Denis Feliers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8115661/publications.pdf Version: 2024-02-01

NENIS FELIEDS

#	Article	IF	CITATIONS
1	Proximal tubular epithelial insulin receptor mediates high-fat diet–induced kidney injury. JCI Insight, 2021, 6, .	5.0	8
2	Chloride channel accessory 1 integrates chloride channel activity and mTORC1 in agingâ€related kidney injury. Aging Cell, 2021, 20, e13407.	6.7	11
3	Interplay between RNA-binding protein HuR and Nox4 as a novel therapeutic target in diabetic kidney disease. Molecular Metabolism, 2020, 36, 100968.	6.5	35
4	Marmoset as a Model to Study Kidney Changes Associated With Aging. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 315-324.	3.6	19
5	A Multi-Parameter Analysis of Cellular Coordination of Major Transcriptome Regulation Mechanisms. Scientific Reports, 2018, 8, 5742.	3.3	7
6	Hydrogen sulfide ameliorates aging-associated changes in the kidney. GeroScience, 2018, 40, 163-176.	4.6	49
7	Neutrophil peptidyl arginine deiminase-4 has a pivotal role in ischemia/reperfusion-induced acuteÂkidney injury. Kidney International, 2018, 93, 365-374.	5.2	116
8	Hydrogen sulfide as a regulatory factor in kidney health and disease. Biochemical Pharmacology, 2018, 149, 29-41.	4.4	34
9	An electrochemically deposited collagen wound matrix combined with adipose-derived stem cells improves cutaneous wound healing in a mouse model of type 2 diabetes. Journal of Biomaterials Applications, 2018, 33, 553-565.	2.4	13
10	Hydrogen sulfide inhibits high glucose-induced NADPH oxidase 4 expression and matrix increase by recruiting inducible nitric oxide synthase in kidney proximal tubular epithelial cells. Journal of Biological Chemistry, 2017, 292, 5665-5675.	3.4	40
11	Spleen contributes significantly to increased circulating levels of fibroblast growth factor 23 in response to lipopolysaccharide-induced inflammation. Nephrology Dialysis Transplantation, 2017, 32, 960-968.	0.7	25
12	Hydrogen Sulfide in Renal Physiology and Disease. Antioxidants and Redox Signaling, 2016, 25, 720-731.	5.4	82
13	Rapamycin Increases Mortality in <i>db/db</i> Mice, a Mouse Model of Type 2 Diabetes. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2016, 71, 850-857.	3.6	57
14	Metformin prevents renal interstitial fibrosis in mice with unilateral ureteral obstruction. Molecular and Cellular Endocrinology, 2015, 412, 116-122.	3.2	59
15	Tadalafil Integrates Nitric Oxide-Hydrogen Sulfide Signaling to Inhibit High Glucose-induced Matrix Protein Synthesis in Podocytes. Journal of Biological Chemistry, 2015, 290, 12014-12026.	3.4	38
16	Epigenetic control of podocyte differentiation: a new target of the renin–angiotensin system in kidney disease. Kidney International, 2015, 88, 668-670.	5.2	8
17	Symmetric dimethylarginine alters endothelial nitric oxide activity in glomerular endothelial cells. Cellular Signalling, 2015, 27, 1-5.	3.6	28
18	Stabilization of HIF-2α through redox regulation of mTORC2 activation and initiation of mRNA translation. Oncogene, 2013, 32, 3147-3155.	5.9	47

DENIS FELIERS

#	Article	IF	CITATIONS
19	Apelin retards the progression of diabetic nephropathy. American Journal of Physiology - Renal Physiology, 2013, 304, F788-F800.	2.7	86
20	Hydrogen Sulfide Inhibits High Glucose-induced Matrix Protein Synthesis by Activating AMP-activated Protein Kinase in Renal Epithelial Cells. Journal of Biological Chemistry, 2012, 287, 4451-4461.	3.4	108
21	Molecular events in matrix protein metabolism in the aging kidney. Aging Cell, 2012, 11, 1065-1073.	6.7	38
22	Erk in Kidney Diseases. Journal of Signal Transduction, 2011, 2011, 1-8.	2.0	37
23	The complex world of kidney microRNAs. Kidney International, 2011, 80, 334-337.	5.2	31
24	Resveratrol ameliorates high glucose-induced protein synthesis in glomerular epithelial cells. Cellular Signalling, 2010, 22, 65-70.	3.6	42
25	Acute hyperglycemia rapidly stimulates VEGF mRNA translation in the kidney. Role of angiotensin type 2 receptor (AT2). Cellular Signalling, 2010, 22, 1849-1857.	3.6	23
26	Mechanism of VEGF expression by high glucose in proximal tubule epithelial cells. Molecular and Cellular Endocrinology, 2010, 314, 136-142.	3.2	27
27	Vascular endothelial growth factor as a prognostic marker of lupus nephritis. Kidney International, 2009, 75, 1251-1253.	5.2	6
28	Regulation of mRNA translation in renal physiology and disease. American Journal of Physiology - Renal Physiology, 2009, 297, F1153-F1165.	2.7	52
29	Novel mechanisms of protein synthesis in diabetic nephropathy—role of mRNA translation. Reviews in Endocrine and Metabolic Disorders, 2008, 9, 255-266.	5.7	18
30	Raptor-rictor axis in TGFÎ ² -induced protein synthesis. Cellular Signalling, 2008, 20, 409-423.	3.6	60
31	PKCδ regulates the stimulation of vascular endothelial factor mRNA translation by angiotensin II through hnRNP K. Cellular Signalling, 2008, 20, 969-977.	3.6	31
32	High Glucose, High Insulin, and Their Combination Rapidly Induce Laminin-β1 Synthesis by Regulation of mRNA Translation in Renal Epithelial Cells. Diabetes, 2007, 56, 476-485.	0.6	71
33	A role for AMP-activated protein kinase in diabetes-induced renal hypertrophy. American Journal of Physiology - Renal Physiology, 2007, 292, F617-F627.	2.7	253
34	Heterogeneous nuclear ribonucleoprotein K contributes to angiotensin II stimulation of vascular endothelial growth factor mRNA translation. American Journal of Physiology - Renal Physiology, 2007, 293, F607-F615.	2.7	30
35	Regulation of Elongation Phase of mRNA Translation in Diabetic Nephropathy. American Journal of Pathology, 2007, 171, 1733-1742.	3.8	114
36	Angiotensin II stimulation of VEGF mRNA translation requires production of reactive oxygen species. American Journal of Physiology - Renal Physiology, 2006, 290, F927-F936.	2.7	68

Denis Feliers

#	Article	IF	CITATIONS
37	mRNA Translation. Journal of the American Society of Nephrology: JASN, 2006, 17, 3281-3292.	6.1	56
38	mRNA Translation in Diabetic Nephropathy. , 2006, , 97-116.		3
39	VEGF regulation of endothelial nitric oxide synthase in glomerular endothelial cells. Kidney International, 2005, 68, 1648-1659.	5.2	118
40	Translational regulation of vascular endothelial growth factor expression in renal epithelial cells by angiotensin II. American Journal of Physiology - Renal Physiology, 2005, 288, F521-F529.	2.7	45
41	Cloning of the 5'-flanking region of the murine bone morphogenetic protein-7 gene. Molecular and Cellular Biochemistry, 2002, 233, 31-37.	3.1	7
42	Activation of Cyclin D1-Cdk4 and Cdk4-Directed Phosphorylation of RB Protein in Diabetic Mesangial Hypertrophy. Diabetes, 2002, 51, 3290-3299.	0.6	37
43	Insulin regulation of protein translation repressor 4E-BP1, an eIF4E-binding protein, in renal epithelial cells. Kidney International, 2001, 59, 866-875.	5.2	73
44	Activation of renal signaling pathways in db/db mice with type 2 diabetes. Kidney International, 2001, 60, 495-504.	5.2	94
45	Angiotensin II activates Akt/protein kinase B by an arachidonic acid/redoxâ€dependent pathway and independent of phosphoinositide 3â€kinase. FASEB Journal, 2001, 15, 1909-1920.	0.5	99
46	Insulin regulation of protein translation repressor 4E-BP1, an eIF4E-binding protein, in renal epithelial cells. Kidney International, 2001, 59, 866-875.	5.2	7
47	Potential role of insulin-like growth factor binding protein-4 in the uncoupling of bone turnover in multiple myeloma. British Journal of Haematology, 1999, 104, 715-722.	2.5	16
48	Characterization and regulation of insulin-like growth factor binding proteins in human hepatic stellate cells. , 1998, 174, 240-250.		32
49	Inhibitory Effect of Annexin V on Protein Kinase C Activity in Mesangial Cell Lysates. FEBS Journal, 1995, 232, 865-872.	0.2	14
50	Inhibitory Effect of Annexin V on Protein Kinase C Activity in Mesangial Cell Lysates. FEBS Journal, 1995, 232, 865-872.	0.2	2
51	Inhibitory Effect of Annexin V on Protein Kinase C Activity in Mesangial Cell Lysates. FEBS Journal, 1995, 232, 865-872.	0.2	25
52	Species Differences of the Thyroid Protein Kinase C Heterogeneity. Thyroid, 1994, 4, 459-465.	4.5	5
53	Forskolin mimics TSH action on the expression of protein kinase C isozymes in pig thyroid cell cultures. Cellular Signalling, 1994, 6, 513-522.	3.6	1
54	Immunological identification of protein kinase C-α and protein kinase C-Î′ in cultured rat mesangial cells: Diffferential sensitivity of the two isoforms towards the protein kinase inhibitor H7. Cellular Signalling, 1992, 4, 559-569.	3.6	13

DENIS FELIERS

#	Article	IF	CITATIONS
55	Heterogeneity of protein kinase C in cultured rat mesangial cells. Cellular Signalling, 1992, 4, 179-188.	3.6	5
56	Characterization and regulation of insulin-like growth factor binding proteins in human hepatic stellate cells. , 0, .		1