Alexandra J Harvey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/811575/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	REDOX regulation of early embryo development. Reproduction, 2002, 123, 479-486.	1.1	282
2	Oxygen-Regulated Gene Expression in Bovine Blastocysts1. Biology of Reproduction, 2004, 71, 1108-1119.	1.2	156
3	Blastocyst metabolism. Reproduction, Fertility and Development, 2015, 27, 638.	0.1	116
4	Mitochondria in early development: linking the microenvironment, metabolism and the epigenome. Reproduction, 2019, 157, R159-R179.	1.1	97
5	The role of oxygen in ruminant preimplantation embryo development and metabolism. Animal Reproduction Science, 2007, 98, 113-128.	0.5	94
6	Oxygen-regulated expression ofGLUT-1,GLUT-3, andVEGF in the mouse blastocyst. Molecular Reproduction and Development, 2005, 70, 37-44.	1.0	77
7	Pluripotent Stem Cell Metabolism and Mitochondria: Beyond ATP. Stem Cells International, 2017, 2017, 1-17.	1.2	64
8	Metaboloepigenetic Regulation of Pluripotent Stem Cells. Stem Cells International, 2016, 2016, 1-15.	1.2	50
9	Interplay between Metabolites and the Epigenome in Regulating Embryonic and Adult Stem Cell Potency and Maintenance. Stem Cell Reports, 2019, 13, 573-589.	2.3	38
10	Combined parental obesity negatively impacts preimplantation mouse embryo development, kinetics, morphology and metabolism. Human Reproduction, 2015, 30, 2084-2096.	0.4	35
11	Dynamic regulation of mitochondrial function in preimplantation embryos and embryonic stem cells. Mitochondrion, 2011, 11, 829-838.	1.6	32
12	Impact of Assisted Reproductive Technologies: A Mitochondrial Perspective of Cytoplasmic Transplantation. Current Topics in Developmental Biology, 2007, 77, 229-249.	1.0	31
13	Mitochondrial and glycolytic remodeling during nascent neural differentiation of human pluripotent stem cells. Development (Cambridge), 2018, 145, .	1.2	31
14	Bisphenol A affects early bovine embryo development and metabolism that is negated by an oestrogen receptor inhibitor. Scientific Reports, 2016, 6, 29318.	1.6	26
15	Molecular control of mitochondrial function in developing rhesus monkey oocytes and preimplantation-stage embryos. Reproduction, Fertility and Development, 2008, 20, 846.	0.1	24
16	Metabolism Is a Key Regulator of Induced Pluripotent Stem Cell Reprogramming. Stem Cells International, 2019, 2019, 1-10.	1.2	24
17	Distinct profiles of human embryonic stem cell metabolism and mitochondria identified by oxygen. Reproduction, 2015, 150, 367-382.	1.1	23
18	Oxygen modulates human embryonic stem cell metabolism in the absence of changes in self-renewal. Reproduction, Fertility and Development, 2016, 28, 446.	0.1	23

ALEXANDRA J HARVEY

#	Article	IF	CITATIONS
19	Oxygen Regulates Human Pluripotent Stem Cell Metabolic Flux. Stem Cells International, 2019, 2019, 1-17.	1.2	20
20	Metabolomic and Transcriptional Analyses Reveal Atmospheric Oxygen During Human Induced Pluripotent Stem Cell Generation Impairs Metabolic Reprogramming. Stem Cells, 2019, 37, 1042-1056.	1.4	18
21	The effects of 2,4â€dinitrophenol and <scp>d</scp> â€glucose concentration on the development, sex ratio, and interferonâ€ŧau (IFNT) production of bovine blastocysts. Molecular Reproduction and Development, 2016, 83, 50-60.	1.0	17
22	Mitochondrial Fusion by M1 Promotes Embryoid Body Cardiac Differentiation of Human Pluripotent Stem Cells. Stem Cells International, 2019, 2019, 1-12.	1.2	17
23	Regulation of amino acid transporters in pluripotent cell populations in the embryo and in culture; novel roles for sodium-coupled neutral amino acid transporters. Mechanisms of Development, 2016, 141, 32-39.	1.7	12
24	Nicotinamide adenine dinucleotide induces a bivalent metabolism and maintains pluripotency in human embryonic stem cells. Stem Cells, 2020, 38, 624-638.	1.4	11
25	Expression profiles of cohesins, shugoshins and spindle assembly checkpoint genes in rhesus macaque oocytes predict their susceptibility for aneuploidy during embryonic development. Cell Cycle, 2012, 11, 740-748.	1.3	10
26	Fathers That Are Born Small Program Alterations in the Next-Generation Preimplantation Rat Embryos ,. Journal of Nutrition, 2015, 145, 876-883.	1.3	10
27	Physiological oxygen culture reveals retention of metabolic memory in human induced pluripotent stem cells. PLoS ONE, 2018, 13, e0193949.	1.1	10
28	Low female birth weight and advanced maternal age programme alterations in next-generation blastocyst development. Reproduction, 2015, 149, 497-510.	1.1	7
29	A combination of growth factors and cytokines alter preimplantation mouse embryo development, foetal development and gene expression profiles. Molecular Human Reproduction, 2020, 26, 953-970.	1.3	7
30	Long-distance transportation of primate embryos developing in culture: a preliminary study. Reproductive BioMedicine Online, 2010, 20, 365-370.	1.1	6
31	Acute in vitro exposure to environmentally relevant atrazine levels perturbs bovine preimplantation embryo metabolism and cell number. Reproductive Toxicology, 2019, 87, 87-96.	1.3	6
32	Transcriptional Differences between Rhesus Embryonic Stem Cells Generated from In Vitro and In Vivo Derived Embryos. PLoS ONE, 2012, 7, e43239.	1.1	4
33	The metabolic framework of pluripotent stem cells and potential mechanisms of regulation. , 0, , 164-179.		3
34	Neural differentiation medium for human pluripotent stem cells to model physiological glucose levels in human brain. Brain Research Bulletin, 2021, 173, 141-149.	1.4	1
35	Metabolic Control of Stemness and Differentiation. Stem Cells International, 2019, 2019, 1-2.	1.2	0