemical Reactions. Topics in Current Chemistry, 2019, 377, 4.	3.0	29
252	Mesoporous Pd@Pt nanoparticle-linked immunosorbent assay for detection of atrazine. Analytica Chimica Acta, 2020, 1116, 36-44.	2.6	29

#	Article	IF	CITATIONS
253	Three-dimensional Nitrogen-Doped Reduced Graphene Oxide/Carbon Nanotube Composite Catalysts for Vanadium Flow Batteries. Electroanalysis, 2017, 29, 1469-1473.	1.5	28
254	Construction of a Biomimetic Zwitterionic Interface for Monitoring Cell Proliferation and Apoptosis. Langmuir, 2005, 21, 8394-8399.	1.6	27
255	Synthesis and characterization of bimetallic ruthenium complexes connected through linear (CH)14 chain. Journal of Organometallic Chemistry, 2007, 692, 3588-3592.	0.8	27
256	Synthesis, Biological Evaluation, and Molecular Modeling of Glycyrrhizin Derivatives as Potent High-Mobility Group Box-1 Inhibitors with Anti-Heart-Failure Activity in Vivo. Journal of Medicinal Chemistry, 2013, 56, 97-108.	2.9	27
257	Enhanced electrocatalytic activities of three dimensional PtCu@Pt bimetallic alloy nanofoams for oxygen reduction reaction. Catalysis Science and Technology, 2016, 6, 5052-5059.	2.1	27
258	Self-Driven Multicolor Electrochromic Energy Storage Windows Powered by a "Perpetual― Rechargeable Battery. ACS Applied Materials & Interfaces, 2019, 11, 48013-48020.	4.0	27
259	Visualization of endogenous hydrogen sulfide in living cells based on Au nanorods@silica enhanced fluorescence. Analytica Chimica Acta, 2019, 1053, 81-88.	2.6	27
260	Paper-based ITP technology: An application to specific cancer-derived exosome detection and analysis. Biosensors and Bioelectronics, 2020, 164, 112292.	5.3	27
261	Emerging Applications of Additive Manufacturing in Biosensors and Bioanalytical Devices. Advanced Materials Technologies, 2020, 5, .	3.0	27
262	Recent advances in biomedical applications of 2D nanomaterials with peroxidase-like properties. Advanced Drug Delivery Reviews, 2022, 185, 114269.	6.6	27
263	Synthetic Polymer Nanoparticles Functionalized with Different Ligands for Receptor-Mediated Transcytosis across the Blood–Brain Barrier. ACS Applied Bio Materials, 2018, 1, 1687-1694.	2.3	26
264	Electrically Switched Ion Exchange Based on Carbon-Polypyrrole Composite Smart Materials for the Removal of ReO ₄ [–] from Aqueous Solutions. Environmental Science & Technology, 2019, 53, 2612-2617.	4.6	26
265	Magnetic particle-based immunoassay of phosphorylated p53 using protein cage templated lead phosphate and carbon nanospheres for signal amplification. RSC Advances, 2012, 2, 11029.	1.7	25
266	A universal lateral flow biosensor for proteins and DNAs based on the conformational change of hairpin oligonucleotide and its use for logic gate operations. Biosensors and Bioelectronics, 2014, 61, 598-604.	5.3	25
267	Development of a Specific Enzyme-Linked Immunosorbent Assay (ELISA) for the Analysis of the Organophosphorous Pesticide Fenthion in Real Samples Based on Monoclonal Antibody. Analytical Letters, 2011, 44, 1591-1601.	1.0	24
268	Protein adsorption and cell adhesion controlled by the surface chemistry of binary perfluoroalkyl/oligo(ethylene glycol) self-assembled monolayers. Journal of Colloid and Interface Science, 2013, 402, 284-290.	5.0	24
269	Accurate and easy-to-use assessment of contiguous DNA methylation sites based on proportion competitive quantitative-PCR and lateral flow nucleic acid biosensor. Biosensors and Bioelectronics, 2016, 80, 654-660.	5.3	24
270	Quantification of kinetic rate constants for transcytosis of polymeric nanoparticle through blood-brain barrier. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2779-2787.	1.1	24

#	Article	IF	CITATIONS
271	Assembling Carbon Pores into Carbon Sheets: Rational Design of Three-Dimensional Carbon Networks for a Lithium–Sulfur Battery. ACS Applied Materials & Interfaces, 2019, 11, 5911-5918.	4.0	24
272	Recognition of Glycoprotein Peroxidase via Con A-Carrying Self-Assembly Layer on Gold. Biomacromolecules, 2007, 8, 2142-2148.	2.6	23
273	Simultaneous detection of dual biomarkers from humans exposed to organophosphorus pesticides by combination of immunochromatographic test strip and ellman assay. Biosensors and Bioelectronics, 2018, 104, 39-44.	5.3	23
274	A novel fluorescent and electrochemical dual-responsive immunosensor for sensitive and reliable detection of biomarkers based on cation-exchange reaction. Analytica Chimica Acta, 2020, 1096, 61-68.	2.6	23
275	A new label-free strategy for a highly efficient chemiluminescence immunoassay. Chemical Communications, 2015, 51, 14443-14446.	2.2	22
276	CdTe@SiO2 signal reporters-based fluorescent immunosensor for quantitative detection of prostate specific antigen. Analytica Chimica Acta, 2019, 1057, 44-50.	2.6	22
277	Composite Assembly of Silver Nanoparticles with Avidin and Biotinylated AChE on Gold for the Pesticidal Electrochemical Sensing. Electroanalysis, 2008, 20, 402-409.	1.5	21
278	Singleâ€Atom Iron Boosts Electrochemiluminescence. Angewandte Chemie, 2020, 132, 3562-3566.	1.6	20
279	Self-Assembling Allochroic Nanocatalyst for Improving Nanozyme-Based Immunochromatographic Assays. ACS Sensors, 2021, 6, 220-228.	4.0	20
280	Fine-Tuning Pyridinic Nitrogen in Nitrogen-Doped Porous Carbon Nanostructures for Boosted Peroxidase-Like Activity and Sensitive Biosensing. Research, 2020, 2020, 8202584.	2.8	19
281	Enzyme entrapped nanoporous scaffolds formed through flow-induced gelation in a microfluidic filter device for sensitive biosensing of organophosphorus compounds. Lab on A Chip, 2011, 11, 381-384.	3.1	18
282	Simultaneous immunoassay of phosphorylated proteins based on apoferritin templated metallic phosphates as voltammetrically distinguishable signal reporters. Biosensors and Bioelectronics, 2016, 80, 201-207.	5.3	18
283	Mesoporous PtPd nanoparticles for ligand-mediated and imaging-guided chemo-photothermal therapy of breast cancer. Nano Research, 2020, 13, 1739-1748.	5.8	18
284	Eyeball-Like Yolk–Shell Bimetallic Nanoparticles for Synergistic Photodynamic–Photothermal Therapy. ACS Applied Bio Materials, 2020, 3, 5922-5929.	2.3	18
285	A MnO _{<i>x</i>} enhanced atomically dispersed iron–nitrogen–carbon catalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2022, 10, 5981-5989.	5.2	18
286	Acetylcholinesterase Biosensor Based on Gold Nanoparticles and Cysteamine Self Assembled Monolayer for Determination of Monocrotophos. Journal of Nanoscience and Nanotechnology, 2009, 9, 2368-2373.	0.9	17
287	Ultrasonic enhanced synthesis of multi-walled carbon nanotube supported Pt–Co bimetallic nanoparticles as catalysts for the oxygen reduction reaction. RSC Advances, 2015, 5, 32685-32689. 	1.7	17
288	Smartphone-Based Dual-Channel Immunochromatographic Test Strip with Polymer Quantum Dot Labels for Simultaneous Detection of Cypermethrin and 3-Phenoxybenzoic Acid. Analytical Chemistry, 2021, 93, 13658-13666.	3.2	17

#	Article	IF	CITATIONS
289	Electrochemical detection of leukemia oncogenes using enzyme-loaded carbon nanotube labels. Analyst, The, 2014, 139, 4223-4230.	1.7	16
290	Integrated immunochromatographic strip with glucometer readout for rapid quantification of phosphorylated proteins. Analytica Chimica Acta, 2017, 964, 1-6.	2.6	16
291	Highly Bright and Photostable Two-Dimensional Nanomaterials Assembled from Sequence-Defined Peptoids. , 2021, 3, 420-427.		16
292	Sequence-Defined Nanotubes Assembled from IR780-Conjugated Peptoids for Chemophototherapy of Malignant Glioma. Research, 2021, 2021, 9861384.	2.8	16
293	A Rapid Method for Antigen-Specific Hybridoma Clone Isolation. Analytical Chemistry, 2018, 90, 2224-2229.	3.2	15
294	Detection of Organophosphate Pesticide Using Polyaniline and Carbon Nanotubes Composite Based on Acetylcholinesterase Inhibition. Journal of Nanoscience and Nanotechnology, 2010, 10, 5662-5666.	0.9	14
295	Electrochemically Controlled Ionâ€exchange Property of Carbon Nanotubes/Polypyrrole Nanocomposite in Various Electrolyte Solutions. Electroanalysis, 2017, 29, 929-936.	1.5	14
296	Direct Cytosolic MicroRNA Detection Using Single-Layer Perfluorinated Tungsten Diselenide Nanoplatform. Analytical Chemistry, 2018, 90, 10369-10376.	3.2	14
297	Oleanane-Type Triterpene Saponins and Cassaine-Type Diterpenoids from <i>Erythrophleum fordii</i> . Planta Medica, 2011, 77, 1631-1638.	0.7	13
298	A magnetic electrochemical immunosensor for the detection of phosphorylated p53 based on enzyme functionalized carbon nanospheres with signal amplification. RSC Advances, 2014, 4, 54066-54071.	1.7	13
299	Mesoporous Carbon Nanospheres with ZnO Nanolids for Multimodal Therapy of Lung Cancer. ACS Applied Bio Materials, 2018, 1, 1165-1173.	2.3	13
300	Tuning polyelectrolyte-graphene interaction for enhanced electrochemical nonenzymatic hydrogen peroxide sensing. Analytica Chimica Acta, 2019, 1049, 98-104.	2.6	13
301	A sensitive magnetic nanoparticle-based immunoassay of phosphorylated acetylcholinesterase using protein cage templated lead phosphate for signal amplification with graphite furnace atomic absorption spectrometry detection. Analyst, The, 2016, 141, 2278-2283.	1.7	12
302	An ultra low-cost smartphone device for in-situ monitoring of acute organophosphorus poisoning for agricultural workers. Sensors and Actuators B: Chemical, 2018, 275, 300-305.	4.0	12
303	Carbon nanodot-hybridized silica nanospheres assisted immunoassay for sensitive detection of Escherichia coli. Sensors and Actuators B: Chemical, 2021, 349, 130730.	4.0	12
304	Recognition and Detection of METOL at anL ysteine Modified Gold Electrode. Analytical Letters, 2004, 37, 361-375.	1.0	11
305	Sensitive immunoassays of nitrated fibrinogen in human biofluids. Talanta, 2010, 81, 1662-1669.	2.9	11
306	Bioactive constituents from toxic seed plants in China. RSC Advances, 2013, 3, 10078.	1.7	11

#	Article	IF	CITATIONS
307	PtCu bimetallic alloy nanotubes with porous surface for oxygen reduction reaction. RSC Advances, 2016, 6, 69233-69238.	1.7	11
308	Enhancing Chemical Interaction of Polysulfide and Carbon through Synergetic Nitrogen and Phosphorus Doping. ACS Sustainable Chemistry and Engineering, 2020, 8, 806-813.	3.2	11
309	LC Determination of Phthalate Esters in Water Samples Using Continuous-Flow Microextraction. Chromatographia, 2008, 68, 393-397.	0.7	9
310	Study of Inhibition, Reactivation and Aging Processes of Pesticides Using Graphene Nanosheets/Gold Nanoparticlesâ€Based Acetylcholinesterase Biosensor. Electroanalysis, 2012, 24, 1745-1750.	1.5	9
311	Embedding platinum-based nanoparticles within ordered mesoporous carbon using supercritical carbon dioxide technique as a highly efficient oxygen reduction electrocatalyst. Journal of Alloys and Compounds, 2018, 741, 580-589.	2.8	9
312	Electrically Controlled Anion Exchange Based on a Polypyrrole/Carbon Cloth Composite for the Removal of Perfluorooctanoic Acid. ACS ES&T Water, 2021, 1, 2504-2512.	2.3	9
313	Glucose Biosensor Based on Mesoporous Pt Nanotubes. Journal of the Electrochemical Society, 2017, 164, B230-B233.	1.3	8
314	Comparison of Blood–Brain Barrier Models for <i>in Vitro</i> Biological Analysis: One-Cell Type vs Three-Cell Type. ACS Applied Bio Materials, 2019, 2, 1050-1055.	2.3	8
315	Selective Removal of Perfluorobutyric Acid Using an Electroactive Ion Exchanger Based on Polypyrrole@Iron Oxide on Carbon Cloth. ACS Applied Materials & Interfaces, 2021, 13, 48500-48507.	4.0	8
316	Design, fabrication and test of a pneumatically controlled, renewable, microfluidic bead trapping device for sequential injection analysis applications. Analyst, The, 2016, 141, 206-215.	1.7	7
317	Au@PtPd enhanced immunoassay with 3D printed smartphone device for quantification of diaminochlorotriazine (DACT), the major atrazine biomarker. Biosensors and Bioelectronics, 2022, 208, 114190.	5.3	7
318	THE ELECTROCATALYTIC REDUCTION OF HYDROGEN PEROXIDE BASED ON COULOMBICALLY LINKED FERROCENE ATI-CYSTEINE SELF-ASSEMBLED MONOLAYERS. Analytical Letters, 2002, 35, 1823-1834.	1.0	6
319	Bimetallic Ir _{<i>x</i>} Pb nanowire networks with enhanced electrocatalytic activity for the oxygen evolution reaction. Journal of Materials Chemistry A, 2022, 10, 11196-11204.	5.2	6
320	Electrochemical Properties of L-cysteine Self-assembled Monolayers Modified. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2001, 17, 1102-1106.	2.2	5
321	Screening of antidote sensitivity using an acetylcholinesterase biosensor based on a graphene–Au nanocomposite. RSC Advances, 2015, 5, 4894-4897.	1.7	4
322	Engineering Metal-Organic Framework-based Nanozymes for Enhanced Biosensing. Current Analytical Chemistry, 2022, 18, 739-752.	0.6	4
323	One-Step Electrochemically Deposited Gold Nanoparticles Interface Grafted with Avidin for Acetylcholinesterase Biosensor Design. Journal of Nanoscience and Nanotechnology, 2010, 10, 5685-5691.	0.9	3
324	Physiologically Based Pharmacokinetic Modeling of Salivary Concentrations for Noninvasive Biomonitoring of 2,4-Dichlorophenoxyacetic Acid (2,4-D). Toxicological Sciences, 2019, 172, 330-343.	1.4	3

#	Article	IF	CITATIONS
325	Self-Assembly of Metalloporphyrin-L-Cysteine Modified Gold Electrode. Journal of Applied Electrochemistry, 2004, 34, 495-500.	1.5	2
326	Carbon Nanotube- and Graphene-based Sensors for Environmental Applications. , 2012, , 621-645.		1
327	Sensors Based on Carbon Nanotube Arrays and Graphene for Water Monitoring. , 2014, , 3-19.		1
328	Water Splitting: Bimetallic Cobaltâ€Based Phosphide Zeolitic Imidazolate Framework: CoP <i>_x</i> Phaseâ€Dependent Electrical Conductivity and Hydrogen Atom Adsorption Energy for Efficient Overall Water Splitting (Adv. Energy Mater. 2/2017). Advanced Energy Materials, 2017. 7	10.2	1
329	Peptoid Nanotubes: Bioinspired Peptoid Nanotubes for Targeted Tumor Cell Imaging and Chemoâ€Photodynamic Therapy (Small 43/2019). Small, 2019, 15, 1970231.	5.2	1
330	Functionalized Two-Dimensional Nanomaterials for Biosensing and Bioimaging. ACS Symposium Series, 2020, , 143-165.	0.5	1
331	Zeptomole Imaging of Cytosolic MicroRNA Cancer Biomarkers with A Light-Controlled Nanoantenna. Nano-Micro Letters, 2021, 13, 213.	14.4	1
332	Recombinant Expression and Biosensor Design of Mouse Brain Acetylcholinesterase by One-Step Electrochemical Deposition. , 2011, , .		0
333	Electrochemical Immunoassay of Phosphorylated Proteins. ECS Meeting Abstracts, 2012, , .	0.0	0
334	Electrochemical Biosensors Based on Nanomaterials for Detection of Pesticides and Explosives. , 2014, , 47-62.		0
335	Frontispiece: Facilely Tuning Porous NiCo ₂ O ₄ Nanosheets with Metal Valence‣tate Alteration and Abundant Oxygen Vacancies as Robust Electrocatalysts Towards Water Splitting. Chemistry - A European Journal, 2016, 22, .	1.7	0

Graphene-Based Optical Biosensors and Imaging. , 2017, , 93-110.